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Abstract

Single-step GBLUP (HBLUP) efficiently combines genomic, pedigree, and phenotypic information for holistic genetic analyses of disjunct
breeding populations. We combined data from two independent multigenerational Eucalyptus globulus breeding populations to provide
direct comparisons across the programs and indirect predictions in environments where pedigreed families had not been evaluated.
Despite few known pedigree connections between the programs, genomic relationships provided the connectivity required to create a uni-
fied relationship matrix, H, which was used to compare pedigree-based and HBLUP models. Stem volume data from 48 sites spread across
three regions of southern Australia and wood quality data across 20 sites provided comparisons of model accuracy. Genotyping proved
valuable for correcting pedigree errors and HBLUP more precisely defines relationships within and among populations, with relationships
among the genotyped individuals used to connect the pedigrees of the two programs. Cryptic relationships among the native range popu-
lations provided evidence of population structure and evidence of the origin of landrace populations. HBLUP across programs improved
the prediction accuracy of parents and genotyped individuals and enabled breeding value predictions to be directly compared and in-
ferred in regions where little to no testing has been undertaken. The impact of incorporating genetic groups in the estimation of H will fur-
ther align traditional genetic evaluation pipelines with approaches that incorporate marker-derived relationships into prediction models.

Keywords: breeding value accuracy; forest tree breeding; genomic relationship matrix; genomic selection; HBLUP; Myrtaceae; MPP;
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Introduction
Quantitative genetics has utilized pedigree-derived relationships
to improve selection efficiencies of breeding programs for many
years (Henderson 1975). Well-defined relationships within the
populations improve the accuracy of breeding value estimates,
the partitioning of genetic variance, and the estimation of envi-
ronmental effects. Forest tree breeding has delivered greater
gains over time as the relationships amongst experimental units
have increased in precision from open-pollinated (OP) families to
control-pollinated (CP) families (McKeand and Bridgwater 1998),
to progeny themselves (“individual model”; Borralho 1995), to
clonally replicated progeny (Costa e Silva et al. 2004; Isik et al.
2005; Callister and Collins 2008; Baltunis et al. 2009).

Genetic markers such as single nucleotide polymorphisms
(SNP) provide empirical rather than expected relationships by us-
ing estimates of allele similarity between pairs of individuals
(VanRaden 2008). Genotyping provides direct estimates of rela-
tionship coefficients that may replace or be combined with
expected values derived from the documented pedigree.

Relationships determined by genotyping have been used to re-
cover nonadditive genetic variances from OP tree families
(Kláp�st�e et al. 2014; Gamal El-Dien et al. 2016) and remove infla-
tion in half-sib-based additive genetic variance estimates
(Kláp�st�e et al. 2014; Ratcliffe et al. 2017). Large-scale genotyping in
OP families has also produced substantial improvements to
breeding value accuracy (Gamal El-Dien et al. 2016;
Thavamanikumar et al. 2020) and accounted for inbreeding de-
pression (Kláp�st�e et al. 2017, 2018). In hybrid tree populations, ge-
notypic relationships have revealed the magnitude of epistatic
variation and partitioned genetic variances more precisely
(Bouvet et al. 2016; Tan et al. 2018). Genotyping also resolved
errors in pedigree information and improved model fit in a clon-
ally replicated full-sib population of loblolly pine (Munoz et al.
2014).

Although genotyping has demonstrated great promise for im-
proving relationship estimation, industrial breeding programs are
comprised of thousands of individuals in multigenerational pop-
ulations and genotyping entire populations is not possible or
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impractical. Animal breeders faced with a similar challenge de-
veloped the “single-step genomic BLUP” procedure, in which em-
pirical relationship estimates from a genotyped subset (G) are
merged into the traditional pedigree-derived matrix of expected
relationship coefficients (A) of the entire population (Legarra et al.
2009; Misztal et al. 2009; Christensen and Lund 2010). The result-
ing relationship matrix (H) is then used in place of A in linear
mixed models (LMM) to produce Best Linear Unbiased Predictions
(BLUP) of genetic value. This “HBLUP” approach has been com-
bined with efficient computing procedures (Misztal et al. 2009) to
allow for genetic evaluations that integrate hundreds of thou-
sands of genotypes with phenotypes from millions of animals
(Misztal et al. 2013a). The approach is regularly used for genomic
evaluation and selection in many livestock species (Lourenco
et al. 2020).

HBLUP has been applied to the analysis of growth and wood
quality traits for OP populations of Picea glauca (Ratcliffe et al.
2017), Eucalyptus grandis (Cappa et al. 2017; 2018), Eucalyptus nitens
(Kláp�st�e et al. 2018), and Eucalyptus pellita (Thavamanikumar et al.
2020) and for OP and CP families of Pinus contorta (Ukrainetz and
Mansfield 2020). These studies involved genotyping of progeny
and unanimously revealed the presence of relationships amongst
parents that had not been previously known. Assumed relation-
ships between parents and progeny (expected 0.5) and between
half-sib progeny (expected 0.25) are more precisely estimated
when blended with genomic similarities in G to create the H ma-
trix (Cappa et al. 2017). A greater density of relationship informa-
tion in H compared with the sparse relationships in A led to
improved theoretical accuracy of estimated breeding values
(EBVs), in some cases only for genotyped individuals (Ratcliffe
et al. 2017) and in other cases for ungenotyped individuals and
parents as well (Cappa et al. 2017; Thavamanikumar et al. 2020).
Phenotypic information from trees that have not been genotyped
was also shown to improve genomic predictions (Cappa et al.
2019). In forest tree populations, HBLUP efficiently combines ge-
nomic, pedigree, and phenotypic information and offers substan-
tial advantages over conventional pedigree-based analysis. On
the other hand, the published studies applying HBLUP to forest
tree populations have all been limited to small experimental pop-
ulations, ranging upwards to 5742 genotyped and ungenotyped
progeny (Thavamanikumar et al. 2020). This is one to two orders
of magnitude smaller than required for long-running commercial
tree improvement programs. Ukrainetz and Mansfield (2020)
noted computational limitations extending their methodology to
larger phenotypic and marker datasets while recognizing that
HBLUP has been applied to millions of individuals in animal
breeding applications (e.g., Tsuruta et al. 2021). Scaling up the
HBLUP approach to a complete multigenerational breeding popu-
lation is required to integrate this technology into applied tree
breeding programs.

Eucalyptus globulus Labill. is a commercially important planta-
tion species in Mediterranean climates around the world and is
particularly favored for high-yielding short-fiber pulpwood crops.
Approximately 460,000 hectares of E. globulus plantations are
managed in Australia (Downham and Gavran 2019), principally
in three major planting regions: (1) Southwest Australia (50% of
area), (2) the “Green Triangle” of western Victoria and southeast
South Australia (32% of area), and (3) central and eastern Victoria
(10% of area). The species’ native range in Southeast Australia
has been classified into 13 races and 20 subraces (Dutkowski and
Potts 1999; Potts et al. 2004). Landraces are also recognized where
E. globulus has been naturalized in areas such as Portugal, Spain,

and Chile. Racial variation in evolutionary and commercial traits
has been well described (Lopez et al. 2001). Narrow-sense herita-
bility estimates from E. globulus progeny trials are generally low
for growth and moderate to high for wood basic density and pulp
yield (Costa e Silva et al. 2009; Callister et al. 2011; Araujo et al.
2012). Nonadditive genetic effects on E. globulus growth can be
significant (Araujo et al. 2012). Genotype–environment interaction
has been reported for E. globulus at the regional scale across
Australia. Costa e Silva et al. (2006) reported an average intersite
correlations amongst four Australian growing regions of 0.73 for
subrace effects and 0.76 for OP family effects and regional corre-
lations are accommodated in routine analyses of Australian
breeding populations (e.g., Dutkowski et al. 2015).

Most commercial tree improvement activities are practiced
within the confines of an individual program. However, impor-
tant exchanges of information and genetic material also occur
amongst programs to support breeding and the establishment of
planted forests. A major limitation to such exchanges exists
when pedigrees have been coded differently and little connectiv-
ity is available between programs to provide unbiased compari-
sons among populations. This situation provided the stimulus for
our work to quantify the impact that combining two distinct ped-
igrees into a joint relationship matrix (H) has on genetic parame-
ter estimates and the accuracy of breeding value predictions.
Replacement of A with H as the numerator relationship matrix
(NRM) involves two types of changes to the information used in
the analysis. Not only do genomic data inform the relationships
amongst individuals in H, but the formulation of H applied thus
far in tree breeding does not allow for races as genetic groups.
Therefore, we aimed to disentangle the impact of including geno-
mic information from that of removing race groups by comparing
results from three types of models: ABLUP with race genetic
groups (ABLUPþrace; benchmark model), ABLUP without groups
(ABLUP�race), and HBLUP.

A second motivation was to demonstrate a methodology for
combining large datasets in anticipation of a new generation of
analytical tools. The newly emerging ability to model genetic
responses to environmental attributes presented as continuous
surfaces (Resende et al. 2020), to predict unobserved phenotypes
through environmental relationship matrices (Jarquı́n et al. 2014),
and to synthesize large ‘omics datasets into coherent models of
plant function (Weighill et al. 2019) rely on very large experimen-
tal populations distributed across the landscape. The most in-
formed results from these alternative analytical approaches may
be derived from datasets that include structured genetic effects,
such as those managed in formal breeding programs evaluating
diverse sets of germplasm across a wide range of environments.

Materials and methods
Experimental populations
This study was conducted using two completely separate multi-
generational breeding populations of E. globulus in southern
mainland Australia, EG1 (Australian Bluegum Plantations) and
EG2 (HVP Plantations). These commercial tree improvement pro-
grams progeny test full-sib families predominantly derived from
first- and second-generation selections. Forty-eight field trials
established between 1998 and 2015 provided phenotypic data
from 126,467 full-sib progeny (1973 families), 7051 half-sib prog-
eny (263 families), and 24,767 unpedigreed trees of commercial
entries (193 “checklots”; Table 1 and Supplementary Table S1A
describes progeny trial network).
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Field trials were located in three regions of southern Australia:
Western Australia (WA), the Green Triangle (GT), and Gippsland
(GIPPS). EG1’s breeding program was focused in WA (25 trials)
with five trials in GT and none in GIPPS. EG2 trials were located
predominantly in GT (nine trials), with six trials in GIPPS and
three in WA (Figure 1, Supplementary Table S1B describes trial
distribution across regions).

The EG1 population of full-sib families was founded on 112

base-population trees and the EG2 population was founded on 83

base-population trees (Supplementary Table S1C describes popu-

lations). These “founders” are trees in native forests or interna-

tional landraces that provided the seed for testing and

domestication. Half the founders of the EG2 program originated

from Strzelecki Ranges and Western Otways races, whereas the

EG1 program is more strongly influenced by Furneaux, King

Island, Portugal (landrace), and NE Tasmania. The classification

of races follows the results of Dutkowski and Potts (1999). A total

of 347 EG1 parents and 107 EG2 parents were represented by

progeny included in these analyses.
Inadequate interprogram relationships were available for joint

analyses using pedigree derived relationships as only four found-

ers were common to both programs. Pedigree-derived relation-

ship coefficients amongst the two parent cohorts were rare, with

two relationships of 0.25, 152 relationships of 0.125, and one

expected relationship coefficient of 0.0625.
Trials were primarily established in randomized incomplete-

block designs (two EG1 trials were alpha-cyclic incomplete row-

column designs) with four to eight replications of each family

established in four- to five-trees in contiguous row-plots. Two

EG1 trials were single-tree plot designs. Incomplete blocks were

arranged into replicates that were generally contiguous to enable

the resolution of spatial trend effects within each trial.

Table 1 Overview of genetic entries in the analyzed data

Program Generation Entries Individuals

Full-sib families
EG1 2 453 38,846

3 816 41,775
4 13 458

EG2 1 2 166
2 509 35,042
3 180 10,180

Full-sib subtotal 1,973 126,467 (80%)
Half-sib families

EG1 1 and 2 261 6,852
EG2 1 2 199

Half-sib subtotal 263 7,051 (4%)
Checklots

EG1 n/a 155 15,477
EG2 n/a 38 9,290

Checklots subtotal 193 24,767 (16%)
Total 2,429 158,285

Figure 1 Locations of the 48 trials used for this study with (A) reference map of Australia, (B) 6 trials in Gippsland, (C) 14 trials in the Green Triangle, and
(D) 28 trials in Western Australia. EG1 trials represented as blue symbols, EG2 trials as green symbols.
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Phenotyping of field trials
Diameter at breast height (DBH) was measured with a tape for
each tree at 3 years (7 sites), 4 years (9 sites), 5 years (29 sites), or
8 years (3 sites; see Supplementary Table S1A) after planting.
Tree height (HT) was measured with a hypsometer for each tree
in the majority of trials, although a subset of 3–17% (mean 10%)
of trees were assessed in 11 of the EG2 trials. In these cases,
unmeasured HT data were predicted from the DBH–HT relation-
ship established amongst measured trees for each trial. Stem vol-
ume (VOL) was calculated for each tree using DBH, HT (measured
or predicted), and the region-specific volume function provided
by each program. DBH of all stems forking below breast height
was measured in 36 trials and in these cases, VOL was aggregated
to the tree level before analysis.

Given the expense of wood property assessments, a subset of
trees in 20 of the 48 trials were selected for phenotyping
(Supplementary Table S1D describes subset of populations assessed
for wood properties). Basic density (DENS) data were collected for a
subset of trees between 5 and 8 years. EG2 measured DENS directly
by the displacement method using the outer 50 mm of wood cores
extracted at breast height. EG1 used pilodyn penetration as an indi-
rect measure of wood density (Muneri and Raymond 2000). Pilodyn
data were converted to outer wood DENS using the equation from
Callister and England (2010). Cellulose content (CELL) was predicted
by Forest Quality Pty Ltd in Tasmania, Australia using near-infrared
spectrometry. Samples of either whole-wood cores or shavings taken
from the outer 50 mm of the stem between 5 and 8 years of age were
ground and scanned to produce spectra for cellulose prediction
(Downes et al. 2010).

Genotyping
Leaves were sampled from 164 parents and 74 others in the EG1
program and from 93 parents and 51 others in the EG2 program,
where “others” refers to phenotypic selections that have not been
progeny tested. DNA extraction and genotyping were conducted
at Gondwana Genomics Pty Ltd, Canberra (Thavamanikumar
et al. 2020). The E. globulus marker panel consisted of 2579 SNP
and small biallelic insertion/deletion (INDEL) markers within
candidate genes associated with diameter, density, and cellulose
yield that were identified using association analyses in previous
studies (Southerton et al. 2011). After filtering out markers with
minor allele frequency less than 5%, 2444 markers were available
from 382 parents for the derivation of relationship matrices.

Statistical analyses
Relationship matrices
Relationship matrices were produced using preGSf90, which is a
module of the Fortran-based BLUPF90 suite (Misztal et al. 2014).
The default settings of preGSf90 were used for quality control, im-
putation of missing markers, and calculation of the relationship
matrices (Aguilar et al. 2014). The EG1 G matrix (GEG1) was formed
for 238 genotyped individuals, the EG2 G matrix (GEG2) was
formed for 144 genotyped individuals, and the joint G matrix
(GJOINT) was formed amongst all 382 genotyped individuals. G
was calculated in preGSf90 following the first method of
VanRaden (2008):

G ¼ ZZ
0.

2
P

j
pj 1�pjð Þ

; (1)

where Z is a matrix of centered genotype scores calculated as
Z¼M � 2 P; M is the n � m matrix of n genotypes and m markers

scored 0 for homozygous reference allele, 1 for heterozygous, and
2 homozygous alternative allele, P is a matrix of frequency for
the alternative allele, and pj is the reference allele frequency of
the jth marker.

The pedigree relationship matrix A was divided into four sub-
matrices: A11 representing relationships amongst nongenotyped
individuals, A22 representing relationships amongst genotyped
individuals, and A12 and A21 representing relationships between
genotyped nongenotyped individuals:

A ¼ A11 A12

A21 A22

� �
: (2)

Differences in the constitution of contemporary and historical
populations can lead to different mean breeding value and ge-
netic variance between G and A22 (Forni et al. 2011; Vitezica et al.
2011). We therefore rescaled G to make it compatible with A22 fol-
lowing the approach detailed in Christensen et al. (2012):

Ga ¼ aþ bG; (3)

where a and b were determined by solving the following system
of equations:

aþ b�diag Gð Þ ¼ �diag A22ð Þ
aþ b�G ¼ �A22

:

�
(4)

The rescaled matrix Ga was then weighted to avoid difficulties
with inversion (Aguilar et al. 2010):

Gw ¼ 0:95Ga þ 0:05A22; (5)

which was then used to calculate H (Legarra et al. 2009;
Christensen and Lund 2010):

H ¼ A11 � A12A�1
22 A21 þ A12A�1

22 GwA�1
22 A21 A12A�1

22 Gw

GwA�1
22 A21 Gw

" #
(6)

or equivalently (Lourenco et al. 2020):

H ¼ A11 þ A12A�1
22 ðGw � A22ÞA�1

22 A21 A12A�1
22 Gw

GwA�1
22 A21 Gw

" #
(7)

with inverse

H�1 ¼ A�1 þ 0 0
0 G�1

w � A�1
22

� �
: (8)

H was then resorted to align with the pedigree relationship
matrix for comparisons with A. The section of H relating to geno-
typed individuals, their parents, and ancestors were compared
with A in a preliminary step to highlight identity errors and mis-
takes in the documented pedigree. These errors were rectified in
the pedigree and the process of creating the H�1 matrix was then
repeated with the correct pedigree information.

Genetic analyses
All genetic analyses were conducted using ASReml v. 4.1
(Gilmour et al. 2015). Models incorporating among individual rela-
tionship matrices derived from pedigree (ABLUP) or markers and
pedigree (HBLUP) were fit following Henderson (1984) with a gen-
eral LMM:

4 | G3, 2021, Vol. 11, No. 10



y ¼ Xbþ Zuþ e; (9)

where y is the vector of phenotypic values, X is the incidence matrix
for fixed effects, b is the vector of fixed effects, Z is the incidence ma-
trix for random effect, u is the vector of random effects with E(u) ¼
0, and e is the vector of residual effects expected to be independently
normally distributed with E(e) ¼ 0. The relationship matrix that dif-
ferentiates ABLUP and HBLUP connects each individual in u, and
this change in connectivity impacts genetic parameter estimates
and the accuracy of breeding value predictions.

Single-site ABLUP analyses were first conducted for each trial to
provide spatially adjusted volume (VOLadj) data that were used for
preliminary cross-site analyses (following Ye and Jayawickrama 2008).
Fixed effects were included for the overall mean, replicates, and
checklots. Random effects included additive genetic effects, family-
specific genetic effects specifying the combination of parents
evaluated by control pollinated progeny, incomplete block effects, and
row-plot effects. The races listed in Supplementary Table S1C were in-
cluded as fixed genetic group effects within the pedigree (Westell et al.
1988). Genetic parameter estimates for each trial did not vary substan-
tially from expectation and all trials were retained for across-site anal-
yses. Preliminary cross-site analysis of VOLadj provided additive
variance estimates for each trial, which were used to standardize each
trial to have a mean of zero and an additive standard deviation of one.
Partitioning of additive and nonadditive effects depended on the struc-
ture of the families evaluated in different trials and this heterogeneity
was accommodated by estimating variance four groups of trials with
similar ratios of family to additive variance. A more detailed descrip-
tion of the single site and preliminary analyses is provided in
Supplementary Methods as SM.M1 and SM.M2.

Multivariate models were fit to VOLadj, DENS, and CELL sepa-
rately using an unstructured variance model that provided addi-
tive genetic variance estimates for each region and inter-region
correlations. This model produced genetic parameter estimates
as well as breeding value predictions with their associated accu-
racy for all trees in each region. Comparisons of genetic parame-
ters and accuracy estimates when different models are used for
different sets of the populations are detailed in Table 5,
Supplementary Tables S2, A and B. Site-specific effects for incom-
plete blocks, plots, and multistem form were modeled as random
effects specific to each individual site. OP family means were fit-
ted separately and did not contribute to estimates of r̂2

a.
Checklots were fitted as fixed effects and additional within-plot
error was fitted to checklots at each site separately. The cross-
site modeling progressed for each program using A with genetic
groups, A without groups, and H without genetic groups as the
NRM. Finally, the joint H was used with data from both programs
in combined analyses.

Narrow-sense heritability and dominance proportions for VOL
were estimated at regional scales as follows:

ĥ
2
regional ¼

r̂2
aregioni

r̂2
aregioni

þ r̂2
fregioni

þ

Xn

k¼1

r̂2
bk
þ r̂2

pk
þ r̂2

ek

� �
n

(13)

d̂
2

regional ¼
4r̂2

fregioni

r̂2
aregioni

þ r̂2
fregioni

þ

Xn

k¼1

r̂2
bk
þ r̂2

pk
þ r̂2

ek

� �
n

;
(14)

where r̂2
aregioni

is the cross-site additive genetic variance estimate for
the ith region, r̂2

fregioni
is the cross-site family-specific variance

estimate for ith region, and
Pn
k¼1

r̂2
bk
þ r̂2

pk
þ r̂2

ek

� �
is the sum of vari-

ance due to incomplete blocks, plots, and residuals used to esti-
mate the mean across n trials in each region. Region-specific

estimates of variance components were used to estimate ĥ
2
regional

and d̂
2

regional separately for VOL in WA, GT, and GIPPS. Trials con-

tributing to the estimate of family variance were identified as the

Group 2 trials in Supplementary Methods SM.M2.
Narrow-sense heritability and dominance proportions for

DENS and CELL were estimated across all sites basis as follows:

ĥ
2

Xsite ¼
r̂2

a

r̂2
a þ r̂2

f þ

Xn

k¼1

r̂2
bk
þ r̂2

pk
þ r̂2

ek

� �
n

(15)

d̂
2

Xsite ¼
4r̂2

f

r̂2
a þ r̂2

f þ

Xn

k¼1

r̂2
bk
þ r̂2

pk
þ r̂2

ek

� �
n

;

(16)

where r̂2
a is estimated across sites, r̂2

f is the family variance ap-
proximated across groups of trials with different r̂2

f : r̂2
a ratios as

described in Supplementary Methods SM.M2, so that r̂2
f is a

weighted mean estimate of family variance across all n sites.
Other terms are defined as above for VOL.

Following the recommendation of Putz et al. (2018), the accu-

racy of breeding value predictions was used to provide empirical
comparisons of the accuracy of traditional and HBLUP models for
different sets of the population. The accuracy (̂rgĝ ) of predictions
was calculated as:

r̂gĝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PEV�

r2
a

q
: (17)

PEV estimates for each individual are derived from the inverse
of the relationship coefficient matrix. The method for PEV ap-
proximation in ASReml is described by Welham et al. (2004) and
Gilmour et al. (2004), which utilize methods suggested by Misztal

and Wiggans (1998) and Kackar and Harville (1984) to approxi-
mate prediction errors as suggested by Henderson (1976).

Results
Relationship matrices
Realized relationship coefficients amongst genotyped individuals in
GEG1 and GEG2 were distributed around values expected from pedigree
relationships (Figure 2). Note that these relationship matrices contain

covariances between individuals estimating similarities in allele fre-
quencies rather than probability estimates of shared identity by de-
scent derived from pedigree. A small number of realized relationship
coefficients that diverged excessively from expected values, highlight-
ing individuals with erroneous pedigree information, were corrected
by reassigning parentage before further analyses.

GJOINT revealed unknown relationships amongst parents in
the experimentally disconnected breeding programs. Although

the majority of the 34,272 interprogram relationships in GJOINT

were near zero, 2071 relationship coefficients were greater than
0.1, 428 were greater than 0.2, and 70 were greater than 0.3, with
a maximum of 0.54 (Figure 3). Using genomic rather than
pedigree-derived relationships provided sufficient cross-program
linkage within GJOINT to proceed with forming HJOINT.
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Relationships that were quantified in G were projected into H
to reveal relationships assumed to be zero in A. This was ob-
served within relationship matrices for EG1 and EG2 separately
and jointly to provide comparisons of relatedness estimates
among different sets of the breeding population. Within-race re-
lationship coefficients amongst founders (none of which were
genotyped) in H matrices were greater than zero and provide fur-
ther support for differentiation of races and population structure
(Table 2). The Strzelecki Ranges population displayed the largest
mean within-race relationship coefficient amongst founders
(HJOINT 0.055; Table 2). Between-race or landrace relationships
amongst founders in HJOINT varied significantly from zero in both
directions, with 17 inter-race/landrace combinations significantly

less than zero, 16 significantly greater than zero, and 12 not sig-
nificantly different to zero (Table 3). Cryptic relationships among
the native range populations provided evidence of population
structure and evidence of a Tasmanian origin rather than the
mainland or Bass Straight origin of third-party populations
(Portugal and Californian landraces). The Furneaux race was sig-
nificantly dissimilar to all other races/landraces apart from the
nearby Northeast Tasmania, while Western Tasmania showed
the greatest similarity to other races/landraces with five inter-
race/landrace combinations significantly greater than zero (Table
3). Relationships amongst ungenotyped founders in HJOINT were
around one-quarter the value of those amongst their genotyped
OP offspring.

Genetic parameter estimates from traditional
ABLUP models and HBLUP models
While there are consistent increases in additive variance esti-
mates when moving from ABLUPþrace to both ABLUP�race and
HBLUP, the changes in heritability, dominance variance, and ge-
netic correlations are similar to the standard error estimates.
These populations do not provide strong evidence that genetic
parameter estimates derived from ABLUP differ dramatically
from estimates derived from HBLUP models.

As expected, removing the race/landrace genetic groups from
the EG2 pedigree caused significant increases in ĈVa and ĥ

2
from

individual-site analyses of VOL, while d̂
2

was not significantly

Figure 2 Density distribution of realized relationship coefficients within
the G matrix of the EG1 program (blue bars) and EG2 program (pink bars)
for relationships with expected coefficient of (A) zero, (B) 0.062, (C) 0.125,
(D) 0.25, and (E) 0.5.

Figure 3 Frequency of relationship coefficients between programs in the
joint G matrix. Inset provides detail for 428 relationships with r> 0.2

Table 2 Mean, standard deviation, minimum, and maximum
within-race relationship coefficient in HJOINT for founders of each
native range population and landrace

Race Meana SD Min Max

Strzelecki ranges 0.055*** 0.048 �0.038 0.253
Furneaux 0.007*** 0.013 �0.025 0.104
NE Tasmania 0.011*** 0.016 0.000 0.041
SE Tasmania 0.034*** 0.037 �0.003 0.175
S Tasmania 0.138 0.000 0.138 0.138
W Tasmania 0.006** 0.007 0.000 0.017
King Island 0.021*** 0.022 �0.012 0.073
W Otways 0.042*** 0.036 �0.026 0.149
E Otways 0.012*** 0.019 �0.008 0.063
Portugal 0.045*** 0.067 �0.224 0.328
California 0.006 0.022 �0.024 0.041

a One-way t-test result for H1: mean significantly greater than zero:
*P< 0.05, **P<0.01, ***P< 0.001.
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affected (Table 4). The removal of fixed race effects resulted in
consistently poorer model fit to single-site VOL data [Akaike in-

formation criteria (AIC) on average 41.9 higher; Table 4]. HBLUP
models fit the single-site VOL data marginally better than the
ABLUP�race models (AIC on average was 2.3 lower). The ĈVa and

ĥ
2

of HBLUP models were intermediate between respective values
for ABLUP models that included and excluded race (Table 4) pro-
viding a reduction in bias from excluding population structure.

Similar patterns were observed for the EG2 cross-site analyses

of VOL. AIC indicated poorer model fit (115.2 greater) for the
ABLUP model when race effects were removed from the pedigree,
which was slightly improved by using HBLUP instead of

ABLUP�race (AIC difference of 13.5; Table 5). Removing race effects
led to a similar decline in model fit for the cross-site EG1 VOL
analysis (AIC 256.8 larger; Table 5). However, the HBLUP model fit

the EG1 cross-site VOL data better than the benchmark model of
ABLUPþRace (AIC 26.5 lower; Table 5). The reason for a distinc-
tively better model fit using HBLUP on EG1 data is unknown—it
could be due to the greater number of genotyped trees in the EG1

program or different patterns of parent-within-race structure be-
tween the programs.

Removal of race effects from the ABLUP model reallocated
variance from fixed genetic groups to variance among parents,

inflating r̂2
a and the derived ĥ

2
estimates. The r̂2

a for VOL in-
creased by an average of 21% across regions and programs (Table
5) when race effects were excluded from the model. Some of

these increases were reduced when progressing to the cross-site
HBLUP models for each program, although r̂2

a and ĥ
2

remained
significantly larger than ABLUPþrace models (Table 5). HBLUP

cross-site ĥ
2

estimates for VOL were 0.13 6 0.01 and 0.11 6 0.02 in
the EG1 program in WA and GT, respectively, and 0.10 6 0.02,
0.20 6 0.03, and 0.10 6 0.02 in the EG2 program in WA, GT, and

GIPPS, respectively. The joint-program HBLUP produced ĥ
2

estimates for VOL of 0.14 6 0.01, 0.12 6 0.02, and 0.05 6 0.01 in
WA, GT, and GIPPS, respectively (Table 5). Estimates of d̂

2
for VOL

were not affected by choice of NRM and estimates from the joint
analysis were 0.14 6 0.01, 0.10 6 0.02, and 0.12 6 0.02 in WA, GT,
and GIPPS, respectively (Table 5). Additive genetic correlations
amongst regions were slightly increased by the removal of race
effects and ranged from 0.69 6 0.08 for r̂aðGT;GIPPSÞ to 0.83 6 0.08 for
r̂aðWA;GIPPSÞ from the joint HBLUP model (Table 5). Inter-region
dominance correlation estimates from joint HBLUP were 0.31 for
r̂dðWA;GTÞ, 0.10 for r̂dðWA;GIPPSÞ, and 0.62 for r̂dðGT;GIPPSÞ (not tabu-
lated).

Estimated heritability in DENS was greater in the EG2 program
(0.586 0.08) based on core samples than the EG1 program
(0.286 0.03) based on penetrometer data, with an intermediate ĥ

2

Xsite

of 0.346 0.02 from the joint analysis (Table 6). The programs each
displayed cross-site ĥ

2
Xsite around 0.30 for CELL, with a joint estimate

of 0.296 0.03 (Table 6). Dominance effects were significant for both
wood quality traits with d̂

2

Xsite of 0.10 from joint HBLUP analysis.

Breeding value accuracy from traditional ABLUP
models and HBLUP models
Overall, the greatest breeding value accuracy estimates (̂rgĝ ) were
observed for genotyped parents represented in the prediction re-
gion, followed by ungenotyped parents represented in the predic-
tion region (Figure 4 and see Supplementary Tables S2, A and B
for more details). HBLUP models produced smaller PEV estimates
than the benchmark ABLUPþrace models for the same parents
(see Supplementary Table S2), resulting in generally higher esti-
mates of r̂gĝ . An exception was for EG2 parents, where even
though PEVs were significantly smaller, r̂gĝ from joint HBLUP
were similar to r̂gĝ from ABLUPþrace due to the substantially
smaller r̂2

a of the joint HBLUP model (see Table 5).
Prediction accuracy for parents of progeny tested in other

regions improved markedly in the joint HBLUP analyses (“parents

Table 3 Mean inter-race relationship coefficient amongst founders in HJOINT

Racea STRZ FURNX NE_TAS SE_TAS W_TAS KI W_OTW E_OTW PORT

FURNX �0.008***
NE_TAS �0.002* 0.002**
SE_TAS �0.002* �0.003*** 0.017***
W_TAS 0.001 �0.001** 0.003 0.007***
KI 0.000 �0.005*** �0.008** 0.000 0.010***
W_OTW 0.019*** �0.006*** �0.004** �0.004** 0.005*** 0.023***
E_OTW 0.014*** �0.003*** �0.001 0.000 0.000 0.005*** 0.018***
PORT �0.006*** �0.006*** 0.014*** 0.039*** 0.008*** �0.002 �0.004** 0.000
CALIF �0.007*** �0.006*** 0.007 0.023*** 0.003* 0.006 �0.007*** �0.003 0.025***

Means significantly less than zero shown in italics. Means significantly greater than zero shown in bold type.b
a STRZ: Strzelecki Ranges; FURNX: Furneaux; NE_TAS: NE Tasmania; SE_TAS: SE Tasmania; W_TAS: W Tasmania; KI: King Island; W_OTW: W Otways; E_OTW:

E Otways; PORT: Portugal; CALIF: California.
b Two-way t-test results for H1: mean significantly different to zero: *P<0.05, **P<0.01, ***P< 0.001.

Table 4 Mean and standard error of Akaike information criterion (AIC), coefficient of additive variation (ĈVa), narrow-sense heritability

(ĥ
2
), and dominance proportion (d̂

2
) for stem volume at single sites analysed by ABLUP with races included as genetic groups

(ABLUPþrace), ABLUP without groups (ABLUP-race), and HBLUP without groups

ABLUPþrace ABLUP-race HBLUP Dracea Drace þmarkersb

AIC 21,209 21,251 21,248 41.9 (2.6)*** 39.6 (2.4)***
ĈVa 14.4 (0.9) 15.8 (0.9) 15.5 (0.8) 1.4 (0.5)** 1.1 (0.5)*
ĥ

2
0.139 (0.017) 0.160 (0.018) 0.153 (0.017) 0.021 (0.007)** 0.014 (0.006)*

d̂
2

0.144 (0.016) 0.141 (0.016) 0.139 (0.016) �0.003 (0.002) �0.005 (0.002)*

All 18 individual site estimates are from the EG2 program, which provided trial data from all three regions.
a Significance of two-sided tests of significance for change in estimates when genetic groups are removed from model, and
b when the H matrix is used; *P<0.05, **P<0.01.
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correlated”; Figure 4). For EG1 parents of this class in GT, accuracy
increased by 12% above the ABLUPþrace reference value
(0.086 6 0.023 above 0.713) when parents were genotyped and ac-
curacy increased by 44% (0.2186 0.029) when they were not geno-
typed. For EG2 parents that were unrepresented by progeny in WA,
r̂gĝ increased by 10% (0.070 6 0.011) when parents were genotyped
and by 23% (0.1176 0.114) when they were not genotyped (Figure 4
and Supplementary Table S2). Accuracy estimates of genotyped
individuals not represented as parents but related through the
pedigree (“genotyped related”; Figure 4) were also generally greater
when genotype and pedigree were blended. In this class, joint
HBLUP produced improvements of 11% and 7% (0.072 6 0.011 and
0.048 6 0.017) in WA and GT for EG1, respectively, and 19% for
both GIPPS and WA (0.100 6 0.036 and 0.104 6 0.029, respectively)
for EG2 (Figure 4 and Supplementary Table S2). Genotyped individ-
uals unrelated to parents through the pedigree were included in
HBLUP models, and their breeding values were estimated with an
accuracy r̂gĝ of approximately 0.5 from the joint model (Figure 4).

Accuracy of progeny EBVs was the least impacted by choice of
relationship matrix. Average PEVs for progeny were marginally
higher for EG1 (by 0.050 and 0.008 SDa units in WA and GT,

respectively, under the joint HBLUP model), although average r̂gĝ

was increased by 3% (0.019 and 0.020) in WA and GT, respectively,
due to larger values of r̂2

a (Figure 4, Table 5, and Supplementary
Table S2). Average PEVs for progeny were 37%, 32%, and 10%
smaller (by 0.173, 0.169, and 0.051 SDa units) for EG2 in GIPPS, WA,
and GT, respectively, when estimated with the joint HBLUP model
(Supplementary Table S2) . However, average accuracy from joint
HBLUP was 3–5% lower for EG2 progeny across regions due to the
lower values of r̂2

a relative to the EG2 cross-site models (Figure 4,
Table 5, and Supplementary Table S2).

Discussion
The single-step GBLUP (HBLUP) approach was used to integrate
genomic, pedigree, and phenotypic information and provide un-
biased predictions of genetic merit for breeding programs with
few pedigree connections. Genotyping the parents that were eval-
uated in separate progeny trial networks created sufficient con-
nectivity between the programs to provide predictions of genetic
merit for parents in regions where they were not evaluated and
also improved the accuracy of predictions. Although the benefits
of HBLUP to tree improvement have been demonstrated in a
number of studies (Cappa et al. 2017; Ratcliffe et al. 2017; Kláp�st�e
et al. 2018, 2020; Cappa et al. 2019; Thavamanikumar et al. 2020;
Ukrainetz and Mansfield 2020), this is the first published report of
an HBLUP application that connects large, independent, multige-
nerational tree breeding programs so that breeding value predic-
tions may be directly compared and inferred in regions where
little to no testing has been undertaken.

A clear advantage of HBLUP is that relationships amongst gen-
otyped individuals are quantified precisely, rather than repre-
sented by the expected average relationship derived from the
pedigree. This advance has been well documented in tree breed-
ing contexts (Munoz et al. 2014; Gamal El-Dien et al. 2016; Ratcliffe
et al. 2017; Kláp�st�e et al. 2018) and implied that genotyping may
be used to discover errors in the pedigrees, reveal unknown con-
nections within pedigrees, as well as to improve the precision of
relationship estimates. While the transfer of relationship infor-
mation from genotyped to ungenotyped individuals is also well

Table 5 Estimates of AIC, additive variance (r̂2
a), heritability (ĥ

2
), and dominance proportion (d̂

2
) for each region, and between region

additive genetic correlations (̂raÞ for different multisite models within each program and across programs jointly for stem volume

Program: EG1 EG2 JOINT
Model: ABL

UPþrace
a

ABL
UP�race

b
HBL
UPc

Draced Drace
þmarkerse

ABL
UPþrace

a
ABL

UP�race
b

HBL
UPc

Draced Drace
þmarkerse

HBLUP

AIC 245,132.7 245,389.5 245,106.2 256.8 �26.5 156,003.3 156,118.5 156,105.0 115.2 101.7 �
r̂2

aðWAÞ 0.523 (0.045) 0.611 (0.046) 0.598 (0.046) 0.088 0.075 1.035 (0.252) 1.420 (0.298) 1.353 (0.289) 0.385 0.318 0.651 (0.047)
r̂2

aðGTÞ 0.825 (0.141) 1.010 (0.150) 1.009 (0.151) 0.185 0.184 1.038 (0.179) 1.242 (0.198) 1.219 (0.195) 0.382 0.181 0.883 (0.100)
r̂2

aðGIPPSÞ NA NA NA NA NA 0.882 (0.191) 0.975 (0.195) 1.113 (0.218) 0.093 0.231 0.509 (0.111)
ĥ

2

WA 0.11 (0.01) 0.12 (0.01) 0.13 (0.01) 0.01 0.02 0.08 (0.02) 0.10 (0.02) 0.10 (0.02) 0.02 0.02 0.14 (0.01)
ĥ

2

GT 0.09 (0.01) 0.08 (0.01) 0.11 (0.02) 0.01 0.02 0.17 (0.03) 0.20 (0.03) 0.20 (0.03) 0.03 0.03 0.12 (0.02)
ĥ

2

GIPPS NA NA NA NA NA 0.08 (0.02) 0.09 (0.02) 0.10 (0.02) 0.01 0.02 0.05 (0.01)
d̂

2

WA 0.13 (0.01) 0.13 (0.01) 0.13 (0.01) 0.00 0.00 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.00 0.00 0.14 (0.01)
d̂

2

GT 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 0.00 0.00 0.12 (0.01) 0.12 (0.01) 0.12 (0.01) 0.00 0.00 0.10 (0.02)
d̂

2

GIPPS NA NA NA NA NA 0.07 (0.01) 0.07 (0.01) 0.07 (0.01) 0.00 0.00 0.12 (0.02)
r̂aðWA;GTÞ 0.59 (0.08) 0.65 (0.06) 0.63 (0.07) 0.06 0.04 0.82 (0.07) 0.83 (0.06) 0.84 (0.05) 0.01 0.02 0.75 (0.05)
r̂aðWA;GIPPSÞ NA NA NA NA NA 0.78 (0.09) 0.84 (0.06) 0.82 (0.07) 0.06 0.04 0.83 (0.08)
r̂aðGT;GIPPSÞ NA NA NA NA NA 0.78 (0.06) 0.80 (0.05) 0.82 (0.05) 0.02 0.04 0.69 (0.08)

Standard errors of estimates are in parentheses.
a ABLUPþ�race derived from pedigree with genetic groups.
b ABLUP�race derived from pedigree without genetic groups.
c HBLUP derived from pedigree and GRM.
d Drace is change in estimate when genetic groups are removed from the model.
e Drace þmarkers is change when genetic groups are removed from the model and the H matrix is used.

Table 6 Summary of variance functions from multisite HBLUP
models fitted to outer-wood density (DENS) and cellulose content
(CELL) for each program separately and jointly

DENS CELL

EG1

ĥ
2

Xsite 0.28 (0.03) 0.30 (0.04)

d̂
2

Xsite 0.13 (0.02) 0.08 (0.02)

EG2
ĥ

2

Xsite 0.58 (0.08) 0.31 (0.07)

d̂
2

Xsite 0.01 (0.06) 0.09 (0.05)

JOINT

ĥ
2

Xsite 0.34 (0.02) 0.29 (0.03)

d̂
2

Xsite 0.10 (0.02) 0.10 (0.02)
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established (Legarra et al. 2009; Aguilar et al. 2010; Ratcliffe et al.
2017; Thavamanikumar et al. 2020), our method of genotyping
progeny tested parents from large breeding populations provides
a novel approach to utilizing cryptic relationships amongst popu-
lation founders. The approach provides breeding programs with
information to guide the exchange of germplasm as well as pre-
dictions of how individual trees with genotype data will perform
in regions where the breeding program has not established trials.
It also provides a more powerful platform for quantifying reac-
tion norms to understand which climate and soil variables lead
to changes in breeding value predictions and where specific
parents should be deployed.

Positive associations amongst founders within races are
expected due to coevolution and estimates of genetic distance
among races implicit in G are incorporated into H. The true aver-
age relationship coefficient amongst randomly selected individu-
als within races is expected to be substantially larger than the
estimates in the H matrices and shown in Table 2. Evidence sup-
porting this comes from observing that relationships in H
amongst ungenotyped founders that were unrelated though the

pedigree were typically around 25% of those directly estimated in
G amongst their OP offspring. Relationships in G and H are based
on the probability that alleles are identical by state rather than
by descent, and moreover, the adjustment in H made by projec-
ting G onto relationships in A11 is relatively small as determined
by the coefficient A12A�1

22 in Equation 7.
Further evidence that relationships amongst founders were

underestimated in H is that HBLUP models did not fully correct
the inflation in r̂2

a and ĥ
2

that was observed by removing fixed-
effect race groups from the pedigree. This may alternatively indi-
cate that the inclusion of genetic groups provides an overly
strong assumption of within-group relatedness. The practice of
fitting races or provenances as genetic groups (Quaas 1988;
Westell et al. 1988) is well established in tree breeding (examined
by Dutkowski et al. 1997) and ensures that heritable genetic varia-
tion is estimated at the within-race or within-provenance level.
When genetic groups were removed from the pedigree, we ob-
served the expected increases in r̂2

a and ĥ
2

in ABLUP models, as
genetic variance that had been apportioned to race effects was
pooled with r̂2

a. ABLUP models that excluded genetic group

Figure 4 Mean breeding value accuracy for different classes of individuals estimated by ABLUP models with and without fixed race effects, within-
program HBLUP, and joint HBLUP for (A) EG1 individuals in WA, (B) EG2 individuals in WA, (C) EG1 individuals in GT, (D) EG2 individuals in GT, (E) EG1
individuals in GIPPS, and (F) EG2 individuals in GIPPS. Error bars are standard errors of means.

A. N. Callister et al. | 9



effects provided a poorer fit as indicated by larger AIC estimates.
The greater prediction accuracy associated with ABLUP models
that excluded genetic groups is therefore associated with the in-
flation of genetic variance and does not indicate an improvement
in overall model fit.

Progression from ABLUP�race to HBLUP models moderated the
inflation of r2

a estimates for both populations, using both single-
site and more complex multisite models. It is expected that r̂2

a

and ĥ
2

will be more similar between HBLUP and ABLUPþrace mod-
els when within-race relationships are correctly accounted for
with H (Lourenco et al. 2020). Alternatives for incorporating
groups in HBLUP are currently being explored (Bradford et al.
2019) to reduce the bias of genomic predictions without reducing
accuracy (Garcia-Baccino et al. 2017). Options include following
the approach of Quaas (1988) and Westell et al. (1988) to represent
groups in A or H (Misztal et al. 2013b) and treating groups as
“metafounders,” which are quasi-individuals with inbreeding val-
ues representing the degree of similarity within the group and re-
lationship coefficients representing associations with other
metafounders (Legarra et al. 2015). Extending HBLUP models to
accommodate ancestral race effects is a priority for forest tree
breeding populations that are often derived from diverse wild
populations.

Genetic parameter estimates are similar to those previous
published for E. globulus. Araujo et al. (2012) pooled data from 40
sites and reported heritability (ĥ

2
) and dominance variance esti-

mates (d̂
2
) of 0.11 6 0.03 and 0.09 6 0.02, respectively, while Costa

e Silva et al. (2004) pooled data from five sites and reported ĥ
2

and
d̂

2
of 0.10 6 0.04 and 0.04 6 0.05, respectively for DBH in Portugal.

These results are generally comparable with our joint HBLUP
results for VOL, although the d̂

2
estimates from these trials are

greater (see Table 5). Cross-site pooled analyses of DENS have not
been previously reported for E. globulus, so average single-site
results are referenced for comparisons. Costa e Silva et al. (2009)
reported an average ĥ

2
of 0.29 for Pilodyn penetration across

eight Portuguese sites and Li et al. (2007) reported average ĥ
2

of
0.44 for DENS across three Australian sites. Our joint HBLUP
analysis across 20 sites produced an intermediate ĥ

2
(pooled esti-

mate of 0.34 6 0.02). Comparable univariate, cross-site, heritabil-
ity estimates have not been published for full-sib families of E.
globulus for cellulose content or pulp yield; however, half-sib fam-
ilies have yielded higher heritability estimates (e.g., 0.40 6 0.06
reported by Stackpole et al. 2010).

Our approach to modeling r̂2
f across sites represents a prag-

matic treatment of specific combining ability (SCA) in the context
of industrial breeding programs deploying CP seed. Although r̂2

f

is large enough in populations of E. globulus evaluated as full-sib
families to contribute toward improvements in growth, Araujo
et al. (2012) reported an among-site or type-B correlation estimate
for E. globulus family-specific effects of 0.41 6 0.13, indicating sig-
nificant re-ranking of families in 40 Portuguese trials. Our results
provide divergent estimates of r̂2

f by site, which adds to the diffi-
culty of utilizing SCA. The d̂

2
estimates ranged between 0.10 and

0.14 for VOL at 34 of the 48 sites evaluated (“Group 2”). This pro-
vides motivation for continuing to evaluate full-sib families to
identify those with advantageous SCA for deployment.

Combining data from two breeding programs in southern
Australia allowed for the estimation of inter-region genetic corre-
lations that were unavailable or based on few trials in certain
regions. For example, the program that was based in WA estab-
lished many trials in that region and had no trials in GIPPS. The
estimates of additive genetic correlations between these regions
were made available by the incorporation of relationships among

the parents of the disjunct breeding programs. Inter-region
genetic correlation estimates are slightly larger than those pre-
sented by Dutkowski et al. (2015) for Tree Breeding Australia’s E.
globulus program (0.75 v. 0.58 for r̂aðWA;GTÞ, 0.83 v. 0.80 for
r̂aðWA;GIPPSÞ, and 0.69 v. 0.49 for r̂aðGT;GIPPSÞ). This supports the con-
tinuation of research to understand the factors underlying the
significant genotype by environment interactions evident at the
regional scale in Australia.

One reason to recommend HBLUP to tree breeders is that most
of the traditional mixed-model analysis approaches applied to
traditional genetic analyses may be retained. Once the H21 ma-
trix is constructed, it can be read directly into software such as
ASReml and BLUPF90 with subsequent analyses conducted with
all the power and flexibility of the mixed-model platform. HBLUP
is therefore applicable to any trait and it has been demonstrated,
for example, through analysis of Dothistroma needle blight on
clonally replicated full-sib families of Pinus radiata (Kláp�st�e et al.
2020) and for blight resistance in American chestnut back-cross
populations (Westbrook et al. 2020). Although we demonstrated
the approach here by genotyping a mere 382 individuals, it is ap-
plicable to far larger genotyped numbers using the same method-
ology. For example, Tsuruta et al. (2021) recently conducted an
HBLUP analysis with 2.3 M genotyped individuals and a complete
pedigree of 13.6 M Holsteins.

Our results illustrate that HBLUP conferred little benefit to the
prediction accuracy of parents and progeny within each program,
possibly due to the very low proportion of genotyped individuals.
PEV and r̂gĝ for parents and progeny were generally similar be-
tween ABLUP�race and within-program HBLUP. On the other
hand, PEV values for parents were generally reduced and accura-
cies improved by progressing from within-program HBLUP to
joint HBLUP (see Supplementary Table S2), which generally
resulted in larger values of r̂gĝ for parents. Parent EBVs produced
by HBLUP and ABLUP were well correlated (results not presented).
It could be argued that HBLUP would produce more informed
breeding value predictions due to the greater precision in rela-
tionship definitions provided by H compared with A, and this is a
subject of ongoing exploration and validation.

HBLUP offers a clear advantage over ABLUP for predicting the
value of genotyped individuals with no phenotype data and no
pedigree linkages with individuals evaluated in trial networks.
Breeding values were estimated for 52 EG1 individuals and 5 EG2
individuals that were genotyped but had no connections via pedi-
gree. While accuracy estimates were lower than parental esti-
mates, at around 0.4 and 0.5 for within-program and joint
HBLUP, respectively, indirect estimates of breeding values were
produced. Joint HBLUP enabled the prediction of a complete set
of EBVs for EG1 parents, genotyped individuals with no pheno-
type data, and progeny in the GIPPS region where no progeny tri-
als were established. Extending genomic prediction models to
connect distinct pedigrees allows breeding programs to leverage
information from one another and infer performance in environ-
ments where populations have not been evaluated. This study
provides empirical evidence that may be used to promote collab-
oration among tree improvement programs to better characterize
the genetic merit of individuals in environments where they have
not been evaluated. The need for breeding value predictions in
untested environments is expected to increase as forestry organi-
zations examine options for adapting to climate change (Pinkard
et al. 2015; Keskitalo et al. 2016), including breeding for altered cli-
matic conditions (Gray et al. 2016). The strength of prediction
across environments is dependent not only on joint genomic
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information but also on the precision of environmental definition

and the treatment of GxE in modeling.

Conclusions
Using genotype data to blend disconnected pedigrees and pheno-

type data from separate breeding programs into a unified analy-

sis produces unbiased breeding values for direct comparisons

between programs and indirect predictions of merit in environ-

ments where individuals may not have been evaluated. The joint

HBLUP analysis significantly improved prediction error variance

of parents and genotyped individuals, provided similar estimates

of genetic parameters, more accurate EBV predictions, and of-

fered the profound advantage of EBV prediction for genotyped

individuals in regions they had not been evaluated.
Overall, the genotyping proved useful for correcting pedigree

errors, more precisely defining relationships within and among

populations, identifying the source of landrace populations, and

integrating genotyped individuals with no phenotype or pedigree

connections into the prediction framework. Understanding the

impacts of incorporating genetic groups in the estimation of H
will further align the traditional genetic evaluation pipelines that

underpin tree breeding programs with approaches that incorpo-

rate marker-derived relationships into prediction models.

Data availability
The genomic, pedigree, and phenotypic data were submitted

through the GSA journals figshare portal: https://doi.org/10.
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