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ABSTRACT: Near-infrared (NIR) spectroscopy analysis is one of the most
rapid detection methods for determining ethanol content in gasoline.
Wavelength selection is a key step in the multivariate calibration analysis of
NIR spectroscopy. To improve detection accuracy of ethanol content in
gasoline and provide a simpler interpretation, we established NIR
spectroscopy, a rapid analysis method based on the effective characteristic
spectra. Five effective characteristic spectral bands were used according to
the molecular structure of ethanol, followed by the development of four
modeling schemes. The four modeling schemes spectra, NIR full spectra,
and variable importance projection (VIP) spectra were used for modeling
and analysis. The model was established based on the effective characteristic
spectra without the interference spectra of aromatic hydrocarbons, achieving
the best model performance. In addition, the model was further evaluated by
internal cross-validation and external validation. The model’s evaluation parameters were as follows: the root mean square error of
cross-validation (RMSECV) was 0.6193, the correlation coefficient of internal cross-validation (RCV

2 ) was 0.9995, the root mean
square error of prediction (RMSEP) was 0.5572, and the correlation coefficient of external prediction validation (RP

2) was 0.9995.
The effective characteristic spectra model had smaller RMSEP and RMSECV values, and larger RCV

2 and RP
2 values compared to the

full spectra and VIP spectra models. In conclusion, the effective characteristic spectra model had the highest accuracy and could
provide rapid analysis of the ethanol content in gasoline.

■ INTRODUCTION

Ethanol-gasoline is a new substitute fuel1 made by mixing pre-
determined volume ratios of ordinary gasoline and ethanol
fuel. Ethanol fuel is a renewable resource, and use of ethanol-
gasoline can significantly alleviate energy demand pressure.
Ethanol-gasoline with a high oxygen content can be fully
burned, and effectively reduces the emission of carbon
monoxide, hydrocarbons, and other harmful substances in
automobile exhausts.2−4 As a low-carbon, clean, and high-
quality green fuel, ethanol-gasoline has received considerable
attention in recent years.5 Random inspections of the ethanol-
gasoline quality at various gas stations highlighted some
problems, for example, the ethanol content was either too high
or too low. However, use of substandard ethanol-gasoline led
to engine speed instability and engine failure.6 Therefore, it is
necessary to conduct spot checks to ensure that the quality of
the refined oil including ethanol-gasoline in the market is of a
high standard.
Currently, the conventional method for determining ethanol

content in gasoline is gas chromatography, which is a reliable
method for determining ethanol content in oil. However, this
method has disadvantages, including long analysis times and

the inability to meet the needs of on-site analysis and real-time
detection due to bulky instruments that cannot be easily
carried and moved around for analysis. To solve this problem,
some rapid analytical methods for measuring ethanol content
in gasoline have been developed, for example, Raman
spectroscopy7,8 and Near-infrared (NIR) spectroscopy.9,10

NIR is a fast, non-destructive analytical method that consumes
small amounts of reagents.11−14 NIR spectroscopy combined
with multivariate statistical analytical methods, such as partial
least squares or principal component analysis, has been widely
used in rapid analysis of ethanol content in gasoline. Mabood
et al.,2 using partial least squares and principal component
analysis, established a rapid analytical method to determine
ethanol content in gasoline using NIR spectroscopy, achieving
a low root mean square error of prediction (RMSEP).
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Furthermore, Carneiro et al.15 compared and analyzed the
difference between NIR spectroscopy and mid-infrared (MIR)
spectroscopy in the rapid analysis of the methanol content in
ethanol-gasoline, demonstrating a good prediction perform-
ance for the partial least squares model based on NIR
spectroscopy.
Wavelength selection (or variable selection) is a key step in

multivariate calibration analysis of NIR spectra.16 Appropriate
wavelength selection can remove uninformative and interfering
variables in the spectra to obtain better model prediction
performance and improve interpretability.17 To date, several
NIR wavelength selection methods have been developed. The
most commonly used methods include uninformative variable
elimination (UVE),18 successive projection analysis (SPA),19

moving window partial least squares (MWPLS),20 interval
partial least squares (iPLS),21 simulated annealing (SA),22

genetic algorithm (GA),23 ant colony optimization (ACO),24

and variable importance in projection (VIP).25 These wave-
length selection methods are based on spectral data, and they
have their respective characteristics and advantages in selected
applications. This means that none of these methods can
achieve good model performance for all types of spectral data.
In addition, these methods cannot solve the problem of “false
correlations” between spectral variables and properties caused
by environmental factors or instrument performance factors.
Therefore, the above mentioned methods have no commercial
application in the rapid analysis of ethanol-gasoline. To
improve the accuracy of the rapid analysis of ethanol content
in gasoline using NIR spectroscopy, it is necessary to establish
an effective method for selecting characteristic spectra.
The chemical structure determines the properties of

substances, and different functional groups or chemical
bonds in chemical substances have their corresponding
characteristic spectral bands.26−28 Modeling using character-
istic spectral bands based on a chemical structure can improve
the predictive performance and interpretability of a model.16,29

Based on this principle, we established a rapid analytical
method for ethanol content analysis based on the effective
characteristic spectra. Four calibration models were established
by analyzing the effective characteristic spectral bands
corresponding to each chemical bond of the ethanol molecule.
The four models were compared with the models established
by the full spectra and variables selected by the VIP method, to
verify the accuracy of the effective characteristic spectra model.

■ RESULTS AND DISCUSSION
Effective Characteristic Spectra Selection. Figure 1

shows NIR spectra of 44 ethanol-gasoline samples. An increase
in ethanol concentration/content in the gasoline causes an
inconsistent variation in the absorption intensity at different
wavenumbers. In some spectral ranges, the NIR absorbance
increased significantly with an increase in ethanol concen-
tration in the gasoline, while in other spectral ranges, the
change was not noticeable. The absorption of ethanol in the
NIR spectral region originates from the C−H and O−H bonds
in the molecular structure. Gasoline is mainly composed of
hydrocarbons, and changes in the absorption strength of the
C−H bond were not apparent, whereas changes in the
absorption strength of the O−H bond were apparent. In the
characteristic absorption spectra of ethanol, the spectra ranged
from 6060.171 to 7141.113 cm−1, covering the first overtone of
O−H stretching.30−32 The absorption peaks in the region from
4661.104 to 5000.515 cm−1 are related to the combined

absorption frequency of the O−H stretching and bending
vibrations.33,34 The spectral range from 6450.422 to 7407.241
cm−1 resulted from the first overtone of the combination band
from C−H + C−H and C−H + C−C stretching;35,36 and the
spectral range from 5660.050 to 6001.389 cm−1 corresponds to
the first overtone of C−H stretching.37 The absorption peaks
in the region from 8300.121 to 8500.682 cm−1 are caused by
the second overtone of C−H from the methyl group,15,38 while
the peaks below 6060.171 cm−1 contain the first overtone from
aromatic C−H stretching.35 Characteristic spectra of the other
components may adversely affect ethanol content. The above
characteristic absorption spectra of ethanol were ultimately
selected as the effective characteristic spectra to build a
calibration analysis model.
To explore the optimal effective characteristic spectra and

eliminate the adverse effects of other interfering spectra, we
established four modeling schemes that combined different
effective characteristic spectra. The four modeling schemes are
listed in Table 1. Scheme 1 contains all the characteristic
spectral regions. Scheme 2 contains the characteristic spectral
region of the hydroxyl group. Scheme 3 contains the
characteristic spectral region of the hydroxyl group and
excludes the interference spectra of aromatic groups. Scheme

Figure 1. Raw NIR spectra of 44 ethanol-gasoline samples. The
dashed rectangles 1, 2, 3, 4, and 5 represent the spectral ranges of
4661.104−5000.515 cm−1, 5660.050−6001.389 cm−1, 6000.171−
7141.113 cm−1, 6450.422−7407.241 cm−1, and 8300.121−8500.682
cm−1, respectively.

Table 1. Effective Characteristic Spectral Region Modeling
Scheme

modeling
scheme

spectral combination
(cm−1) combination strategy

1 4661.104−5000.515 all the characteristic spectra region
5660.050−7407.241
8300.121−8500.682

2 4661.104−5000.515 characteristic spectra region of hydroxyl
group6060.171−7141.113

3 6060.171−7141.113 characteristic spectra region of hydroxyl
group and excludes the interference
spectra of aromatic groups

4 6060.171−7407.241 all the characteristic spectra region and
excludes the interference spectra of
aromatic groups

8300.121−8500.682
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4 includes all the characteristic spectral regions and excludes
the interference spectra of aromatic groups.
Results of the Preprocess Methods’ Optimization.

The spectral signal of ethanol-gasoline samples may be
disturbed by noise, stray light, baseline drift, and other
factors,39 which may result in irrelevant information in the NIR
spectra and affect the accurate analysis of the ethanol content.
Five preprocessing methods, namely savitzky-golay smoothing
(SGM, 13 points with a second polynomial order), the
savitzky-golay derivative (SGD, first derivative, 13 points with
a second polynomial order), multiplicative signal correction
(MSC), vector normalization (VN), and the standard normal
variate (SNV), were used to process the NIR spectra of
ethanol-gasoline.
Table 2 shows the performance of the calibration analysis

model for the full spectra based on different preprocessing

methods. Among the five preprocessing methods, the
calibration analysis model based on the first derivative
processing methods had the smallest root mean square error
of cross-validation (RMSECV) and RMSEP values and the
largest correlation coefficient of internal cross-validation (RCV

2 )
and correlation coefficient of external prediction validation
(RP

2) values, indicating that this model has the highest
prediction accuracy. Compared to the model based on raw
spectra, the RMSECV value of the model established by the
first derivative spectra decreased from 0.7682 to 0.6396, the
RMSEP value decreased from 1.0955 to 0.7824, the RCV

2 value
increased from 0.9987 to 0.9991, and the RP

2 value increased
from 0.9966 to 0.9982. This indicates that the model based on
the first derivative spectra has a higher prediction accuracy
than the model based on the raw spectra. The first derivative
was finally proven to be used for the optimal preprocessing
method. The preprocessed NIR spectra of 44 ethanol-gasoline
samples are shown in Figure 2.
Comparison of the Model Performance Between

Effective Characteristic Spectra, Full Spectra, and VIP
Spectra. After preprocessing using the optimal method, the
calibration analysis models were established by full spectra and
the four effective characteristic spectral schemes, and then the
validation set samples were predicted. As shown in Table 3, the
models established by the effective characteristic spectra have
better parameters than the model established by the full
spectra. However, the RMSEP values of Schemes 2 and 4 are
slightly larger than those of the full spectral model, which may
be due to the interference of other components in the complex
gasoline samples. Scheme 3 has the best performance, the
values of the model parameters, RMSECV, RMSEP, RCV

2 , and
RP
2 were 0.6193, 0.5572, 0.9995, and 0.9991, respectively. The

close values of RMSECV and RMSEP mean that the model
established by Scheme 3 has high stability and accuracy. These

results indicate that the characteristic spectra of Scheme 3 are
less disturbed by other components. This also proves that the
hydroxyl group spectra, without the interference of aromatic
groups, more accurately reflect the ethanol content in gasoline.
To further prove the effectiveness of the calibration analysis

model established by the effective characteristic spectra, it was
compared with the modeling results of spectral variables
screened by the VIP method. After 3112 spectral variables
were preprocessed using the first derivative, 640 variables (VIP
spectra) with VIP values greater than 1 were screened out. A
partial least squares model was then established to conduct
predictive analysis on the validation set samples. As shown in
Table 3, the RMSECV value of the VIP spectra model is lower
than that of the full spectra model, while the RMSEP value is
higher. The RCV

2 and RP
2 values of the full spectra and VIP

spectra models were nearly consistent. Compared with Scheme
3, the RMSECV value of the VIP spectra model decreased
from 0.6288 to 0.6193, the RMSEP value decreased from
0.8859 to 0.5572, while RCV

2 increased from 0.9991 to 0.9995,
and RP

2 increased from 0.9977 to 0.9991. The results show a
superior prediction performance of the model established in
Scheme 3. The effective characteristic spectra model based on
the chemical structure achieved highly accurate prediction
results.
Thus, Scheme 3 was selected for modeling and analyzing the

ethanol content in gasoline.
Application of the Models Established By Effective

Characteristic Spectra, Full Spectra, and VIP Spectra.
The 14 ethanol-gasoline samples in the prediction set were
analyzed using a calibration analysis model established based
on Scheme 3, full spectra, and VIP spectra. Internal cross-

Table 2. Performance Comparison of Full Spectra Models
using Different Preprocessing Methods

training set validation set

preprocess method RMSECV RCV
2 RMSEP RP

2

without 0.7682 0.9987 1.0955 0.9966
first derivative 0.6396 0.9991 0.7824 0.9982
SNV 0.9581 0.9979 0.9676 0.9973
VN 1.8401 0.9927 2.6418 0.9800
MSC 0.7597 0.9987 1.0501 0.9968
SGM 0.7677 0.9987 1.1954 0.9959

Figure 2. Preprocessed NIR spectra by SGM (13 points with a second
polynomial order).

Table 3. Comparison of Different Wavelength Selection
Methods for Modeling and Analysis of Ethanol Content

training set validation set

modeling scheme RMSECV RCV
2 RMSEP RP

2

full spectra 0.6936 0.9991 0.7824 0.9982
1 0.6012 0.9992 0.6491 0.9988
2 0.6204 0.9991 0.9011 0.9977
3 0.6193 0.9995 0.5572 0.9991
4 0.6592 0.9991 0.8958 0.9977
VIP spectra 0.6288 0.9991 0.8859 0.9977
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validation and external validation were used to evaluate and
analyze the results.
Figure 3 shows the internal cross-validation results. The

RMSECV value of the partial least squares model established

based on Scheme 3 or VIP spectra is better than that of the
model based on the full spectra, indicating that the
characteristic spectra model can eliminate irrelevant spectral

variables to improve accuracy. Compared to the full spectra
and the VIP spectra models, the RMSECV value of the model
established based on Scheme 3 decreased by 10.71 and 1.51%,
respectively, indicating that the spectral information of the
effective characteristic spectra is more “characteristic” and
could more accurately reflect the sample content. In addition,
the model based on Scheme 3 has the largest RCV

2 value (close
to 1), indicating that the model has the highest accuracy, and
the greatest correlation between the predictive value and the
reference value during the internal cross-validation.
External validation results are shown in Figure 4. In Figure

4c, all sample points fell on the fitting curve after the prediction
of the model based on the effective characteristic spectra. For
the full spectra model (Figure 4a) and the VIP spectra model
(Figure 4b), some sample points did not fall on the fitting
curve. This indicates that the smallest deviation between the
predicted and reference values was obtained by the effective
characteristic spectra model. Furthermore, the RMSEP values
of the three models also explain this result. Compared to the
full spectra and VIP spectra models, the RMSEP value of the
effective characteristic spectra model decreased by 49.14 and
37.10%, respectively. The effective characteristic spectra model
achieved the highest prediction accuracy. Using the effective
characteristic spectra model to predict the validation set
sample, the linear equation between the predicted value and
the reference value is Y = 1.0039X − 0.1275, and the
correlation coefficient of the external validation prediction is
RP
2 = 0.9991, indicating that the predicted value is consistent

with the reference value. In conclusion, modeling based on the

Figure 3. Internal cross-validation results of the ethanol content in
gasoline using partial least squares models based on different spectral
ranges.

Figure 4. External validation results of the ethanol content in gasoline using partial least squares models based on different spectral ranges. (a) Full
spectra; (b): VIP characteristic spectra; (c) effective characteristic spectra.
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effective characteristic spectra yielded the best prediction
performance.

■ CONCLUSIONS

A rapid NIR analysis method based on effective characteristic
spectra was developed and successfully applied to detect
ethanol content in gasoline. Four effective characteristic
spectral modeling schemes were developed based on the
effective characteristic spectra of ethanol. To compare the
model performance, models based on full spectra and VIP
spectra were also established.
After optimizing five main preprocess methods, the model

based on the first derivative showed the best performance. The
spectral range is 6060.171−7141.113 cm−1 for the model
established by Scheme 3, which is the characteristic spectra
that only contain the spectra of hydroxyl groups without the
interference of aromatic hydrocarbon group spectra, had the
smallest RMSECV and RMSEP values and the best model
performance. These results of the application demonstrated
that, compared to the full spectra model, the RMSECV and
RMSEP values of the Scheme 3 model decreased by 10.71 and
49.14%, respectively. Compared to the VIP spectra model, the
RMSECV and RMSEP values of the Scheme 3 model
decreased by 1.51 and 37.10%, respectively. The ethanol
content in gasoline was accurately and rapidly analyzed using
the optimal effective characteristic spectral modeling scheme,
with RCV

2 = 0.9995, RMSECV = 0.6193, RP
2 = 0.9991, and

RMSEP = 0.5572.
Thus, the rapid analysis method of NIR based on effective

characteristic spectra is a specific analysis method with high
accuracy, which can be applied to the rapid analysis of more
characteristic indicators in complex sample systems such as
gasoline and diesel.

■ MATERIALS AND METHODS

Preparation of the Samples. Octane-rated gasoline
samples (92 and 95) without ethanol were obtained from
different gas stations in Beijing, including different batches of
gasoline from various gas stations under PetroChina, Sinopec,
and Sinochem groups. Forty-four ethanol-gasoline samples
were prepared by adding a predetermined amount of ethanol
(Analytical Reagent, Fuchen (Tianjin) Chemical Reagent Co.,
Ltd.) to gasoline (sample details in Table 4). The prepared

ethanol-gasoline samples have different solvent components,
which can simulate actual ethanol-gasoline samples. The
ethanol-gasoline samples were grouped into two sets, namely,
the training set (samples not marked with * in Table 4), which
was used to establish the calibration analysis model, and the
prediction set (samples marked with * in Table 4), which was
used to evaluate the prediction performance of the model. The
ethanol concentration range in the calibration set was 0.5−80%
(volume fraction), covering the range of ethanol in normal and
adulterated ethanol-gasoline, indicating that the established
calibration model is highly representative.

Acquisition of NIR spectra. The NIR spectra of the
ethanol-gasoline samples were measured using a Frontier NIR
spectrometer (Antaris II, Thermo Fisher Scientific (China)
Co., Ltd.) equipped with an InGaAs detector and a tungsten-
halogen source. The spectra were obtained by co-adding 32
scans in the transmission mode. The spectral scan range was
4000−10 000 cm−1 at 4 cm−1 digital resolution. Each sample
was loaded and tested three times in a 1 mm pathlength
cuvette, and average spectra were used for further analysis. The
spectra were recorded at room temperature and the humidity
was maintained at 40%.

Data Preprocessing and Model Evaluation. The
Unscrambler X software was used for the preprocessing and
statistical analysis of the NIR spectral data. SGM, SGD, MSC,
VN, and SNV were selected to denoise the spectral data and
then compared with the preprocess results. SGM can
effectively reduce noise in the spectral signal and improve
the signal-to-noise ratio. SGD can reduce the drift of NIR
spectroscopy and interference of certain background signals.
MSC is used to reduce the scattering effects of mechanical
impurities in gasoline samples. VN can improve the role of
characteristic spectral segments in modeling and eliminate the
adverse effects caused by large-scale differences, while SNV can
reduce the scattering effects of sample surfaces and the
influence of optical path changes. After the spectral data were
preprocessed using the five methods described above, the
partial least squares40,41 method was used to build the
calibration model. Finally, an optimal preprocessing method
was selected.
RCV
2 and RMSECV were selected as parameters to evaluate

the quality of the calibration model. The precision of the
calibration model was better when the RCV

2 value was closer to
1 and the RMSECV value was low. RP

2 and RMSEP are
typically used as parameters to evaluate the predictive ability of
the calibration model. The accuracy of the prediction model
improves when the RP

2 value is closer to 1, and the RMSEP
value is low. For an optimal calibration model, the RMSECV
and RMSEP values should be close. Therefore, in this study,
we chose four parameters, RMSECV, RCV

2 , RMSEP, and RP
2 to

compare the effects of the full spectra, VIP spectra, and
effective characteristic spectra models. RMSECV, RMSEP, and
R2 (RCV

2 or RP
2) were calculated using the following equations

∑=
−

̂ −
=n

y yRMSECV
1

1
( )

i

n

i i
1

2

(1)

∑= ̂ − ̅
=m

y yRMSEP
1

( )
i

m

i
1

2

(2)

Table 4. Ethanol Volume Fraction in Ethanol-gasoline
Samples

no.

volume
fraction
(%) no.

volume
fraction
(%) no.

volume
fraction
(%) no.

volume
fraction
(%)

1 0.5 12* 11 23 22 34 36
2 1 13 12 24* 23 35 38
3* 2 14 13 25 24 36* 40
4 3 15* 14 26 25 37 45
5 4 16 15 27* 26 38 50
6* 5 17 16 28 27 39* 55
7 6 18* 17 29 28 40 60
8 7 19 18 30* 29 41 65
9* 8 20 19 31 30 42* 70
10 9 21* 20 32 32 43 75
11 10 22 21 33* 34 44 80

Note: Samples marked with * are included in the validation set.
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2

(3)

Note: n is the number of training set samples, m is the
number of validation set samples, yi indicates the measurement
results obtained by standard methods for sample i, y̅ is the
mean value of yi, and ŷi indicates the predicted results of
sample i based on spectral modeling.
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■ NOMENCLATURE

NIR near-infrared
MIR mid-infrared
RMSECV root mean square error of cross-validation
RMSEP root mean square error of prediction
RCV
2 correlation coefficient of internal cross-validation

RP
2 correlation coefficient of external prediction validation

UVE uninformative variable elimination
SPA successive projection analysis
MWPLS moving window partial least squares
iPLS interval partial least squares
SA simulated annealing
GA genetic algorithm
ACO ant colony optimization
VIP variable importance projection
SGM savitzky-golay smoothing
SGD savitzky-golay derivative
MSC multiplicative signal correction
VN vector normalization
SNV standard normal variate
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