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Neurotransmitters are special molecules that serve as messengers in chemical synapses
between neurons, cells, or receptors, including catecholamines, serotonin, dopamine,
and other neurotransmitters, which play an important role in both human physiology and
pathology. Compelling evidence has indicated that neurotransmitters have an important
physiological role in various digestive diseases. They act as ligands in combination
with central or peripheral receptors, and transmits signals through chemical synapses,
which are involved in regulating the physiological and pathological processes of the
digestive tract organs. For instance, neurotransmitters regulate blood circulation and
affect intestinal movement, nutrient absorption, the gastrointestinal innate immune
system, and the microbiome. In this review, we will focus on the role of neurotransmitters
in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for
new drug development in digestive diseases.
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INTRODUCTION

Neurotransmitters are not only hormonal factors, but are also a cell signaling factors. They
are specific chemical substances that act as "messengers" in nervous and synaptic transmission.
As ligands, they exert function via binding to their corresponding receptors on the plasma
membrane of peripheral and central cells. At present, neurotransmitters are primarily divided
into four categories: biogenic amines, amino acids, peptides, and others. Biogenic amines include
serotonin (5-HT), dopamine (DA), norepinephrine (NE), and epinephrine (E). Amino acid
neurotransmitters include: gamma-aminobutyric acid (GABA), glycine, glutamate, histamine, and
acetylcholine (Ach). Peptide neurotransmitters are classified into: endogenous opioid peptide,
substance P, neurotensin, cholecystokinin, somatostatin, vasopressin, oxytocin, and neuropeptide
y. Other neurotransmitters are classified into nucleotides, arachidonic acid, and the like. Numerous
studies have confirmed that common neurotransmitters are involved in regulating multiple
systems, including cardiovascular, nervous, respiratory, digestive, and immune. For example,
norepinephrine, adrenaline, etc. regulate myocardial contraction and control coronary artery
contraction and relaxation (Daly and Sole, 1990), and dopamine deficiency is a key change in
Parkinson’s disease (Segura-Aguilar et al., 2014). In this review, we summarize currently available
information on the effect of neurotransmitters in digestive diseases, and discuss the probable
molecular mechanisms of neurotransmitters in the pathogenesis of these diseases (Table 1).
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Improved knowledge of these mechanisms should help
in designing targeted therapies able to halt or reverse
disease progression.

5-HT AND ITS RECEPTOR

Serotonin, also known as 5-hydroxytryptamine or 5-HT, is
produced in the central nervous system and in enterochromaffin
cells (EC) of the gastrointestinal tract, playing an important
role in the human body as an intermediate messenger (Mawe
and Hoffman, 2013). Ninety percent of 5-HT in the body is
synthesized and secreted by EC cells in the intestine, while only a
small part is synthesized by neurons. The serotonins secreted by
EC cells primarily acts in a paracrine manner (Bertrand, 2004).

Production of 5-HT is first generated by tryptophan under
the action of tryptophan hydroxylase (TPH) to produce
5-hydroxytryptophan, which then, under the action of 5-
hydroxytryptophan decarboxylase, produces 5-HT, which is
stored in EC cell vesicles. 5-HT binds to 5-HT receptors,
dissociating rapidly, and the dissociated 5-HT is actively absorbed
by cells expressing Na+/Cl− dependent serotonin transporter
(SERT). It is stored in intracellular vesicles and released in
response to exposure to various stimuli (Mawe and Hoffman,
2013). Less than 1% of 5-HT circulates in the blood in its free
state, leaving the rest stored in platelets and presynaptic neurons
(Da Prada and Picotti, 1979).

In the periphery, 5-HT mediates many physiological
processes, such as vasoconstriction, vasodilation, gastrointestinal
motility, cell proliferation, apoptosis, and platelet aggregation
(Mammadova-Bach et al., 2018). Interestingly, platelets express
SERT but do not express TPH, so they do not produce 5-HT
but can take up intestinal 5-HT during intestinal circulation
and carry 5-HT into the blood circulation (George, 2000). 5-HT
functions largely as a ligand by binding to 5-HT receptors, which
are widely located in both central and peripheral regions. The
wide distribution of 5-HT receptors facilitates diverse biological
effects, and at least 7 major classes of human 5-HT receptors have
been currently identified, denoted as 5-HT1-7 (Shajib and Khan,
2015). 5-HT1 has five receptor subclasses, 5-HT1A, 5-HT1B,
5-HT1D, 5-HT1E, and 5-HT1F, 5-HT2 has three subclasses,
5-HT2A, 5-HT2B and 5-HT2C, 5-HT5 have two subclasses,
5-HT5A and 5-HT5B (Hannon and Hoyer, 2008). Except for the
5-HT3 receptor (the receptor is a gated Na+/K+ channel), all
members of the serotonin receptor family belong to G protein-
coupled receptors (Connolly and Wafford, 2004). At present, it is
believed that 5-HT1, 5-HT2, 5-HT3, 5-HT4, and 5-HT7 are the
primary serotonin receptors affecting gastrointestinal function
(Shajib et al., 2017).

Previous studies have shown that there are numerous
clinical diseases involving 5-HT signaling, including migraine
depression, cardiovascular disease, schizophrenia, Alzheimer’s
disease and so on (Nishio et al., 2003; Ferrero et al., 2017; Kraus
et al., 2017; Shah and Gonzalez-Maeso, 2019). However, with
further studies, the focus of 5-HT’s effects on the nervous system
have now turned to their physiological and pathological effects in
digestive disease.

5-HT Deficiency Contributes to
Esophageal Motility Disorder
5-HT is closely related to gastrointestinal motility and plays a
major role in the pathogenesis of gastro-esophageal acid reflux
disease (GERD). Shiina et al. (2016) found that serotonin induces
the contractile response of longitudinal smooth muscle in the
mucosa of the esophageal muscle layer, and this process is
mediated through activation of serotonin 5-HT 1 and 5-HT 2
receptors on muscle cells. Yang et al. (2012) compared biopsies
of patients with reflux esophagitis and non-erosive reflux disease
and found that 5-HT was significantly elevated in the former
lesions, while the latter showed significantly reduced expression
of SERT mRNA and 5-HT4 receptors. Furthermore, Saegusa
et al. (2011) found that inhibition of 5-HT4 receptor activity
weaken the contraction of the lower esophageal and cause reflux.
Therefore, the relationship between esophageal disease and
serotonin is one that is primarily centered on the use of serotonin
reuptake inhibitors (SRIs) and serotonin agonists for treatment.
Although SRIs and serotonin agonists are only sparsely used in
the management of upper gastrointestinal (GI) tract disorders,
studies are looking into their use to treat esophageal motility
disorders (Karamanolis et al., 2015; Scheerens et al., 2015), and
hypersensitive esophagus (Viazis et al., 2012).

The Role of 5-HT in Gastrointestinal
Diseases
Serotonin is an essential gastrointestinal signaling molecule,
whose signaling plays a critical role in the pathophysiological
mechanisms of gastrointestinal diseases. Serotonin is related to
gastrointestinal visceral hypersensitivity (Grundy, 2008), and
inflammatory responses (Mayer, 2011; Drossman, 2016). The
visceral showed exhibits high sensitivity to increased plasma
5-HT levels (Kerckhoffs et al., 2012). Studies demonstrated
that visceral pain relief is primarily related to 5-HT4 receptor.
Hoffman et al. (2012) suggested that the activation of colonic
mucosal 5-HT4 receptors accelerates propulsive motility
and inhibit visceral hypersensitivity. YKP10811, a new and
potent 5-HT4 receptor partial agonist, attenuate acute colonic
hypersensitivity (Gilet et al., 2014). It recently became known
that the 5-HT receptor 3 agonist relieves abdominal pain in a
mouse model of irritable bowel syndrome (Salaga et al., 2018).
Stress-induced visceral hyperalgesia is abolished in a model of
stress-induced sensitization of visceral nociception in rats by
using the 5-HT3 receptor antagonist alosetron (Rapalli et al.,
2016). All findings showed that 5-HT and activation of 5-HT3
and 4 receptors inhibit visceral sensitivity and relieve pain.
However, while this protective phenomenon has been clearly
documented, the mechanism of action of these compounds has
not been clearly resolved.

Furthermore, 5-HT regulates inflammation by affecting the
immune system (Hanoun et al., 2015; Yoo and Mazmanian,
2017). Rather than a comprehensive examination of the pro-
and anti-inflammatory activities of 5-HT in the gut, here, we
focus on the bidirectional neuroimmune interactions in the
regulation and consequences of intestinal inflammation, as well
as the central roles that serotonin plays as a signaling molecule
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TABLE 1 | A summary of roles of neurotransmitters receptors in the pathological mechanism of digestive diseases.

Neurotransmitters
receptors

Target cells Related diseases Biological effect Authors/References

5-HT

5- -HT1D, 5-HT2B HCC cells HCC • Promotes the viability and proliferation
of HCC
• Promotes hepatocarcinogenesis

Liang et al., 2013; Niture et al.,
2018; Zuo et al., 2019

5-HT2A, 5-HT2B HSCs Hepatic fibrosis • Promotes HSCs proliferation,
transcription

Ruddell et al., 2006;
Ebrahimkhani et al., 2011; Kim
D. C. et al., 2013

5-HT3 IBS • Relieves abdominal pain, inhibits
hypermotility

Salaga et al., 2018

5-HT4 Esophage Reflux esophagitis and non-erosive
reflux disease

• Relates with the contraction of the
lower esophageal muscle

Yang et al., 2012

Colonic epithelium IBD • Maintains motility
• Reduces inflammation

Spohn et al., 2016

IBS • Inhibits visceral hypersensitivity Hoffman et al., 2012; Gilet
et al., 2014

5-HT7 GI epithelial cells Infective acute enteritis, colitis, IBD • Pro-inflammation Kim J. J. et al., 2013

• Anti-inflammation Guseva et al., 2014

Catecholamines

DRD1 Gastrointestinal
mucosa

Stress-induced gastric ulcers • Reduces the incidence of gastric and
duodenal ulcers

Rasheed et al., 2010

iNKT cells Autoimmune hepatitis • Suppress iNKT cell-mediated hepatitis Xue et al., 2018

DRD2 Pancreatic acinar cells AP • Controls inflammation.
• Reduces pancreatic damage

Han et al., 2017, 2020

Pancreatic ductal
adenocarcinoma cells

Pancreatic ductal adenocarcinoma • Promotes proliferation of pancreatic
cancer cells

Jandaghi et al., 2016

Gastric tumor
endothelial cells

GC • Suppresses gastric cancer cell
proliferation, invasion and migration

Chakroborty et al., 2004;
Ganguly et al., 2010; Huang
et al., 2016

HCC cells HCC • Suppresses liver cancer cells
proliferation migration and invasion
• Reduces EMT, inhibits liver tumor

growth

Li et al., 2015; Liu et al., 2017

ADRB2 BM-DMs Colitis • Suppress inflammation Agac et al., 2018

Gastric cancer cells GC • Promotes gastric cancer progression,
metastasis, angiogenesis
• Induces autophagy

Lu et al., 2017; Zhang et al.,
2019; Zhi et al., 2019

Pancreatic cancer cells Pancreatic cancer • Accelerates pancreatic cancer growth
and invasion
• Promotes angiogenesis and metastasis

of pancreatic cancer

Hu et al., 2010; Kim-Fuchs
et al., 2014

HCC cells HCC l lPromotes HCC progression Wu et al., 2016

ADRA1 HSCs Hepatic fibrosis • Promotes HSCs activation, proliferation
and secretion of ECM

Sancho-Bru et al., 2006; Liu
et al., 2014

KCs, HCC cells HCC • Boosts the activation of KCs and to
maintain the inflammatory
microenvironment

Han et al., 2008; Huan et al.,
2017

ADRA2 HCC cells Hepatocellular dysfunction in early
sepsis

• Induces hepatocellular dysfunction Yang et al., 2001

Glutamate receptors

iGluR

AMPA Colon endothelial cells Colitis • Enhance the efficiency of peristalsis Giaroni et al., 2000

Pancreatic cancer cells Pancreatic cancer • Increased invasion and migration Herner et al., 2011

NMDA Colon endothelial cells Ulcerative colitis • Promoted colon motility and
inflammation

Erces et al., 2012; Motaghi
et al., 2016

Colon endothelial cells GI diseases • Induced proinflammatory
neuropeptides, calcitonin gene-related
peptide and substance
• Increased colonic anaphylaxis

Cao et al., 2008; Fan et al.,
2009

(Continued)
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TABLE 1 | Continued

Neurotransmitters
receptors

Target cells Related diseases Biological effect Authors/References

Gastric epithelial cell GC • Resulted in Ca2+ permeation and
epithelial cell death

Seo et al., 2011

Colon adenocarcinoma
cells

Colon adenocarcinoma • Limited tumor growth Rzeski et al., 2001

Kupffer cells Hepatitis • Limited inflammasome and injury Farooq et al., 2014

Pancreatic neuroendocrine tumor • Controlled invasion of tumor

mGluR

mGluR5 Esophage epithelial cell GERD • Triggered TLESRs and
gastroesophageal reflux

Frisby et al., 2005

IBS, FD • Promoted visceromotor and autonomic
responses

Lindstrom et al., 2008

HSCs Hepatic fibrosis • Stimulated 2-AG production Choi et al., 2019

mGluR7 Colon mucosa GI dysfunction • Attenuated visceral hypersensitivity Shao et al., 2019

in triggering, enhancing, and countering inflammation. Many
different types of immune cells, including T cells, macrophages,
mast cells, dendritic cells and platelets, express the machinery to
generate, store, respond to and transport serotonin (Wu et al.,
2019). Wang et al. (2013) found that the 5-HT1A receptor is
primarily expressed in the enteric nervous system, particularly
in the submucosa and intestinal myenteric plexus, regulating
degranulation of mast cells and release of mediators. In various
animal experiments, serotonin’s role in the gastrointestinal
inflammatory response has been clarified. It was reported that
secretion of cellular inflammatory factor is significantly reduced
in dendritic cells of TPH1 knockout mice with colitis, and T
cells induced by dendritic cells reduce levels of pro-inflammatory
cytokines IL-17 and interferon-γ in TPH1 knockout mice (Li
et al., 2011). Subsequent work established that the severity of
inflammation is significantly diminished in mice lacking TPH1
owing to the selective ablation of mucosal 5-HT (Ghia et al.,
2009), and when immunodeficient mice are reconstituted with
effector T cells, the number of EC cells and the levels of 5-
HT were significantly increased (Motomura et al., 2008). These
reports substantiate the neuroimmune interactions in the gut.

In a mouse model of dextran sulfate sodium-induced
colitis established by Chen’ team, 5-HT has been discovered
to exacerbate colitis (Chen et al., 2016). This interesting
phenomenon does not occur by accident. In the latest article
from Shajib’s group, they found that EC-derived mucosal 5-HT
acts as a pro-inflammatory mediator by regulating activation of
immunocytes in intestinal inflammation, resulting in increased
proinflammatory cytokines and decreased mucin production
(Shajib et al., 2017). They demonstrated that 5-HT released from
EC cells enhances inflammation through its action on 5-HT7
receptors, which are expressed by dendritic cells. Unfortunately,
as compelling as this idea seems to be, strong evidence
has been advanced for an equally compelling but conflicting
hypothesis. Contrary evidence suggests that the dendritic cell
5-HT7 receptor is anti-inflammatory, not pro-inflammatory. A 5-
HT7 antagonist, SB-269970, and deletion of 5-HT7 receptors are
found to increase the severity of inflammation, and stimulation
of the 5-HT7 receptor exerted anti-inflammatory effects (Guseva

et al., 2014). A difference between the studies is that the
proinflammatory side (Kim J. J. et al., 2013) employed a dose of
SB-269970 that is 2500-fold higher than that utilized by the anti-
inflammatory advocates (Guseva et al., 2014). Clearly, 5-HT from
EC cells cannot drive inflammation through the 5-HT7 receptors
of dendritic cells if stimulation of these receptors opposes
inflammation. Therefore, the pro-inflammatory response to
EC cells by 5-HT remains to be clarified. This interesting
phenomenon has proven not to be accidental in individual
receptors. Subsequent study has shown that blocking the 5-
HT1A receptor also increases the severity of colitis induced by
2,4,6-trinitrobenzene sulfonic acid (Rapalli et al., 2016). Animal
research by Spohn et al. (2016) found that activation of 5-HT4R
maintains motility of healthy colons in mice and guinea pigs,
reducing inflammation in the colons of mice with colitis, and
exerting protective effects on normal and inflamed colon. The
presence of anti-inflammatory targets in the intestinal lining
makes the development and testing of restricted 5-HT4 agonists
an interesting opportunity for potentially safe and effective
treatment of inflammatory bowel disease (IBD).

Clinical research on the pro-inflammatory effects of 5-HT are
not yet entirely clear. Long-term mental stimulation cause gut
brain axis dysfunction, giving rise to an increase in the number
of ECs in the intestinal mucosa, and serum serotonin levels have
been found to increase, as well (El-Salhy et al., 2013). Interleukin
and bacterial lipopolysaccharide are also observed to stimulate
increased 5HT secretion from EC cells which isolated from the
mucosa of individuals with Crohn’s disease compared to those
of control subjects (Kidd et al., 2009). In humans, preoperative
administration of a 5-HT4 receptor agonist, prucalopride,
decreases IL6 and IL8 expression in the muscularis external and
improved clinical recovery (Stakenborg et al., 2019). The effects
of mechanical forces and adenosine receptors that drive 5-HT
secretion from EC cells have also been found to be amplified in
IBD (Chin et al., 2012). These observations illustrate the powerful
effects, for better or worse, that altered neuronal function exerts
on the structure of the gut and its subsequent behavior. They
also suggest the promising, yet not fully exploited, therapeutic
potential of neuroactive compounds.
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FIGURE 1 | The bidirectional neuroimmune interactions of 5-HT in the regulation and consequences of intestinal inflammation. Evidence from clinical and animal
studies indicate that EC cells of the gastrointestinal (GI) tract are the main source of mucosal 5-HT, which acts a pro-inflammatory mediator by regulating immune cell
activation leading to increased pro-inflammatory cytokine, such as TNF-α, IL-13, IL-6 (right side). However, 5-HT also can act on 5-HT receptors on goblet cells to
increase mucus secretion, and decrease IL-10, INF-γ through regulating 5-HT receptors on immune cell (left side).

Therefore, we infer that peripheral serotonin signaling has
both pro-inflammatory and anti-inflammatory effects in the
intestinal tract, acting as both a ‘sword and a shield.’ Under
normal physiological conditions, these two effects exist in
equilibrium, but once the balance is broken, 5-HT can become
both a pro-pathological factor and a potentially protective
factor (Figure 1). The gastrointestinal tract is a complex
system that is intricately controlled by several modulators.
Local mediators, central nervous system, enteric nervous system
as well as hormones produced by other organs all influence
5-HT concentrations and its end effect on gut physiology.
The mechanism involved in these processes is not clear and
needed to explore.

The Function of 5-HT in Liver Diseases
Hepatic fibrosis is a wound healing response to a variety
of chronic stimuli, characterized by excessive deposition of
extracellular matrix (ECM) proteins. Activated hepatic stellate
cells (HSCs) are responsible for excess collagen deposition
during liver fibrosis (Parsons et al., 2007). They lose their
characteristic lipid droplets and are "activated" during liver
injury. Previous studies have demonstrated that HSCs primarily
express 5-HT2A, and 2B receptors and HSCs uptake and release
5-HT through the 5-HT receptor (Ruddell et al., 2006). The
effect of 5-HT on hepatic fibrosis may occur by affecting
activation of HSCs through the 5-HT receptor signaling pathway
of HSCs. This hypothesis is confirmed in multiple studies
on the relationship between 5-HT and HSCs activation. 5-
HT may act a pre-fibrotic factor in the diseased liver. 5-
HT2A, and 2B receptors mediate proliferation, transcription,
and apoptosis of HSCs. Furthermore, Kim D. C. et al. (2013)

also suggested that 5-HT2A receptor antagonists inhibit HSC
activation and promote apoptosis. Subsequent studies have
shown that serotonin receptors are upregulated in activated
HSCs, and 5-HT2B antagonism attenuates fibrogenesis and
improves liver function in liver disease models (Ebrahimkhani
et al., 2011). The 5-HT7 receptor agonist LP-44 reduces carbon
tetrachloride-induced damage in Hep3b cells (Polat et al., 2017).
Thus, serotonin seems to be involved throughout the entire
hepatic fibrosis pathological process and outcome. However,
just as it plays a two-way role in intestinal inflammation,
the influence of serotonin on hepatic fibrosis is bifacial. 5-
HT exerts differential effects in liver fibrosis due to acting on
different receptors, perhaps because different receptors stimulate
different intracellular signaling pathways, resulting in convergent
biological effects. More detailed research is urgently needed on
these speculations concerning the receptor pathway to produce
more specific agonists and inhibitors for different receptors,
which are expected to play a role in the treatment of liver fibrosis.

In addition to being a neurotransmitter and vasoactive
molecule, 5-HT also serves as a mitogen in hepatocytes.
Recent studies have shown that serotonin promotes the growth
and proliferation of liver tumors, but the specific molecular
mechanism whereby this occurs remains unclear. Soll et al. (2012)
found that 5-HT receptors 1B and 2B are expressed in 32 and
35% of hepatocellular carcinoma (HCC), respectively, both of
which are associated with increased HCC cell proliferation index.
Soll’ team found that using serotonin antagonists of receptors
2B reduce the viability and proliferation of Huh7 and HepG2
cell lines. Serotonin may exert a cancer promoting effect in
HCC via activation of 5-HT2B receptors (Soll et al., 2010).
However, how serotonin works in the development of liver
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cancer is still unknown. Another study clarified that, in the
human HCC cell line Huh7, serotonin stimulates proliferation in
serum deprived medium via upregulation and phosphorylation of
forkhead transcription factor o subfamily member 3a (FOXO3a),
and this effect involved in the 5-HT receptor 2B (5-HT2B)
(Liang et al., 2013). Survival analysis showed that elevated
levels of 5-HT receptor 1D (5-HT1D) predict a high recurrence
rate and a decrease in overall survival in HCC patients. The
study found that 5-HT1D aggravates HCC progression through
FoxO6 in AKT-dependent and independent manners, revealing
the potent carcinogenic effect of 5-HT1D on HCC (Zuo et al.,
2019). Moreover, previous studies have shown that 5-HT likely
affects hepatoma cells by inducing autophagy. Soll et al. (2010)
simultaneously demonstrated that liver biopsy reveals that
expression of the serotonin receptor HTR2B is associated with
downstream signaling, such as phosphorylation of p70S6K and
promotion of proliferation. Activation of the downstream target
of mTOR provides evidence that serotonin is involved in the
growth of HCC (Soll et al., 2010). The antidepressant indatraline
is known to act as a non-selective monoamine transporter
inhibitor that blocks neurotransmitter reuptake (including DA,
5-HT, and NE). Indatraline has been reported to increase the
number of EGFP-LC3 cells, which express autophagosomes in the
cytoplasm (Cho et al., 2016). This phenomenon likely suggests
that 5-HT induces autophagy. Recently, Niture et al. (2018)
found that serotonin increases the expression of autophagy
biomarkers, enhances hepatocarcinomatous cell proliferation,
and activates Notch signaling to promote hepatocarcinogenesis.
This discovery strongly verifies that 5-HT does indeed act
through the autophagy pathway to affect the growth of liver
cancer cells. A growing line of evidence indicates that the effect
of autophagy on liver cancer is difficult to determine with
respect to absolute promotion or inhibition. It is indispensable
in the cell physiological and pathological mechanisms, and
plays different roles depending on the distinct activation of the
pathway. Although our knowledge about the roles of 5-HT in
tumorigenesis is still in early stages, the role of 5-HT signaling
in promoting HCC progression connecting by autophagy may
represent a novel preventive/therapeutic target for hepatic
carcinoma with potentially extensive clinical significance.

CATECHOLAMINES AND ITS RECEPTOR

All catecholamines are derived from L-tyrosine that is converted
into levodopa via tyrosine hydroxylase, which is the rate-limiting
enzyme in the overall synthesis of catecholamines (Waloen
et al., 2017). L-dopa is further manipulated into dopamine in
the cytoplasm through the enzyme dopa decarboxylase and the
cofactor pyridoxal phosphate (Flatmark, 2000). In peripheral
tissues, dopamine B-hydroxylase assists ascorbic acid and oxygen,
further manipulating dopamine to form norepinephrine, then
through phenyl ethanolamine N-methyltransferase and cofactor
S-adenosylmethionine, ultimately forms adrenaline. DA, NE, and
E are classified as catecholamines, and each has specific properties
and functions in various organ systems. The dopamine receptor
family contains five members that, according to structural and

pharmacological similarities, are divided into two subfamilies:
the D1-like family, comprising D1 and D5 receptors; and the
D2-like family, which includes D2 and D3. Activation of D1-
like receptors promotes the accumulation of cAMP in cells, while
activation of D2-like receptors inhibits intracellular cAMP levels
(Beaulieu and Gainetdinov, 2011), which may be the molecular
basis for DA to exert excitatory or inhibitory effects. We have
highlighted several non-conventional physiological actions of
DA in peripheral systems, including the gut, that go beyond
its well-known actions related to gastrointestinal motility and
secretion. NE and E act through α (α1 and α 2) and β (β1 and
β 2) adrenoceptors in target cells. α1 adrenoceptor mediates its
functions by increasing the intracellular calcium level and α2
adrenoceptor downregulates adenylate cyclase and thus inhibits
intracellular cyclic AMP. β1 and β2 adrenoceptors activate
adenylate cyclase to increase intracellular cAMP (Robison et al.,
1967; Thaker et al., 2007). Catecholamines signaling plays a key
role in digestive diseases (Figure 2).

The Protective Effect of DA in
Gastrointestinal Diseases
Previous studies have shown that DA regulates the
gastrointestinal mucosal barrier. Many studies have shown that
dopamine receptors are widely distributed in the gastrointestinal
tract and dopamine regulates the gastrointestinal tract function
on the movement, secretion, and gastric mucosal blood flow
(Li et al., 2006, 2019). Dopamine is currently one of the
protective factors involved in the gastrointestinal mucosa. In the
stomach, the five subtypes of dopamine receptors have distinct
distributions and are primarily localized in the mucosal tissue,
along with the muscular layer of the mucosa. The transcripts
encoding D1–D3 and D5 are found in dissected muscle and
myenteric plexus of the rat intestine, while the mucosa contain
D1 and D3–D5 receptors (Li et al., 2006). Subsequent studies
have shown that combination of DA and its receptor can resist
gastrointestinal mucosal damage, likely owing to several factors
as follows: (1) DA reduces gastric tension, intragastric pressure,
and staged contractions (Anselmi et al., 2017); (2) DA receptor
agonists inhibit gastric acid secretion (Eliassi et al., 2008); (3)
DA increases blood flow of the gastric mucosa, improving
gastrointestinal mucosal blood circulation (Hiltebrand et al.,
2004). Further evidence supports these findings. Holzer and
Painsipp (2001) infused rats with drugs such as DA, dobutamine,
doxorubicin, and clonidine. Their results showed that the
DA group enhances expansion of gastric mucosal vessels and
eventually increased gastric mucosal blood. Some scholars have
confirmed that the D1 receptor agonist, A 68930, reduces the
incidence of gastric and duodenal ulcers in experimental rats,
and inhibited the gastric H (+) K (+)-ATPase activity in stress-
induced gastric pathology (Rasheed et al., 2010). Therefore, these
studies suggested that the mechanism of dopamine-regulated
pathways may represent a new treatment for upper and lower
digestive tract ulcers.

In the past, the multiple potential anti-inflammatory effects
of dopamine have been identified in many other systems
(Hanusch et al., 2008; Feketeova et al., 2018). In vitro, dopamine
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FIGURE 2 | Schematic representation summarizes the DRD2 and ADRB2 signaling in digestive disease. Activated ADRB2 induced pancreatic cancer cell invasion
by accumulation of cAMP, promoted gastric cancer proliferation and anti-apoptosis through inducing autophagy. Also, it promoted gastric cancer progression
metastasis, angiogenesis via VEGFR-2. The DRD2 signaling activates PP2A and inhibited the phosphorylation of Akt and NF-kappa B to control inflammation,
However, it promoted pancreatic cancer, the underlying mechanism is unknown. Besides, it inhibits tumor angiogenesis by inhibiting VEGFR-2 phosphorylation in
gastric cancer endothelial cells. DRD2 activation suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Moreover, it
downregulated VEGFR1, p-ERK and pJNK to ameliorate liver cancer progression.

has been found to has exert anti-inflammatory effects by
suppressing of NOD-, LRR- and pyrin domain-containing 3
(NLRP3) inflammasome in mouse microglia cells and astrocytes
(Yan et al., 2015). Xue et al. (2018) observed that a D1-
like receptor agonist inhibit IL4 and Interferon γ (IFN-γ)
production in Invariant Natural Killer T Cell (iNKT) and
suppress iNKT cell-mediated hepatitis in mice, the suppressive
effect of dopamine on iNKT cells is mediated by D1-like
receptor-PKA pathway. In the same year, dopamine is found to
alleviate acute liver injury in mice, and suppress production of
TNF-alpha, phosphorylation of c-jun-N-terminal kinase (JNK)
induced by lipopolysaccharide (Zhou et al., 2018). However,
except for Han’s team, there are few relevant studies focusing
on whether dopamine signaling has a similar effect on other
organ pathology exploring its underling molecular mechanism.
Based extensively on the effects of dopamine on inflammation in
other systems, its effects on digestive system have a great deal of
potential value. Collectively, the presence of anti-inflammatory
targets makes the development and testing of DA agonists an
interesting opportunity for potential treatment of inflammatory-
related disease.

Additionally, studies have shown that DA is also involved
in the pathogenesis of gastrointestinal tumors. It may represent
a promising cancer targets in the digestive system. During
early time stages of disease, colon cancer patients exhibit lower
dopamine compared to normal tissues (Basu and Dasgupta,
1999). Tissue samples in both human and rat gastric cancer
present reduced or even absence of dopamine (Chakroborty

et al., 2004). The following discoveries have greatly broadened
our understanding on the roles of the dopamine receptor
in the pathogenesis of digestive system tumors. Chakroborty
et al. (2004) proved that a low non-toxic pharmacological dose
of DA significantly retards tumor angiogenesis by inhibiting
vascular endothelial growth factor receptor 2 (VEGFR-2)
phosphorylation in gastric tumor endothelial cells, which express
D2 receptors. Ganguly et al. (2010) found that dopamine
inhibits insulin-like growth factor-I induced gastric cancer cell
proliferation for upregulation of insulin-like growth factor-I
receptor via activation of D2 receptors. Huang et al. (2016)
showed that DA treatment, acting via D2 receptors, suppresses
gastric cancer cell invasion and migration via inhibition of
the epidermal growth factor (EGFR)/AKT/MMP-13 pathway
and suppression of pituitary tumors via the Rho/ROCK/LIMK
signaling pathway. It has also been reported that the D2
receptor antagonistthioridazine reduces the survival rate of
gastric cancer cells, induces apoptosis of gastric cancer cells,
and plays an important role in the prognosis of gastric cancer
cells (Mu et al., 2017). These in vitro and animal studies
showed that dopamine exerts an important regulatory effect
on gastrointestinal diseases via activation of dopamine D2
receptor (DRD2). Treatment with dopamine is not feasible
because of severe cardiovascular toxicity. Therefore clinical
intervention studies with DRD2 agonists are attractive, especially
as these agents are already being used in the clinic for other
indications such as Parkinson’s disease and hyperprolactinemia
(Beaulieu and Gainetdinov, 2011).
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Bi-Directional Influence of DA in
Pancreatic Diseases
Current research on dopamine’s effect on the pancreas is
not extensive and profound enough. Han et al. (2017)
found that D2 receptors control pancreatic inflammation in
acute pancreatitis (AP) by inhibiting NF-κB activation via
a protein phosphatase 2A(PP2A)-dependent Akt signaling.
Subsequently, Han’s team showed that D2 receptor activation
inhibits M1 macrophage polarization, oxidative stress-induced
NF-κB and NLRP3 inflammasome activation, suggesting that
D2 receptor activation might serve as therapeutic target
in AP (Han et al., 2020). Studies have confirmed that
dopamine receptor D2 is expressed in both normal pancreatic
ductal cells and pancreatic ductal adenocarcinoma cells. And
expression of dopamine receptor D2 is significantly increased
in human pancreatic ductal adenocarcinoma. Inhibition of
this receptor reduces the growth of mouse tumors (Jandaghi
et al., 2016). It seems that inhibiting DRD2 provides a
targeted approach to pancreatic cancer, and they found
that effect may be involved in activating the endoplasmic
reticulum (ER) stress.

DA Servers as a Negative Regulator in
Liver Diseases
The latest discoveries have greatly broadened our understanding
on the role of the dopamine receptor in liver tumors. On
the one hand, thioridazine, a dopamine receptor antagonist,
has been shown to induce cancer stem cell differentiation
in breast and lung cancer (Yin et al., 2015; Shen et al.,
2017). Thioridazine reduces cell viability of HCC cell lines
by inducing G0/G1 cell cycle arrest and inhibiting stemness
genes CD133 and OCT4 by inhibiting epithelial-mesenchymal
transition (EMT)-related genes, such as twist2 and E-calcium
Mucin, finally inhibiting migration of cancer cells (Li et al.,
2015). This suggests that dopamine may be involved in
the proliferation of liver cancer cells. On the other hand,
dopamine may also exert an anti-cancer effect in HCC via
activation of D2 receptors. After stimulation of hepatic cells with
fisetin, TGF-β1 secretion is inhibited, and EMT is significantly
reduced. Mechanistic studies suggested that fisetin not only
downregulates VEGFR1, p-ERK1/2, p38 and pJNK signaling
pathways to hinder the progression of liver cancer, but also
induces apoptosis of liver cancer cells by activating caspase-
3 (Liu et al., 2017). Fisetin, a DRD2 agonist, indicated that
dopamine may be of importance in liver cancer progression.
These research teams took two different approaches to reach
the same conclusion that the growth and migration of cancer
cell is hampered via activation or inhibition of different
dopamine receptors. Unfortunately, the specific DA regulatory
pathways affecting liver cancer behavior are still unclear. We
postulate that this may be due to the diversity of dopamine
receptors expressing on liver cancer cells; therefore, these
agonists and inhibitors exert the same effect because of the
agonistic effect or inhibition of different receptors. However,
the mechanisms and the importance of DA signaling in

HCC cell survival, invasion, and migration remains to be
examined in more detail.

NE/E Mediates a Pro-inflammation
Status of Gastrointestinal Diseases
Postganglionic sympathetic neurons innervate lymphoid tissues
and immune cells in the gastrointestinal tract. The underlying
mechanism may be some new resolution for digestive diseases,
as both α and β class adrenergic receptors (ARs) can be
expressed by innate immune cells (Cervi et al., 2014). Binding
of NE/E to the receptor modulates immune-related cells, thereby
affecting gastrointestinal inflammation (Lomax et al., 2009).
Tyrosine hydroxylase and dopamine b-hydroxylase, two rate-
limiting enzymes in catecholamine synthesis, are induced in
lamina propria mononuclear cells of the inflamed colon, which
is evidence of catecholamine synthesis during colitis (Bai et al.,
2009). Some studies suggested that noradrenaline mediates
stimulation of the immune response by influencing immune
cell migration (Sternberg, 2006). Binding of NE/E to the
receptor modulates immune-related cells to upregulate multiple
inflammatory cytokines, thereby affecting gastrointestinal and
hepatic inflammation (Yang et al., 2000; Lomax et al., 2009).
Recently, one study demonstrates that NE blocks secretion of
a variety of proinflammatory cytokines by rapidly inducing IL-
10 secretion from innate cells in response to Toll-like receptor
(TLR) signals, and using beta2-adrenergic receptor (ADRB2)–
/– animals and a β2-agonist. It shows that NE is proven
to mediate these effects exclusively through the β2-adrenergic
receptor in a dextran sodium sulfate (DSS) model of colitis
(Agac et al., 2018). Moreover, the crosstalk between gut bacteria
and NE/E in the GI tract is also significant. Alterations in the
microbial composition of the gastrointestinal tract are believed
to contribute to inflammatory and functional bowel disorders.
In the gastrointestinal tract, the quantity of gut microbiota far
exceeds the number of intestinal epithelial cells by one order
of magnitude (Pacheco and Sperandio, 2009). As early as the
1990s, the impact of NE and E to increase the growth of
gram-negative bacteria has formed the basis of a new theory
regarding host susceptibility to infectious disease. Lyte and his
colleagues observed the ability of NE and E to enhance the
growth of ram negative bacteria, such as Escherichia coli and
Yersinia enterocolitica, in the early 1992 (Mark Lyte, 1992).
And they found that α and β adrenergic receptors involved
in this process in the next year (Mark Lyte, 1993). Then, in
attempting to further delineate the mechanisms by which NE may
influence bacterial pathogenicity, they found norepinephrine
induced growth and expression of virulence associated factors
in enterotoxigenic and enterohemorrhagic strains of Escherichia
coli (Lyte et al., 1997). Besides, norepinephrine has been found to
supply iron for bacterial growth in the presence of transferrin or
lactoferrin. One study 10 years ago reported that norepinephrine
is related to Helicobacter pylori for the first time. They found
both epinephrine and norepinephrine enhance Helicobacter
pylori growth, with norepinephrine being more effective than
epinephrine (Doherty et al., 2009). When C. jejuni is grown in
iron-limited media in the presence of NE, growth rate, motility
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and invasion of cultured epithelial cells are increased compared
to cultures grown in the absence of NE (Cogan et al., 2007). NE/E
obviously helps many kinds of bacteria to invade the stomach
and gut. Additionally, communication between the host and the
microbiome is not one direction, with hormones being sensed
by microorganisms in human gut (Lopes and Sourjik, 2018).
A previous study found that bacterial Citrobacter rodentium
express adrenergic sensors to fully activate its virulence program
to successfully colonize its murine host (Moreira et al., 2016).

The effects of the adrenergic system on energy metabolism
and the immune system have been shown to modulate cancer
metastasis (Kuol et al., 2018). Epidemiological data showed
that chronic stress in a negative social and psychological state
has an adverse effect on cancer incidence and progression
(Chang et al., 2019). NE and E, catecholamine hormones are
the primary mediators of chronic stress-induced cancer and
are involved in the progression of many cancer cells, including
gastric adenocarcinoma (Thaker et al., 2006). Laboratory studies
have demonstrated that catecholamines released from the
hypothalamic-pituitary-adrenal axis in response to stressors
not only affect cellular immunity but also contribute to
tumor proliferation, metastasis and angiogenesis through various
signaling pathways (Armaiz-Pena et al., 2013; Hassan et al.,
2013; Moretti et al., 2013; Shan et al., 2014). Recently, Lu
et al. (2017) used a β2-adrenergic receptor (β2-AR) agonist
to imitate a stress signal and demonstrated that β2-adrenergic
receptor signal enhance angiogenesis by activating VEGFR2
signaling pathway in gastric cancer (GC). Furthermore, stress
hormone-induced activation of the ADRB2 signaling pathway
plays a crucial role in GC progression and metastasis (Zhang
et al., 2019). These findings indicated that ADRB2 signaling
regulates GC progression and suggested β2 blockade as a novel
strategy to complement existing therapies for GC. Moreover,
EMT is responsible for key events in gastric cancer-cell
invasion and metastasis (Katoh, 2005). The hypothesis that
NE promotes cancer is partly due to its ability to induce
EMT procedures and has not been confirmed. Shan et al.
found that NE not only significantly induces EMT to alter
the morphological characteristics of the stomach but also
increases markers for EMT and vimentin expression. Decreased
expression of E-cadherin, further contributes to cell movement
and invasiveness. Their work has shown that NE induces EMT in
gastric adenocarcinoma by modulating β2-adrenergic receptor-
hypoxia-inducible factor-1α-Snail activity (Shan et al., 2014).
Recently, Zhi et al. (2019) demonstrated that induction of
autophagy is a novel consequence of β2-adrenergic activation in
GC cells. Upon activation of cAMP response element binding
protein, chronic stress promotes autophagic flux through the
adenosine 5′monophosphate activated protein kinase unc51 like
autophagy activating kinase 1 pathway.

NE/E Aggravates Pancreatic Diseases
Pancreatic cancer has a poor prognosis and is associated
with high levels of psychological stress that may adversely
affect clinical outcomes (Zabora et al., 2001; Schuller et al.,
2012). However, the potential influence of neuropsychological
factors on pancreatic cancer has not been investigated to

date. Kim-Fuchs et al. (2014) found that beta-adrenergic
signaling accelerates pancreatic cancer growth and invasion
in the pancreatic microenvironment. Partecke et al. (2016)
also found that chronic stress promotes tumor growth and
reduced survival of pancreatic cancer patients via beta-adrenergic
receptors of tumor cells. Moreover, Pu et al. (2017) found that
adrenaline promotes pancreatic PANC-1 cell migration in a
dose-dependent manner, inducing a cytoplasmic translocation of
RNA binding protein HuR, which in turn activated TGFbeta.
Under normoxic conditions, activation of beta-AR receptor
transactivates epidermal growth factor receptor (EGFR), which
elicits Akt and ERK1/2 in a PKA-dependent manner, leading
to accumulation of hypoxia-inducible factor-1 (HIF-1) alpha,
and then upregulates expression of its target genes in pancreatic
cancer cells (Hu et al., 2010). Therefore, adrenoceptor antagonist
appears to be a putative novel treatment for pancreatic cancer.

Dysfuntion of NE/E Signaling Mediates
the Pathology of Liver Diseases
Hepatic fibrosis is characterized by excessive deposition of ECM
proteins, with type I collagen predominating. HSCs are the
major cellular source of matrix protein-secreting myofibroblasts
and the major driver of liver fibrogenesis. "Communication"
between the sympathetic nervous system and HSCs are involved
in the progress of liver fibrosis. As early as 2003, the Oben
team identified the importance of sympathetic nervous system
neurotransmitters in liver fibrosis. When fed a hepatotoxic
diet, dopamine β-hydroxylase deficient mice lacking NE cannot
accumulate activated HSCs and fibrosis is impaired unless treated
with an adrenergic agonist (Oben et al., 2003). Soon after,
HSCs were found to express adrenergic receptors, release NE
and inhibit growth by α and β-adrenergic receptor antagonists.
Moreover, the growth of HSCs that do not produce NE is
inhibited in dopamine β-hydroxylase-deficient mice, whereas
the addition of NE reverses this phenomenon (Oben et al.,
2004). Based on their findings, Oben and colleagues concluded
that hepatic fibrogenesis requires sympathetic neurotransmitters.
However, the mechanisms involved remain unclear. Increasingly,
it is becoming evident that catecholamines are actively involved
in the production of inflammatory cytokines. Various in vitro
and in vivo experiments have demonstrated that intestinal release
of catecholamines stimulates the production of inflammatory
cytokines (Yang et al., 2000). NE is found to promote the secretion
of inflammatory chemokines (RANTES and interleukin-8), and
prazosin (α1 receptor blocker) blocks NE-induced chemokine
secretion (Sancho-Bru et al., 2006), indicating that NE has a
pro-inflammatory effect that is closely related to liver fibrosis.
A pro-inflammatory pattern similar to LPS is observed in NE/E
(Aninat et al., 2008). Yang et al. (2001) also found that NE
induces hepatocyte dysfunction and elevates plasma TNF-α
levels through activation of α2-adrenergic receptors, suggesting
that NE induces liver damage at least in part by upregulating
TNF-α. Targher et al. (2013) again demonstrated that activated
HSCs express functional α/β-adrenergic receptors, which are
upregulated in non-alcoholic fatty liver disease patients’ liver
with cirrhosis, and they found that this is mediated by NE via
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p38MAP, PI3K and MEK signaling. Then, Liu’s team discovered
that NE promotes HSC-T6 cell activation and secretion of ECM
in vitro by activating Gα-coupled α1B-AR and α1D-AR and
PKC-PI3K-AKT signaling pathways (Liu et al., 2014).

Dysregulation of autophagy has been associated with
several human disorders, including metabolic diseases and
cancer (Mizushima and Komatsu, 2011). Increasing evidence
has demonstrated that autophagy is a key component of
the stress response in cancer cells (Lizaso et al., 2013), and
G protein-coupled receptors, including the β-adrenergic
receptor, can regulate autophagy (Wauson et al., 2014). In
mouse liver, the long acting β2-agonist clenbuterol increases
autophagosome number in HepG2, and treatment with
clenbuterol induces autophagic flux as it decreased levels of
SQSTM1/p62 and increased levels of in LC3-II (Farah et al.,
2014). In addition, in another study, autophagic regulation by
ADRB2 is assessed by immunoblotting, immunofluorescence
and immunoprecipitation assays, demonstrating that ADRB2
signaling negatively regulates autophagy by disrupting the
Beclin1/VPS34/Atg14 complex in an Akt-dependent manner,
reprogramming HCC cells glucose metabolism (Wu et al., 2016).
Therefore, adrenoceptor antagonism appears to be a putative
novel treatment for HCC. In a follow-up survey, patients with
cirrhosis who used β-blockers has a lower risk of developing
liver cancer (Herrera et al., 2016). In recent years, it has been
found that activation of α1-adrenergic receptors of Küpffer cells
promotes the release of inflammatory factors, such as TNF-α,
and expedites the development of liver cancer (Huan et al., 2017).
Studies have shown that β2-adrenoceptors are upregulated in
human HCC (Kassahun et al., 2012). Previous reports have
indicated beta-adrenalin enhances cancer cell proliferation
(Coelho et al., 2017). In the liver, isoproterenol promotes the
growth of hepatoma cell lines HepG2 and MHCC97H (Yuan,
2009), and the α1-AR agonist phenylephrine PE increases stat3
phosphorylation levels in human hepatoma cells and increases
DNA transcriptional activity (Han et al., 2008). Collectively,
these investigations indicate that NE is a key regulator of
hepatoma cells generation and maintenance, but it remains to be
determined whether NE is a causative factor of cancer.

GLUTAMATE AND ITS RECEPTORS

Glutamate is the major excitatory molecule existing in both
the central nervous system and peripheral organs. These
actions are mediated via a large range of ionotropic glutamate
receptor (iGluR): N-methyl D-aspartate (NMDA), α-amino-3-
hydroxy-5-methyl-isoxazoleproprionate (AMPA), kainate; and
metabotropic glutamate receptor (mGluR). iGluR are directly
coupled to cation channels, and their activation evokes fast
synaptic events which may lead to longer-term changes in
excitability (Bleakman and Lodge, 1998). All metabotrophic
glutamate receptors are excitatory neurotransmitters and there
are eight mGluR subtypes divided into three major groups:
group I, II, and III mGluR, Group I (mGluR1, mGluR5)
increase the excitation, whereas group II and III inhibit
the release of neurotransmitters (Meldrum, 2000). Previous

studies have mainly focused on the biological effect of
glutamate in the brain. Recently, increasing evidence has
demonstrated that glutamate also participates in the regulation
of physiopathological functions in digestive tissues, where
the glutamate/glutamate receptor/glutamate transporter system
plays an important role in the pathogenesis of these diseases.

Glutamate Receptor Signal Involved in
GERD
Transient lower esophageal sphincter relaxations (TLESRs) is
the major mechanism of GERD (Lehmann, 2008). However,
mechanisms underlying transient lower esophageal sphincter
relaxation are poorly understood (Lehmann and Branden,
2001). A great number of studies have indicated that mGluR5
antagonists may be novel and efficacious strategies in the
management of gastro-esophageal reflux disease. They suggest
that endogenous activation of mGluR5 is an important
component of the pathway triggering or regulating TLESRs.
Selective mGluR5 antagonists has been founded to inhibit
TLESR in animals and acid reflux in humans. Frisby et al.
(2005) found that the mGluR5 antagonist MPEP inhibits TLESR
dose dependently, also significantly reduced reflux episodes
and increased basal lower esophageal sphincter pressure. In
a dog and mouse model, the selective mGluR5 antagonist
mavoglurant (AFQ056) has been found to influence the vagal
reflex loop and reduced the number of TLESRs (Wu et al., 2010).
Also, Randomized controlled trials confirmed that glutamate
receptor signal can relax esophageal sphincter. Rohof et al.
(2012) found that the volunteers group using selective mGluR5
antagonists shows smaller reductions in TLESRs and reflux
episodes (relative to placebo). And ADX10059, a negative
allosteric modulator of mGluR5, decreases reflux episodes in
healthy subjects. Moreover, in patients with GERD, inhibition
of mGluR5 with ADX10059 monotherapy reduces reflux events
and improved symptoms in GERD patients (Zerbib et al., 2011).
mGluR5 antagonism potently reduces triggering of TLESRs and
gastroesophageal reflux.

Glutamate Receptors Signal Influences
GI Motility and Visceral Hypersensitive
Visceral pain is a major clinical problem, mainly in the form of
three major functional gastrointestinal disorders: irritable bowel
syndrome (IBS), functional dyspepsia (FD), and non-cardiac
chest pain (NCCP) (Grundy et al., 2019). Most of the molecular
targets so far pursued in clinical trials have been abandoned,
mainly due to limited efficacy or adverse events unrelated to
the disorder itself. And in this regard mGluR5 appears one of
the best candidates, and may therefore support more than one
indication. mGluR5 receptor antagonists have been found to
inhibit the visceromotor (VMR) and autonomic responses to
colorectal distension (CRD) in conscious rats (Lindstrom et al.,
2008). An action at peripheral sites mediating the analgesic effects
is considered a possibility. Moreover, oral L-arginine L-glutamate
ArgGlu (10–30 mg/kg, p.o.) dose-dependently promoted gastric
emptying in rats and enhanced gastric motor function, suggesting
that it could be a new oral medicine indicated for treatment of
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upper GI hypofunction or dysfunction like functional dyspepsia
(Ishibashi-Shiraishi et al., 2016). However, a study demonstrated
that blocking mGluR5 relieves chronic stress related colonic
inflammation (Peterlik et al., 2017a). In addition, increasing
evidence has indicated that mGluR7 is an important target
for reducing anxiety and stress-associated behaviors, and mood
disorders are frequently associated with GI dysfunction (Mayer
et al., 2001); however, the role of mGluR7 in GI system
is currently unknown. Therefore, the present study aimed
to evaluate the possible effects of mGluR7 on the visceral
hypersensitivity of GI. Julio-Pieper et al. (2010) found that
mGlu7 receptor mRNA and protein were highly expressed in
mouse colon mucosa and activating mGlu7 receptors modulated
fecal water content and strongly induced calcium signaling,
further to regulate colonic electrolyte transport. mGlu7 ablation
also ameliorated chronic subordinate colony-induced colonic
inflammation (Peterlik et al., 2017b). Activation of mGluR7 may
attenuate CRD-induced visceral hypersensitivity in experimental
IBS and reduce the abnormal immune cytokine response in
rats (Shao et al., 2019). In addition, in gastrointestinal tracts
malignant tissues, mGluR4 expression was frequently identified
in colorectal carcinoma (68%), and expression of mGluR4 was
detected in 131 (54%) of 241 colorectal carcinomas and 12 (5%)
cases among them showed overexpression in their cytoplasms
(Chang et al., 2005). mGluR4 signaling may involve in colorectal
carcinomas and that overexpression of mGluR4 is associated with
poor prognosis.

Besides mGluR glutamate receptors of the AMPA type, but
not kainate receptors, has been found to enhance the efficiency
of peristalsis in the guinea-pig colon (Giaroni et al., 2000).
NMDA receptor antagonist, memantine, attenuated the body
weight loss, colon weight, the plasma levels of interleukin-
1β (IL-1β), interleukin-6 (IL-6) (Motaghi et al., 2016). And
another antagonist has been found to suppress colon motility
and inflammation (Erces et al., 2012). These findings suggested
that NMDA antagonist may provide a novel venue for the
development of strategies for the treatment of ulcerative colitis.
Furthermore, strong evidence demonstrated that activation of
peripheral NMDA receptors in colonic tissue sections caused
Ca2+-dependent release of the proinflammatory neuropeptides,
calcitonin gene-related peptide and substance P (McRoberts
et al., 2001). And enhanced activities of NMDA receptors proved
to be the underlying mechanism of visceral pain responses in
viscerally hypersensitive rats (Cao et al., 2008; Fan et al., 2009).
Moreover, Willert et al. (2004) found that NMDA receptor
mediated the development and maintenance of human visceral
hypersensitivity. Peripheral NMDA receptors are important in
normal visceral pain transmission, and may provide a novel
mechanism for development of peripheral sensitization and
visceral hyperalgesia.

Research has found that glutamate antagonists inhibit
proliferation of colon adenocarcinoma and the antiproliferative
effect of glutamate antagonists was Ca2 + dependent and
resulted from decreased cell division and increased cell death
(Rzeski et al., 2001). This results also confirms once again
that the increase of intracellular calcium level may be a
potential key mechanism for the effects of glutamate and

its receptors on digestive tract diseases. It is this excessive
intracellular calcium permeation through NMDA channels,
which make NMDA channels might thereby regulate cell survival
and death pathways during development of gastric cancers
(Seo et al., 2011).

Glutamate Receptors Promote
Pancreatic Cancer
Abundant findings suggested that glutamate receptors participate
in the progression of pancreatic cancer. The expression of
Glutamate receptor GRIA3 was evaluated in human pancreatic
cancer tissues. Ripka et al. (2010) found that knock-down
of GRIA3 significantly reduced proliferation and migration
and enhanced apoptosis. In contrast, overexpression of
GRIA3 significantly reduced apoptosis and enhanced both
proliferation and tumor cell migration. GRIA3 could be
confirmed as a downstream effector of CUX1, which regulated a
complex transcriptional program mediating tumor progression
(Ripka et al., 2010). Moreover, NMDA receptors signaling
controlled invasion of pancreatic neuroendocrine tumor
(Li et al., 2018). Treatment of a tumor-derived cell line
with NMDA receptors antagonists impaired proliferation
and invasion of pancreatic neuroendocrine tumor cell (Li
and Hanahan, 2013). In addition, glutamate was found to
increase pancreatic cancer cell invasion and migration via
activating AMPA receptor activation and Kras-MAPK signaling
(Herner et al., 2011).

Glutamate Receptors Participate in Liver
Diseases
Many years ago, Pande et al. (2014) found that mGluR3 up-
regulated in rat fibrosis and cirrhosis model. The last study found
that alcohol induced the selective expression of mGluR5 in HSCs
where mGluR5 activation stimulated 2-arachidonoylglycerol (2-
AG) production, and inhibition of mGluR5 attenuated alcoholic
steatosis in mice via the suppression of 2-AG production and
subsequent CB1R-mediated de novo lipogenesis (Choi et al.,
2019). In addition, selective blockade of the mGluR5, 2-Methyl-6-
(phenylethynyl) pyridine (MPEP), improved hypoxic hepatocyte
viability. Significantly, MPEP protected mouse livers in two
different vivo models of ischemia reperfusion injury, suggesting
its possible protective deployment in the treatment of hepatic
inflammatory conditions (Ferrigno et al., 2018).

Recently, mGluR have been identified in peripheral tissues,
and aberrant expression or inhibition of the receptor functions
in the development of certain cancers. However, the correlation
of mGluR activity with HCC remains unknown. Wu et al.
(2012) found that inhibiting the activity of mGlu5 has the
molecular potential to suppress hepatocarcinogenesis by blocking
ERK phosphorylation. In addition, NMDA receptor was proved
to present on Kupffer cells, and their activation on primary
mouse and human cells limited inflammasome activation by
downregulating pyrin domain containing 3 and procaspase-1.
This effect may via a β-arrestin-2 NF-kβ and JNK pathway and
not via Ca2+ mobilization (Farooq et al., 2014).
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NEUROTRANSMITTERS SIGNALING
ALONG THE MICROBIOTA-GUT-BRAIN
AXIS IN GI DISEASE

The Effects of Various Neurotransmitters
on Intestinal Microbes
The intestine is a complex ecosystem harboring a dense and
diverse microbial community called the gut microbiota, which
co-evolved with the host to develop a mutualistic relationship.
The gut microbiota is considered a virtual endocrine organ,
producing molecules that are able to interact with the host
physiology and trigger responses at the local and distant
levels (Zhang and Davies, 2016). Any perturbation in host–
microbiota crosstalk can be an initiating or reinforcing factor
in disease pathogenesis. The gut-brain axis is a bidirectional
communication system between the central nervous system
and the gastrointestinal tract, in which neurotransmitter play
as a key medium in this communication. Most of previous
studies showed the key role of gut microbiota on metabolism
of neurotransmitters and GI disease (Agus et al., 2018; De
Vadder et al., 2018). In this part, we intend to focuses on the
effects of various neurotransmitters on intestinal microbes to
facilitate a better understanding of the pathogenesis of human
digestive diseases.

A last study demonstrated that elevating levels of intestinal
lumenal 5-HT by oral supplementation or genetic deficiency in
the host 5-HT transporter increased the relative abundance of
spore-forming members of the gut microbiota (Agus et al., 2018).
5-HT promotes their fitness in the intestine. Kwon et al. (2019)
found that 5-HT directly stimulated and inhibited the growth
of commensal bacteria in vitro, exhibiting a concentration-
dependent and species-specific effect. 5-HT also inhibited β-
defensin production by HT-29 colonic epithelial cells (Kwon
et al., 2019). These findings support the emerging concept
that bidirectional signaling pathways can influence bacterial
community structure and exert effects on host physiology.
Emerging evidence suggests that the diversion of the tryptophan
metabolism from the 5-HT pathway toward the Kynurenine
(Kyn) pathway may have an important role in the manifestation
of psychiatric disorders such as anxiety and major depression
(Kennedy et al., 2017). In the use of germ-free (GF) mice,
induction of depressive mood after fecal transplantation was
associated with an increase in the Kyn/tryptophan ratio
(Carabotti et al., 2015). Changes in tryptophan metabolism have
been correlated with the manifestation of depressive symptoms
also in IBS patients (Keszthelyi et al., 2013). This could open
a therapeutic opportunity for adjuvant treatment of some IBD
and IBS symptoms associated with changes in the levels of Kyn
pathway metabolites along the brain-gut axis.

The intestinal epithelium is a critical barrier between
the internal and external milieux of the mammalian host.
Neurotransmitters appear to influence epithelial associations
with bacteria in the intestinal lumen. Both NE and DA have
been shown to alter the mucosal attachment or invasiveness of
bacterial pathogens such as enterohemorrhagic Escherichia coli
(EHEC) or serovars of Salmonella enterica by acting on the

intestinal mucosa (Chen et al., 2003). The serosal application
of NE produced an increase in luminal S. enterica serovar
Choleraesuis and EHEC internalization in porcine Peyer’s patch
explants. This effect was abolished in tissues pretreated with
the alpha -AR antagonist phentolamine (Green et al., 2003;
Chen et al., 2006). Besides, Escherichia coli O157:H7 possesses
a receptor for host-derived epinephrine/norepinephrine that
can be blocked specifically by adrenergic antagonists (Clarke
et al., 2006; Meng et al., 2016). Based on the information
available, many more questions can be asked. For example,
does endogenous NE (and potentially DA) act to regulate
aspects of bacterial sampling at mucosal immune recognition and
processing sites, as in intestinal Peyer’s patches? The relationship
between sympathetic activity with mucosal immunity and
inflammation, bacterial colonization, or the risk of mucosal
infection may offer fruitful areas for investigation.

Microbial Production of
Neurotransmitters Play a Role in GI
Disease
A bi-directional cross-talk between microbiota and the endocrine
system is emerging with bacteria being able to produce hormones
(e.g., serotonin and dopamine). Serotonin (5-HT) is a key
regulator of GI motility and secretion. Recent studies highlight
a role for the microbiota in regulating blood 5-HT levels, in
germ free animals, there is a significant reduction of serotonin
in the blood and colon of mice compared to conventionally
colonized controls (William et al., 2009; Sjögren et al., 2012).
Besides, intestinal ECs are morphologically larger in the former
rats (Uribe et al., 1994), which suggests that microbes could
impact the development of 5-HT-producing cells. Interestingly,
some species of bacteria grown in culture can produce 5-
HT (Tsavkelova et al., 2006), raising the question of whether
indigenous members of the microbiota contribute to host 5-
HT levels through synthesis. To explore how pathways of 5-
HT metabolism are affected by the gut microbiota, Yano et al.
found ed that the microbiota promotes 5-HT biosynthesis from
colonic ECs. And, colonic PCPA [the Tph inhibitor para-
chlorophenylalanine (PCPA)] administration blocks the ability of
the microbiota to promote colonic and blood 5-HT suggests that
gut microbes require host TPH activity to upregulate peripheral
5-HT (Yano et al., 2015). In addition to EC cells, gut microbes
have been found to promote colonic 5-HT production through
an effect of short-chain fatty acids on enterochromaffin cells
(Reigstad et al., 2014). Therefore, microbiota could influence
5-HT-related GI disease symptoms. While it has not been
confirmed that the human microbiota modulates norepinephrine
or dopamine in vivo, there is accumulating evidence suggesting
it may, or at least play a role in host biosynthesis/catabolism.
With regards to norepinephrine, a recent study leveraging germ
free animals found that mice without bacteria have substantially
reduced levels of norepinephrine in the cecal lumen and tissue,
and that cecal levels of norepinephrine could be restored via
colonization with a microbiota or with a mixture of 46 Clostridia
species (Asano et al., 2012). This finding strongly suggests the
microbiota influences levels of norepinephrine in the lumen, but
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whether the bacteria were producing norepinephrine directly or
modulating host production was not determined. Besides, Several
bacteria have been reported to be able to produce dopamine,
such as Bacillus cereus, Bacillus mycoides, Escherichia coli and
so on (Tsavkelova et al., 2000). This host-microbiota interaction
contributes to a growing appreciation that the microbiota
regulates many aspects of GI physiology and Pathophysiology by
signaling to host cells.

CONCLUSION

In the past few decades, many studies have demonstrated that
neurotransmitters regulate the physiological and pathological
functions of various tissues and organs. However, there are few
reviews that discuss the role of neurotransmitters in digestive
tract diseases, which is a meaningful and worth exploring field.
Previous studies have confirmed that neurotransmitters play
an essential role in maintaining the physiological function of
digestive tract organs. The imbalance of neurotransmitter release,
excessive activation of receptors, or loss of their function is closely
related to the pathological state of digestive tract organs. 5-HT
and its receptors are mainly distributed in smooth muscle cells,
so 5-HT signaling is very important for the motility balance of
the esophagus and gastrointestinal tract. Clinical application of
5-HT receptor agonists and SRIS can improve the symptoms of
IBD, IBS, and other dynamic diseases. At the same time, animal
experiments also found that the administration of receptor
blockers aggravated gastrointestinal inflammation, which seemed
to suggest that 5-HT signaling is involved in the defense
of gastrointestinal inflammation. However, many studies have
found that 5-HT signal maintains or even aggravates intestinal
inflammation by activating immune cells to release inflammatory
cytokines. Therefore, more research is needed on the role of 5-
HT. DA, E and NE are the main mediators of SNS in regulating
intestinal inflammation, tumor growth and progression. This
text summarizes the different effects of catecholamine. The
activation of DA receptors inhibits angiogenesis and stimulates
tumor immunity, while NE and E stimulate angiogenesis and
inhibit tumor immunity, blocking the signal transduction of
adrenergic receptors, which also hinders the occurrence and
development of tumors. At the same time, DA also plays a
protective role in pancreatitis. More importantly, our team’s
research found that dopamine reverses the increase of α-SMA
in HSCs stimulated by TGF-β1, and reverses the increase of
autophagy induced by TGF-β1 in HSCs. These results suggest
that dopamine plays a protective role in liver fibrosis, which
may be achieved by affecting the activation of HSCs. The

specific mechanism needs further study. As a result of these
protective or promotive effects, classic neurotransmitter related
drugs, such as β-AR antagonists, serotonin receptor antagonists,
AChR antagonists and DA receptors agonists, may have clinical
significance in the treatment of gastrointestinal diseases and are
expected to become candidates for combined drug therapy. No
clinical trials of DRD2 agonists have been found in patients with
gastrointestinal cancer. Therefore, the clinical intervention of
DRD2 agonists and beta-blockers is of great value and attraction,
especially because these drugs are known to be used in the
treatment of other indications such as Parkinson’s disease. The
majority of preclinical and clinical studies, up to now, have been
used iGluR antagonists, whose potential clinical usefulness is,
however, limited by the variety of side effects. Other approaches
would include the discovery of modulators of the glycine site
associated with NMDA receptors, of the reuptake systems, as
well as of mGlu receptor allosteric modulators to provide fine
tuning of the glutamatergic neurotransmission. An innovative
and intriguing approach is represented by the possibility to
modulate neurotransmitters signaling along the microbiota-gut-
brain axis by influencing the microbiota composition. One of the
possible approaches in this field is the use of probiotics, which
are beneficial bacteria yielding positive health outcomes. In short,
numerous clinical neuroactive drugs, once explored, will greatly
help to reduce the pain of gastrointestinal diseases and even
cancer patients, which will be of great significance.
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