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Abstract

This paper focuses on determining the structural similarity of two molecules, i.e., the similar-

ity of the interconnection of all the elementary cycles in the corresponding molecular graphs.

In this paper, we propose and analyze an algorithmic approach based on the resolution of

the Maximum Common Edge Subgraph (MCES) problem with graphs representing the

interaction of cycles molecules. Using the ChEBI database, we compare the effectiveness

of this approach in terms of structural similarity and computation time with two calculations

of similarity of molecular graphs, one based on the MCES, the other on the use of different

fingerprints (Daylight, ECFP4, ECFP6, FCFP4, FCFP6) to measure Tanimoto coefficient.

We also analyze the obtained structural similarity results for a selected subset of molecules.

Introduction

Motivation

This article focuses on algorithmic approaches to compute the structural similarity of pairs of

molecules in large molecular databases. Indeed, in organic chemistry, when a new molecule is

designed, it is necessary to determine chemical reactions that can be used to synthesize this tar-

get molecule from available compounds. Finding such chemical reactions usually consists in

searching in a reaction database (such as REAXYS [1] or ChEBI [2]) for a molecule that is

structurally close to the target molecule. As it is sometimes proposed in various existing

approaches (see [3] and refs), we assume here that: (i) a molecule is represented by a specific

graph encoding it structure, and that (ii) two molecules have a similar structure if they have a

similar interconnection of the elementary cycles (typically carbon cycles) of their molecular

graphs. The issue is, therefore, to be able to algorithmically select molecules in a reaction data-

base that are structurally similar to a target molecule.

Background

We consider definitions and notations on graph theory from [4]. Considering a modeling of

molecules by graphs [5] or hypergraphs, several definitions and similarity approaches between
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molecules have already been studied [6], mainly due to the principle stating that structurally

similar molecules are expected to display similar properties [7, 8], or to help virtual screening

for drug design [9]. Two main approaches are considered to measure the structural similarity

of molecules, focusing on specific subgraph problems. The first approach considers the kernel

pattern of molecular graphs or hypergraphs, i.e., the presence or not of small subgraphs (also

called “fingerprints” [10, 11]) belonging to a chosen set of patterns. Such fingerprints are based

on cycles or trees, and they are often related to the functional properties of molecules. This

approach seems well suited to the classification of molecules according to the properties con-

cerned [12, 13]. It has provided efficient solutions to measure specific molecular similarities, in

terms of complexity and performances, but the choice of a significant set of substructures to

compare molecules, especially from a structural point of view, is often a difficult problem [3,

6, 14].

The second approach considers the resolution of the problem of finding a Maximum Com-

mon Edge Subgraph [6] (MCES) between two graphs. This problem is defined as follows.

Considering two graphs G = (V, E) and G0 = (V0, E0), the problem is to find the maximum sub-

graph of G (in terms of number of vertices and edges) being isomorphic to a subgraph of G0.
This problem is NP-complete [6] and it is initially seen as a generalization of graph isomor-

phism, with different metrics evaluating the size of this subgraph compared to those of the two

graphs to be compared [7, 9, 15, 16]. When consider solving the MCES problem to measure

the structural similarity of molecular graphs, two limitations could occur. First, the required

computation time is exponential with respect to the number of vertices of the two graphs,

which is a major limitation when considering comparing one molecule with all molecules in a

database. Second, considering molecular graphs could provide a similarity measure that is not

sufficiently focused on structural similarity (i.e., the interconnection of elementary cycles of

the two molecular graphs).

Note that the last approach consists in measuring distances of weighted editions between

two molecular graphs, an edition being an operation of adding or deleting a vertex or an edge

in the graph, or changing the label of a vertex. These approaches are notoriously used in the

field of bioinformatics [17, 18].

Contribution

Taking into account the advantages and disadvantages of the two main approaches given

above about evaluating the structural similarity of molecules, we investigate here a new

approach consisting in computing an MCES on graphs representing the interconnection of

cycles in each molecule, i.e., with fewer vertices than their molecular graphs. More specifically,

we will evaluate the performances of this approach in terms of efficiency and execution time

by comparison with a MCES approach on molecular graphs [6] and different fingerprints

approach using Tanimoto coefficient [19] on molecular graphs.

As said above, the structure of a molecule can be seen as the interconnection of the cycles in

the maximum 2−connected induced subgraph of the molecular graph. A representation of the

structure of a molecule based on its cycles has already been proposed and used to classify and

characterize sets of molecules [20, 21] and some open service libraries providing specific cycles

in molecular graphs [22], are available but such representations have not yet been considered

to evaluate the structural similarity of molecules. To this end, we propose to use a novel graph

of cycles definition of a molecule best suited for the efficient computation of structural similar-

ities. In this paper, we consider an extension of the graph of cycles given in [23] modeling not

only a relevant subset of cycles in a molecule but also their interconnection, whether they

share vertices or not. Such a representation can also be seen as the extension of a reduction of
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the Markush structure of a molecule into a ring/non-ring reduction scheme leading to express

the core structure of a molecule [24], for example, to make classification [25]. Our goal is

to confirm that this definition of graph of cycles corresponds sufficiently to the intuitive

approach followed by a chemist, that the comparison of the graphs of cycles, based on a spe-

cific MCES approach, well corresponds to the targeted notion of structural similarity of mole-

cules and that this approach avoids the questions and limitations of the two other approaches

considered above.

The rest of the paper is organized as follows. In Section Methods, we give some prelimi-

nary definitions of graph theory and molecular graphs. We also define the graph of cycles of

a molecule and propose an algorithm to efficiently obtain it for any given molecule. Then, in

Section Results and Discussion, we evaluate the performances of using such graphs of cycles

(in terms of time computation and pertinence) to measure the similarity of pairs of mole-

cules and compare it to the similarity with different fingerprints (Daylight, Extended-Con-

nectivity FingerPrint ECFP4, ECFP6, Functional-Class FingerPrint 4 and FCFP6) [26] of

Tanimoto coefficient.

Methods

In this section, we first present some definitions of graph theory that will be used in the rest

of the paper. Then we present the classic representation of molecules using molecular graphs.

Finally, we introduce the graph of cycles, a new representation based on the interconnection of

cycles in molecules.

Preliminaries about cycles in a graph

As said in the previous section, the structural part of a molecule on which we will focus on is

mainly based on induced cycles. Thus, to model this structural part, we need first some prelim-

inaries about cycles in graphs.

We consider a simple and undirected labeled graph G = (V, E) with n = |V| the number of

vertices and m = |E| the number of edges in E = {e1, e2, . . ., em}.

An elementary cycle c can be represented by a vector c ¼ ðec
1
; ec

2
; :::; ec

mÞ where ec
i ¼ 1 iff the

edge ei belongs to c otherwise ec
i ¼ 0.

The length of a cycle c is the number of edges that belongs to the cycle jcj ¼
Xm

i¼1

ec
i .

Definition 1. Let us consider two cycles c1 and c2 in a graph G with corresponding of vectors
c1 ¼ ðe

c1
1 ; e

c1
2 ; :::; ec1

mÞ and c2 ¼ ðe
c2
1 ; e

c2
2 ; :::; ec2

mÞ. The union of the cycles c1 and c2, denoted by
c12 = c1� c2 is a set of edges given by c12 ¼ ðe

c1
1 � ec2

1 ; e
c1
2 � ec2

2 ; :::; ec1
m � ec2

mÞ where� is the XOR
boolean operation on the ec

i , assuming 0 is false and 1 is true.

Since c1 and c2 are elementary cycles, then the union of c1 and c2 is a union of edge-disjoint

cycles by definition of�. A 2−connected component is a maximal (in terms of inclusion)

k−connected induced subgraph with k� 2.

An isthmus is an edge of G whose deletion strictly increases its number of connected com-

ponents. An edge is an isthmus if it is not contained in any cycle of G. An isthmus-free graph
is a graph that does not have any isthmus. If a graph G has p isthmus then its number of 2−con-

nected components is less or equal to p; each connected component of a bridgeless graph is

2−edge-connected. The 2−connected components in a graph are connected in G by isthmus-

chains (a chain in which each edge is an isthmus).

A generator z of a graph G is a set of cycles such that for each cycle c of G there is a set of

cycles c1, c2, . . ., ck in z such that c = c1� c2� . . .� ck. The weight of a generator is the sum of
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the lengths of its cycles. We denote zi a generator of cycles with a weight less than or equal to i.
A cycle basis of G is a minimal generator in terms of inclusion. A generator z of cycles contains

cycles such that each edge which belongs at least to a cycle is represented.

A minimum cycle basis of G is a cycle basis with minimum weight.

Molecular graph

A molecular graph is an undirected labeled graph G = (V, E) encoding the structural and func-

tional information of the molecule [5]. The set of vertices V of G encodes atoms and the set

of edges E encodes the adjacency relationship between atoms in the molecule. Each vertex is

labeled by the corresponding chemical element (for example C = Carbon, H = Hydrogen) and

each edge is labeled by its type of covalent bond (single −, double =, triple, aromatic). Since

hydrogen atoms can be connected at least to one atom, they can be omitted in the representa-

tion of a molecule since the valence of each atom is known (see Fig 1). A molecular graph

encodes neither the relative spatial arrangement of atoms nor the distance between atoms.

Representing the cyclic structure of a molecule

The purpose is to model an interconnection between the cyclic parts of the molecule from its

molecular graph. We assume that the cyclic part (i.e., the k-connected components with k� 2)

describes the structure and the acyclic part describes chemical functions of the molecule, in

particular, its possible interactions with other molecules. Thus, the cyclic structure of a molec-

ular graph is based on the interconnection of its induced cycles.

Canonical generator. In this subsection, we describe the computation of a canonical gen-

erator of cycles for a molecular graph. By canonical, we mean that two isomorphic molecular

graphs will produce the same generator.

To get a compact representation of the molecule cycles, we can use minimum cycle bases

[27] of the graphs.

For a graph, we can have more than one minimum cycle basis. It may be difficult to choose

a canonical cycle basis to represent the interconnection of cycles because of the non-unique-

ness of the cycle basis in a graph (see Fig 2). The goal is to compute similarity on graph of

cycles (structural parts). We therefore need the canonical graph of cycles for each molecule, i.
e., the graph of cycles have to be independent of the vertices labelling and the chosen algorithm

to compute a minimum cycle basis. This is the reason why in the definition of graph cycles,

cycles are added to a cycle basis to obtain a canonical generator.

The graph of cycles of a given molecule is a graph modeling the interconnection of its ele-

mentary cycles. This definition is mainly based on the one proposed in [23].

Vismara [28] reported that the union of minimum cycle basis of the graph is a canonical

generator and that the union of minimum cycle basis is the smallest canonical set of cycles that

computes the cyclic structure of a graph and the number of cycles of the union of cycle basis

can be exponential. The polynomial-time algorithm (complexity of O(ν × m3) where ν denotes

the cyclomatic number) proposed by Vismara computes a compact representation of the

potentially exponential-sized set of relevant cycles of a graph. It is said that there is no algo-

rithm to list all the cycles of the union of minimum cycle basis but for molecular graphs, in

particular, the compact representation can be replaced by the complete enumeration of the rel-

evant cycles. In the following section, we will introduce an algorithm to compute a canonical

generator of a molecular graph.

As we will see in Example 2, for similarity measurement, we will also have to fix an upper

bound of the length of the cycles to be considered. Some cycles with a length lower than 8 are
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Fig 1. Dopamine and its molecular graph. Different types of nodes according to atomic elements and different types

of edges depending on the chemical bond in the molecule.

https://doi.org/10.1371/journal.pone.0226680.g001
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sometimes not part of the structural component of the molecule. Thus, we introduce the

parameter j in the next definition to limit cycles.

Now, we formally define a canonical generator for a molecular graph:

Definition 2. Let us consider a generator z and an integer j. The generator z is j-hierarchical

if the subset of cycles of z with length less than or equal to j can generate all the cycles of lengthless
than or equal to j in G. A generator z is hierarchical iff zj is j−hierarchical for every j.

We denote by zj a j-hierarchical set of z.

Lemma 1. A minimum cycle basis of any graph is hierarchical.
Proof. Let us consider a minimum cycle basis B. Assume that B is not hierarchical i.e. there

is an integer j such Bj is not j-hierarchical.

Since Bj is not j−hierarchical, then there is a cycle c of length less than or equal to j which

cannot be generated with Bj. Therefore the cycle c does not belongs to B.

Since Bj is a cycle basis, there is a set of cycles {c1, c2, . . ., cα} in B with c = c1� c2� . . .�

cα−1� cα. Let us assume that cα is a cycle of maximum length in the set {c1, c2, . . ., cα}. Since Bj

does not generate c then the length of cα is greater than j.
The binary operator� is commutative and associative, so c1� c2� . . .� cα−1� c = cα.

We denote by B0 the set of cycles obtain by removing cα and adding c in B (i.e.B0 = B\{cα} [

{c}). As {c1, c2, . . ., cα−1, c}� B0, cα = c1� c2� . . .� cα−1� c and B a cycle basis, so is B0. The

weight of the cycle basis B0 is |B0| = |B| − |cα| + |c|. The weight of B0 is lower than the weight of

B (a contradiction because B is a minimum cycle basis). Then B is hierarchical.

Fig 2. A graph G, elementary cycles of G and different minimum cycle basis of G. A graph can have different minimum cycle basis. From a minimum cycle basis,

all elementary cycles of the graph can be generated.

https://doi.org/10.1371/journal.pone.0226680.g002
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To compute a cycle generator zj, we consider an algorithm with less complexity than the

one used in [23]: determining the union of all minimum cycles bases. Even if the complexity of

such approach can be realistic for molecules of reasonable sizes, it is not convenient to obtain

the graph of cycles for all the molecules of a database as Chebi or as Reaxys. Thus, let us con-

sider a molecular graph G = (V, E, wV, wE) that may be disconnected. We define the structural

graph of a molecular graph as the maximum subgraph of G without any vertex with a degree

lower than 2 in the subgraph. We first compute a minimum cycle basis B = {c1, c2, . . ., ck} of

G by executing the Horton algorithm [27] on each 2−connected components of G. Then, to

obtain a canonical basis, for each pair ci, cj of cycles in B, and for any elementary cycle c = ci�
cj in G and not in B such that |c| = max(|ci|, |cj|), we add c in B. Finally, zj is the set of all the

cycles with a length less than or equal to parameter j in B.

The complexity of Horton algorithm is polynomial O(n × m3) [27] and the complexity of

the algorithm that computes a graph of cycles is lower than O(n2 × m3).

Exemple of graph of cycles for a molecular graph. Before defining formally the graph of

cycles, we illustrate and explain how to compute a graph of cycles of a molecule on two differ-

ent examples.

Example 1. Let us consider the molecular graph of quinine, with {c1, c2, c3, c4, c5} a canoni-

cal generator containing 5 cycles (see Fig 3). These cycles are the vertices of the corresponding

graph of cycles. In terms of similarity between molecules, when considering the interaction

between cycles in a molecular graph, it is important to distinguish between cycles sharing

some vertices (like cycles c1 and c2) and cycles linked by a path (like c2 and c3). This is why we

consider two types of edges in the graph of cycles of a molecule. Firstly, type 1 is used for closed

cycles i.e. for cycles sharing at least one vertex in the molecular graph. Each edge of type 1 has

as label value the number of shared edges. For instance, the plain blue edges in Fig 3 are of

type 1. The edge between c1 and c2 is equal to 1 because they have one bond in common. Sec-

ondly, type 2 is for cycles with a relationship than can be easily broken (the cycles are not

closed in the molecular graph). Edges of type 2 have as label value the length of shortest paths

between the corresponding cycles in the molecular graph. For example, the dashed green

edges in Fig 3 are of type 2. Between c2 and c3, the value of the edge of type 2 is 2 (the length of

shortest paths between an atom of c2 and an atom of c3 in the molecular graph.

The next example illustrates the need of an upper bound of the length of the cycles in the

target molecular graph.

Example 2. Let us focus on two molecules considered as structurally similar: strychnine

and vomicine. Indeed, as it is illustrated in Fig 4, if we consider all the lengths of cycles in the

Fig 3. Quinine, 2−connected components, elementary cycles and graph of cycles of quinine. From a graph, we obtain 2−connected components by removing

bridges. Then, using a minimum cycle basis, we build a graph of cycle representing the interaction between cycles in a molecular graph.

https://doi.org/10.1371/journal.pone.0226680.g003
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vomicine, the two molecular graphs do not seem to be similar. But, if we do not consider the

cycles of length 9 in the vomicine molecular graph, then the two obtained graphs of cycles

are similar. These cycles of length 9 are not cycles mainly involved in the structural of the

molecule but they link the structural part with an azote atom. In this case, reducing the

graphs of cycles to cycles with a length less than or equal to 7 is relevant, and it will be the

case in most situations. It is the reason why we introduce parameter j in Definition 2 to limit

cycles.

Let us now give the formal definition of a graph of cycles of a molecular graph G. Consider

a cycle generator z of G. Our goal is to compute a graph Gz representing the interconnection

between cycles of G.

Fig 4. Similar molecules: Strychnine and vomicine with their graph of cycles. Strychnine and Vomicine are structurally similar then their graphs of cycles have

to be similar too.

https://doi.org/10.1371/journal.pone.0226680.g004
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Formal definition of graph of cycles. Definition 3. Let G be a molecular graph, an integer
j and zj be a j−hierarchical generator of cycles in G. The graph of cycles of G induced by zj is
denoted Gzj ¼ ðVzj ;Ezj ; m; n; yÞ with the edge-set Ezj ¼ Ezj1 [ Ezj2 .

• The vertex-set Vzj is a j−hierarchical generator zj.

• The edge-set Ezj defines the relationship between cycles of Vzj according to their proximity in G.

• ½c1; c2� 2 Ezj1 iff c1 and c2 belong to the same 2−connected components of G and they have at
least one common vertex.

• ½c1; c2� 2 Ezj2 iff c1 and c2 belong to different 2−connected components and there is a path p
from a vertex of c1 to a vertex of c2 in G such that all edges of p do not belong to a cycle in Vzj .

• For each vertex c 2 Vzj ; mðcÞ is the weight of the cycle c;

• For each edge e 2 Ezjk ; ν(e) is the type of the edge e, ν(e) = k;

• For each edge e ¼ ½c1; c2� 2 Ezj , θ(e) is the distance from c1 to c2 in G. If e 2 Ezj1 then θ(e) is the
number of common edges between c1 and c2 in G. If c1 and c2 just have one vertex in common
then θ(e) = 0. If e 2 Ezj1 , then θ(e) is the length of a shortest path among all the shortest paths
between any vertex of c1 and any vertex of c2 in G.

In Example 3, we have μ(c1) = 6 as the length of the cycle c1, ν([c1, c2]) = 1, ν([c2, c3]) = 2 and

θ([c2, c3]) = 2 (the smallest path from a vertex of c2 to a vertex of c3 in the molecular graph).

Results and discussion

In this section, we compare on real cases the performances of three approaches to compute

structural similarity of molecules: two approaches using MCES (on molecular graphs (MG)

and graph of cycles (GC)), and an approach dealing with molecular graphs based on finger-

prints and using the Tanimoto coefficient [19] (TC). We will show that GC can capture the

structural similarity of molecules; that MG does not consider cycles when the structural part is

considered and that GC and TC do not compute the same kind of similarity even if the results

are sometimes similar.

Similarity using Maximum Commun Edge Subgraph (MCES)

In the MCES approach, we consider the similarity degree defined as follows [6]. Consider

two molecular graphs G1 = (V1, E1), G2 = (V2, E2) and a function π: V1! V2. A common edge

subgraph of G1 and G2 denoted G1,2 = (V1,2, E1,2) is a subgraph of G1 and G2 that has as many

edges as possible and such that if v 2 V1 and v0 2 V2 correspond to the same type of vertex

then v 2 π(v0) (i.e., function π models the possible correspondences between the vertices of the

two graphs). The similarity degree is defined as:

simðG1;G2Þ ¼
ðjV12j þ jE12jÞ

2

ðjV1j þ jE1jÞ � ðjV2j þ jE2jÞ
ð1Þ

where G1,2 = (V1,2, E1,2) is a maximum commun edge subgraph of G1 and G2 maximizing sim
(G1, G2).

In both approaches GC and MG, π function is defined as follows.

On one hand, concerning molecular graphs, the function π maps atoms of the same type.

On the other hand, considering two graphs of cycles Gzj
1 ¼ ðV

zj
1 ;E

zj
1 Þ and G

zj0

2 ¼ ðV
zj0

2 ;E
zj0

2 Þ of
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two molecules M1 and M2, mapping π is defined such that for any v 2 Vzj
1 ; pðvÞ ¼ fv0jv0 2 V

zj0

2

and ||v| − |v0||� 0.2 � min(|v|, |v0|)}. This function π allows two cycles, in graphs of cycles, to

match if they have a similar length. The value 0.2 has been set experimentally.

When considering graph of cycles, the function μ indicates the length of each cycle; the

function ν indicates the relation between each pair of connected cycles (if they share vertices

or not) and the function θ gives the label of edges between cycles (see Definition 3).

Similarity using Tanimoto coefficient

The Tanimoto fingerprint approach [19] has been used as an effective measure of

intermolecular similarity. A fingerprint is a structure fragment or feature found within a

structure; this approach considers a list of such predefined patterns. Each existing pattern

is represented without considering its number of occurrences. There are several types of

molecular fingerprints depending on the method by which the molecular representation

is transformed: substructure keys-based (MACCS), path-based (Daylight fingerprint) and

circular fingerprints (ECFP4, ECFP6, FCFP4, and FCFP6) [10]. Path-based fingerprints

analyze all the fragments of a molecule following a path up to a certain number of bonds.

In ECFPs and FCFPs are based on the Morgan algorithm and the environment of each

atom up to a fixed diameter is recorded. The Tanimoto coefficient σ of two molecules M1

and M2 is

s ¼
F12

F1 þ F2 � F12

ð2Þ

where F1, F2 and F12 are, respectively, the numbers of fragments in M1, M2, and the number

of common fragments to molecules M1 and M2. Tanimoto coefficient is based on the

assumption that similar molecules have similar patterns. This metric does not take account

of the connectivity while MCES calculation does; consequently, the two coefficients are not

the same and do not compute exactly the same thing in a molecular graph.

Data

The target database of molecules considered in the present work is a freely available dictionary

of small molecular entities called Chemical Entities of Biological Interest ChEBI [2]. This data-

base contains 90, 130 molecules.

We first uniformly select a set M of 10, 000 molecules among the molecules in ChEBI con-

taining at least three cycles (so that the structural similarity has a meaning). We consider a sub-

set MS of 500 molecules in M whose molecules are also chosen uniformly.

We focus on three similarity methods: MCES on molecular graphs (MG), MCES on graphs

of cycles (GC), and Tanimoto Coefficient (TC). For Tanimoto coefficient, we used Daylight

Fingerprint, ECFP4, ECFP6, FCFP4, and FCFP6. Note that to make sure that the MG and GC

methods compute the similarity on the structural part of molecules, we remove all the leaves

and isthmus in all molecular graphs for MG before computing similarity. We then calculate

the similarity with MG for all the pairs of molecules in MS and the similarity with GC and TC

for all the pairs of molecules in M. Our first goal is to evaluate and compare the performances

of the approaches MG, GC and TC on MS from three points of view: the execution time

required to calculate the measure of similarity for each pair of molecules, the capacity of each

approach to distinguish the subset of pairwise of structurally similar molecules (i.e., the ones

having similar core structures) and finally the capacity of discriminating real similar, medium
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similar and not similar pairs of molecules. We also analyze the sets of pairwise structurally sim-

ilar molecules obtained from the MG method in M.

Finally, we select seven molecules in MS, pairwise not similar and which have different

properties of similarity: some have several homologous molecules in the ChEBI database and

others not, some are similar to few non-homologous molecules, others to many. For each mol-

ecule, we consider the distributions of computed similarities in each of the three approaches

for the 90, 130 molecules in ChEBI, and we compare them to the pairwise similar subsets of

molecules, induced by these three methods.

The computation of MG and GC has been done on a cluster Intel(R) Xeon CPU E5-260 v3

@2.40GHz with 64G of RAM. To find a maximum clique in a graph to solve MCES, we use a

linear program resolved by SCIP [29] (Solving Constraint Integer Programs). Because of the

number of molecules in the database (90130 molecules, knowing that many other databases

are larger) and since the similarity calculation between two graphs may have an exponential

runtime due to the NP-completeness of the problem MCES (indeed, finding an MCES requires

to compute a maximum clique in the product graph of the linegraphs induced by the two con-

sidered graphs [6]), we have to set a maximum similarity computation time for each pair of

molecules. This time depends on the number of vertices of the considered graphs (MG or

GC), which is why the computation time GC is small compared to that of MG since a molecu-

lar graph contains more vertices than its graph of cycles; this is especially true when the mole-

cules are similar since in this case, the maximum clique is large. For example, if the maximum

time for each similarity is 20 seconds, then the whole computation requires ±20 days on the

cluster to compare one molecule to all the other ones in ChEBI. As a consequence of the time

limitation, some similarities are not computed for some pairs of molecules in the MG context.

The source code is available in the S1 Appendix.

For the Tanimoto Coefficient (TC), we used the RDKit software provided by GitHub and

SourceForge (http://www.rdkit.org). The construction of the patterns for fingerprints is made

in RDKit using the molecular graph of the selected molecule.

Computation times

We compare the computation times of the three approaches MG, GC, and TC. We first con-

sider the 124, 750 different pairs of molecules in MS.

For GC similarity, we do not upper bound the similarity computation time for each pair of

molecules. We dissociate the computing time needed to compute the graph of cycles of each

molecule (which has to be done only once for each molecule) from the time needed to com-

pute the similarity with MCES. Similarly, we also dissociate for TC the time needed to first

compute fingerprints from the one needed for similarity calculation.

Table 1 shows that computing the similarity with MCES on GC is faster than MCES on

MG. Less than 4% of pairs of molecules can be computed with MG in 1 second/pair. However,

99.79% and 100% of them are computed in less than 0.1 second/pair respectively with GC and

TC. The computation times of the different fingerprints (Daylight, ECPF, FCFP) are equiva-

lent, therefore we present the time for Daylight fingerprint only.

It should be noted that we developed GC and MG in C and the software RDKit used for TC

is developed in C++. What is important to note here is the low speed of execution of MG com-

pared to GC and TC.

There is no pre-processing time needed on MCES with MG. Table 2 presents the pre-pro-

cessing time for M. Over 99.98% fingerprints were computed in less than 0.1 seconds each

whereas 8.74% of graph of cycles need more than 0.1 seconds.
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Compared similarities

Confusion matrices. We compare the results on structural similarities with MCES on

MG, on GC and TC on the 124, 750 pairs of 500 molecules in MS.

A confusion matrix is a performance measurement used in machine learning classification

[30]. We use it to measure whether the three methods give or not the same results. Table 3

gives the confusion matrix of MG and TC. Each row of the matrix represents the number of

pairs of molecules in MG with a value of similarity that is distributed in different columns

according to their value in TC.

The confusion matrix between ECFP4 and FCFP4 shows a strong correlation. Furthermore,

the matrices of GC with Tanimoto on Daylight fingerprint and circular fingerprints show sim-

ilar results (in S2 Table). In the rest of the paper, TC is computed with Daylight fingerprint

only.

We use MS to evaluate a correlation between GC, TC, and MG. In Fig 5, the map indicates

by a dot each experiment according to the similarity value obtained for each measurement

Table 1. Computation time (in seconds) of similarity with MCES on MG, GC, and with the Tanimoto coefficient.

Method

Time(sec) [0.0,0.1[ [0.1,0.2[ [0.2,0.3[ [0.3,0.4[ [0.4,0.5[ [0.5,0.6[ [0.6,0.7[ [0.7,0.8[ [0.8,0.9[ [0.9,1.0[

MG 0 70 178 343 283 673 855 767 1026 506

TC 124750 0 0 0 0 0 0 0 0 0

GC 124491 192 41 9 8 2 4 0 0 0

[1,2[ [2,3[ [3,4[ [4,5[ [5,6[ [6,7[ [7,8[ [8,9[ [9,10[ [10,11[

MG 9066 7092 5837 5063 4281 3823 3361 3117 2854 2504

TC 0 0 0 0 0 0 0 0 0 0

GC 2 0 0 0 0 0 0 0 0 0

[11,12[ [12,13[ [13,14[ [14,15[ [15,16[ [16,17[ [17,18[ [18,19[ [19,20[ >= 20

MG 2357 2101 2031 1910 1730 1538 1503 1390 1303 57188

TC 0 0 0 0 0 0 0 0 0 0

GC 1 0 0 0 0 0 0 0 0 0

Note that for MG, 45.48% pairs of molecules were not computed because they were exceeding the maximum time allowed (20 seconds). Recall that for GC and TC we

do not consider here the pre-processing time to compute graphs of cycles and fingerprints.

https://doi.org/10.1371/journal.pone.0226680.t001

Table 2. Pre-processing time (in seconds) of graphs of cycles for GC and fingerprints for TC.

Method

Time(sec) [0.0,0.1[ [0.1,0.2[ [0.2,0.3[ [0.3,0.4[ [0.4,0.5[ [0.5,0.6[ [0.6,0.7[ [0.7,0.8[ [0.8,0.9[ [0.9,1.0[

TC 9999 1 0 0 0 0 0 0 0 0

GC 9126 436 113 58 29 37 26 15 10 11

[1,2[ [2,3[ [3,4[ [4,5[ [5,6[ [6,7[ [7,8[ [8,9[ [9,10[ [10,11[

TC 0 0 0 0 0 0 0 0 0 0

GC 64 24 7 14 4 6 5 5 1 0

[11,12[ [12,13[ [13,14[ [14,15[ [15,16[ [16,17[ [17,18[ [18,19[ [19,20[ >= 20

TC 0 0 0 0 0 0 0 0 0 0

GC 0 2 1 3 2 0 0 0 0 0

Note that these pre-processing computations have to be done only once.

https://doi.org/10.1371/journal.pone.0226680.t002
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pair. Looking at MG vs TC, we find that dots are aligned around the upper diagonal part. This

means that TC and MG provide quite close similar values. There are few dots located in the

left upper and right lower part. These dots show pairs of molecules similar on TC but not simi-

lar on GC, vice versa.

MG and GC seem to have a lack or no correlation at all (dots are distributed in the space).

However, there is a cluster of dots with low similarity values and straight lines of dots for some

similarity values on GC. This is explained by the fact that since the graph of cycles here have few

vertices, the GC similarity values are closed. The number of possible values for GC is, therefore,

smaller than for MG whose graph sizes are larger and for TC for which the calculation is based

on a large number of fingerprints sought. We assume that the pairs of molecules belonging to

the cluster of dots with low similarity aren’t similar according to all the similarity methods.

We also observe in the middle part of Fig 5 a lack of correlation between MG and GC is

transposed on the right part of Fig 5. The GC and TC measurements do not appear to be corre-

lated either.

Table 3. Confusion matrices of MG and TC.

MG

TC [.0,.1[ [.1,.2[ [.2,.3[ [.3,.4[ [.4,.5[ [.5,.6[ [.6,.7[ [.7,.8[ [.8,.9[ [.9,1.0[ = 1.0

[.0,.1[ 1678 1731 259 5 0 0 0 0 0 0 0

[.1,.2[ 2433 6499 2157 63 6 0 0 0 0 0 0

[.2,.3[ 1399 9638 4642 343 50 7 4 0 0 0 0

[.3,.4[ 593 8343 7187 1379 274 90 26 5 8 0 0

[.4,.5[ 190 3932 5091 1834 652 269 97 34 6 3 1

[.5,.6[ 53 974 1544 1032 486 366 186 91 30 2 0

[.6,.7[ 10 150 245 236 242 175 161 101 37 6 0

[.7,.8[ 2 6 15 30 26 50 62 58 39 16 0

[.8,.9[ 0 1 10 7 8 21 31 35 22 10 1

[.9,1.0[ 0 0 1 0 0 0 7 5 1 1 0

= 1.0 0 0 9 0 0 8 5 4 15 23 5

Confusion matrix of similarity on Molecular Graphs (MG) and Tanimoto Coefficient (TC) Daylight on 67, 589 pairs of molecules. All the pairs that are not computed by

MG according to the time limit fixed (20 seconds) are removed. The matrices of confusion of TC/GC and MG/GC are presented the Appendix S1 Table.

https://doi.org/10.1371/journal.pone.0226680.t003

Fig 5. Correlation between (a) MG vs TC, (b) MG vs GC and (c) TC vs GC. We use MS and we remove 57, 161 pairs that were not computed after 20 seconds in

GC.

https://doi.org/10.1371/journal.pone.0226680.g005
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Moreover, the correlation coefficients between the measurements are respectively equal to

0.1662 between MG and GC and equal to 0.1676 between GC and TC. This value close to zero

indicates a low correlation between them. Conversely, the coefficient between MG and TC on

Daylight is 0.6028. A coefficient greater than 0.5 indicates a strong correlation.

Evaluating the similarity on MS with MG took 15 days for computation. So, the compari-

son over the 10, 000 molecules of M (near to 50 million pairs of molecules) was done only with

TC and GC. However as MG and TC tend to classify pairs of molecules the same way, it is rea-

sonable to assume that comparing MG and GC would return similar results.

Table 4 is the matrix of confusion of GC and TC on M. The correlation coefficient between

GC and TC on M remains low (equal to 0.1559), which indicates that the two measures

remain globally uncorrelated. Nevertheless, to have a better view in Fig 6, we normalize the

values. In the left (resp. right) part of Fig 6, the normalization is performed with respect to the

total number of pairs with a given similarity according to the measurement of GC (resp. TC).

In Fig 6(a), we do not detect a correlation between the two metrics. When the conditional

probability of TC knowing GC is fixed, the columns are similar. The difference in the two col-

umns [0.8, 0.9[ and [0.9, 1.0[ can be explained by the small number of pairs with GC similarity

in the range [0.8;1.0[. This may skew the distributions.

Table 4. Confusion matrix of TC Daylight and GC.

TC

GC [.0,.1[ [.1,.2[ [.2,.3[ [.3,.4[ [.4,.5[ [.5,.6[ [.6,.7[ [.7,.8[ [.8,.9[ [.9,1.0[ = 1.0

[.0,.1[ 2098086 1357516 595708 336076 80188 98966 17215 102408 660 1 45395

[.1,.2[ 9097068 8085619 2661111 1400400 301127 481123 44955 417304 1524 0 170023

[.2,.3[ 7646191 5063089 2083353 805793 213752 257548 31931 179596 1886 5 60001

[.3,.4[ 1635006 1038478 561520 223229 60341 67434 9740 66390 688 3 31877

[.4,.5[ 467347 298880 221562 98755 31691 41287 4674 48675 555 1 31712

[.5,.6[ 166688 118032 132009 90406 20376 30049 4311 42683 771 5 28033

[.6,.7[ 66077 53324 77368 66037 14408 23555 5512 40206 1163 3 27965

[.7,.8[ 16306 18625 35630 31697 11954 14434 6379 26133 1172 4 19365

[.8,.9[ 2700 3423 9540 14806 4828 7332 4077 19933 822 4 18191

[.9,1.0[ 210 570 1620 3962 1162 1677 1099 6899 360 3 21322

= 1.0 11 30 55 87 107 114 100 191 67 2 3553

Confusion matrix of similarity on TC on Daylight and GC on 49, 995, 000 pairs of M.

https://doi.org/10.1371/journal.pone.0226680.t004

Fig 6. (a)Confusion matrix normalized by TC (b)Confusion matrix normalized by GC. We see it as the conditional

probability distribution: given a x GC similarity value (resp., TC) and given a randomly selected pair of molecules

whose GC similarity is x (resp., TC), what is the probability that the similarity TC (or GC) is y?

https://doi.org/10.1371/journal.pone.0226680.g006
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Fig 6(b) shows some links between the two measurements. First, when TC similarity is near

to 1.0 then GC similarity is also near to 1.0. On the contrary, when it is weak for TC, it is also

weak for GC. As for the intermediate values, there does not seem to be a clear pattern. There

are two columns [0.8, 0.9[ and [0.9, 1.0[ containing almost no pairs. This is due to the opera-

tion of the GC measurement which tends to rarely give similarity over the interval [0.8;1.0[

(we also see it in Fig 5(b) and 5(c)).

All these first results show a strong correlation between the similarity values calculated by

the MG and TC methods. On the other hand, the results obtained on M show that there is no

correlation between TC and GC, and that this does not depend on the number of fingerprints

used by TC, nor on the size of the graphs of cycles. In particular, several pairs of molecules

identified as strongly similar by GC (values close to 1) and not by TC corresponds to families

of molecules such as acid-onion family (with for example molecules (a) and (b) in Fig 7(a) and

7(b)) and the amid family (with for example the molecules (c) and (d) in Fig 7(c) and 7(d)),

families whose definition implies a structural similarity between their molecules.

Connected components. We focus on the subsets of pairwise similar molecules in MS

induced by the MG, GC, and TC Daylight approaches, for different similarity thresholds. Con-

sider three complete graphs (called in the following similarity graphs) which vertex sets are

MS and in which each edge is respectively labeled by the similarity computed by MG, TC, and

GC of the two connected molecules in the three graphs. Given a similarity threshold α 2 [0, 1],

we consider in each similarity graph the connected components induced by the edges with

similarity less than or equal to s, and their densities (i.e. the number of edges over the maxi-

mum number edges
s�ðs� 1Þ

2
where s is the size of the component).

Fig 7. Two molecules of acid-onion family and two molecules of amid family. Molecule (a) and molecule (b) have a

Tanimoto Coefficient equals to 0.25 and a similarity value with graph of cycles equals to 1.0. Molecule (c) and molecule

(d) have a Tanimoto Coefficient equals to 0.27 and a similarity value with graph of cycles equals to 1.0. (a)oroxylin A

7-O-β-D-glucuronate(b)flavonolate 7-O-β-D-glucoside (c) N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-2-

[[(4-methoxyphenyl)methyl-methylamino]methyl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-

2-phenylacetamide (d) N-[[(4R,5S)-8-(3-cyclopentylprop-1-ynyl)-2-[(2R)-1-hydroxypropan-2-yl]-4-methyl-

1,1-dioxo-4,5-dihydro-3H-6,1$l{6},2-benzoxathiazocin-5-yl]methyl]-2-methoxy-N-methylbenzenesulfonamide.

https://doi.org/10.1371/journal.pone.0226680.g007
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Table 5 shows that with GC on MS we have 24 molecules that have the same structural part

with a similarity equal to 1.0. The 8 molecules in MG with threshold of 1.0 are included in the

24 pairs with similarity 1 in GC. For TC, those 24 molecules are in the same connected compo-

nent only if the threshold is lower than 0.6. In GC, when the threshold is greater than 0.8, the

maximum-size connected components do not change and keep a density near to 1.0. We

notice that with a threshold lower than 0.4 the average density is high and does not vary more

than a gap of 0.1 in GC. However in GC, the density decrease between 0.3 and 0.4 involving

that there are many edges with a value in the interval [0.3, 0.4[.

It appears that the GC approach with a threshold value of 0.8 identifies relatively stable sub-

sets of similar molecules, with an order of magnitude growth over connected component den-

sities. GC do not have similar properties to MG and TC approaches. Thus, the GC approach is

the one that most clearly distinguishes between subsets of pairwise similar molecules. To evalu-

ate the quality of these subsets, we focus in the next section on a few target molecules.

Similarity for selected molecules

In order to complement the large-scale empirical evidence concerning the comparison of the

efficiency of the three approaches given in the previous section, in particular through con-

nected components of similarity graphs, and to to illustrate how the GC method performs in

practice, we have studied the performance of these approaches in a precise and detailed way

by focusing on seven selected molecules in MS. These molecules have different properties in

terms of graphs of cycles and similarities: Quinine, Strychnine, Cholesterol, Manzamine A,

Docetaxel Anhydrous, Brevetoxin A and Amphotericin B. The Daylight fingerprint is used for

Tanimoto Coefficient. We detail the results obtained on these three last molecules because

they include all the results and behaviors found for the seven ones.

Docetaxel Anhydrous. For this molecule, we see that GC gives better results than MG

according to similarity calculation and time requested. Docetaxel Anhydrous has a generator

of cycles with different lengths (4, 6 and 8). The graph of cycles has 6 vertices and it’s maxi-

mum connected subgraph with edges of type 1 is the kernel of this molecule (see Fig 8).

Fig 9 provides the distributions of similarity on MG, GC, and TC.

Table 5. Connected components, size and average density of connected components on MG, TC, and GC on MS depending on threshold.

MG TC GC

Threshold #CC Size Max Avg Density #CC Size Max Avg Density #CC Size Max Avg Density

1.0 461 8 1.0 492 2 1.0 290 24 1.0

0.9 455 8 0.98 437 6 0.92 290 24 1.0

0.8 387 14 0.84 373 22 0.90 277 24 0.99

0.7 265 121 0.78 296 72 0.84 113 339 0.83

0.6 150 306 0.85 236 103 0.77 81 383 0.81

0.5 59 421 0.62 186 182 0.90 51 435 0.82

0.4 21 480 0.16 123 340 0.90 37 450 0.87

0.3 15 486 0.30 24 472 0.70 13 488 0.13

0.2 9 492 0.43 2 499 0.47 2 499 0.26

0.1 4 497 0.51 1 500 0.90 1 500 0.58

0.0 1 500 0.53 1 500 1.0 1 500 1.0

#CC is the number of connected components with at least 2 molecules. For each threshold, Size Max is the size of connected components with the maximum size and

Average Density is the average density of all the connected components with at least 2 molecules. The density of a connected component is the number of edges over the

maximum number edges
s�ðs� 1Þ

2
where s is the size of the component.

https://doi.org/10.1371/journal.pone.0226680.t005
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According to the distribution of similarity on GC, 4 categories of similar molecules can be

extracted:

• 9 molecules are strictly similar to Docetaxel (they are isomers). They have exactly the same

graph of cycles (see Fig 10).

• 5 molecules are partially similar; 2 of them have a similarity degree equals to 0.81 differ from

Docetaxel only on 1−connected part in MG. Their GC are subgraphs of the graph of cycles

of Docetaxel, one cycle linked with an edge of type 2 is missing. The 3 other molecules (with

a degree of similarity of 0.78) have the same structure as Docetaxel with more cycles. The

GC of these molecules have GC of Docetaxel as subgraph of (they have one cycle more and

two edges of type 2).

• 1 molecule is the kernel of Docetaxel. The degree of similarity is 0.63).

• The rest of molecules with a degree lower than 0.45 are not similar to the target molecule.

In the distribution on TC, there are more categories but the first molecules are the same as

GC results (GC categories include one or more categories of TC). As similar molecules have

the same structure, they also have the same patterns.

Fig 8. Molecular graph and graph of cycles of Docetaxel Anhydrous. According to the definition of the graph of cycles, we compute the graph of cycles of the

molecule Docetaxel anhydrous.

https://doi.org/10.1371/journal.pone.0226680.g008

Fig 9. Distribution of similarity on Docetaxel Anhydrous. From left to right: Distribution with molecular graphs (MG), graphs of cycles (GC) and Tanimoto

Coefficient (TC).

https://doi.org/10.1371/journal.pone.0226680.g009
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In the distribution of similarity on MG, we have set 30 seconds to compute the similarity of

two molecules. Over 46, 846 of 90, 130 molecules where not computed (about 51.9%). None of

the molecules in top 20 are chemically similar to Docetaxel.

When considering the computing time, TC is the fastest (150 seconds), GC is the second

with 1 hour and the last is MG with 10 days.

Finally using the definition related to the connected components given in the previous sec-

tion, we consider in M the 9 molecules for which the similarity against the Docetaxel Anhy-

drous molecule is more than 0.7. The largest threshold value for which these molecules appear

in a same connected component obtained in M from GC is 0.8; this component contains 11

vertices and its density is 1.0. The GC approach therefore enables to identify a coherent set of

molecules being pairwise structurally similar ones associated to Docetaxel Anhydrous. The TC

approach identifies in M the same connected component with the same threshold value, but

with a much lower density equal to 0.38.

Brevetoxine A. The structural part of Brevetoxine A is a chain of cycles. Its particularity

is the length of its cycles (5, 6, 7, 8 and 9) with two cycles sharing 0 or 1 common edge in the

molecular graph (Fig 11). In this case, we see that GC and TC clearly have not the same rank-

ing. The similarity on GC relies on cycles and TC on patterns.

The distribution of similarity of brevetoxin A are shown in Fig 12:

In GC results, we have 3 categories:

Fig 10. Three molecules similar to docetaxel with GC similarity. From left to right: (a) Baccatin III with a similarity of 0.81, (b) Paclitaxel with a similarity of 0.78

and (c) 10-deacetyl-2-debenzoylbaccatin III with a similarity of 0.63.

https://doi.org/10.1371/journal.pone.0226680.g010

Fig 11. Molecular graph and graph of cycles of Brevetoxine A. According to the definition of the graph of cycles, we compute the graph of cycles of the molecule

Brevetoxine A.

https://doi.org/10.1371/journal.pone.0226680.g011
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• 5 molecules are similar with a degree greater than 0.64. They are members of the same family

with Brevetoxin A.

• 2 molecules are similar with a degree equal to 0.47 are partially similar. Their GCs are sub-

graphs of the GC of Brevetoxin A.

• The rest of molecules with a degree of similarity lower than 0.4 are not similar to Breve-

toxin A.

Fig 13 shows two molecules similar according to GC.

When we look at the TC distribution, the molecule Archangelolide is similar to Breve-

toxin A with a Tanimoto coefficient equals to 0.81 (range 2 over 90, 130 molecules). This is

because Brevetoxin A does not have many patterns but each pattern occurs several times in

the molecule. As a consequence, it affect the results of similarity of this Tanimoto because

molecules may be similar without taking account the number of occurences of patterns

(appearing 10 times is not the same than one time). This happens with many other molecules

(see Fig 14):

Fig 12. Distribution of similarity on Brevetoxine A. From left to right: Distribution with molecular graphs (MG), graphs of cycles (GC) and Tanimoto Coefficient

(TC).

https://doi.org/10.1371/journal.pone.0226680.g012

Fig 13. Results of similarity for Brevetoxine A on GC. (a) Ciguatoxin CTX3C with a similarity of 0.76 (b)(4Z)-2,8:7,12:11,15:14,18:17,22-pentaanhydro-

4,5,6,9,10,13,19,20,21-nonadeoxy-L-arabino-L-allo-L-allo-docosa-4,9,20-trienitol with a similarity of 0.47. These two molecules share a structural part with

Brevetoxin A.

https://doi.org/10.1371/journal.pone.0226680.g013
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For MG, the parameter of time was fixed to 40 seconds. Over 43, 237 of 90, 130 molecules

where not computed for MG (47.9%). The first molecule on top 20 is not similar to Brevetox-

ine A and has a degree of similarity equals to 0.2.

GC similarity gives a better ranking of molecules according to the cycle structure. We

observe that the 5 first molecules with a degree lower than 0.5 belong to the same family of Bre-

vetoxin A. Others are less similar to Brevetoxin A according to the cycle structure.

Finally, we consider in M the 3 molecules for which the similarity against the Brevetoxin B

molecule is above 0.7. The largest threshold value for which these molecules appear in a same

connected component obtained in M from GC is 1; this component contains only these 3 ver-

tices and its density is 1. Approach GC therefore makes it possible to identify a coherent set

of molecules being pairwise structurally similar ones associated to Brevetoxine A. The TC

approach identifies a connected component in M with 4 vertices, with a maximum threshold

equal to 0.92 and with a lower density equal to 0.6.

Amphotericin B. Amphotericin B has a particular cyclic structure, its minimum cycle

basis contains 3 cycles with a particular cycle of length 36 (this cycle belongs to the structural

part). The corresponding graph of cycles thus contains 3 vertices (Fig 15).

The GC distribution of similarities concerns all the molecules of the database. This distribu-

tion given in Fig 16 shows 11 molecules fully similar to the target one (degrees of similarity

equal to 1), and another distinguished set of molecules being partially similar to it (degrees of

similarity equal to 0.6 or to 0.7). The other molecules can be considered as different from the

target molecule (similarity lower than 0.5). Thus, the calculation using graphs of cycles dis-

criminates the molecules into three classes, which the molecular graph approach does not do.

Moreover, MG approach does not succeed in calculating similarity degrees for several mole-

cules classified as very similar by the GC approach (50, 932 over 90, 130 molecules where not

computed; that is 56.5%). This is becaue the required running time is too important; the com-

putation stops because of the set upper bound (20 seconds). Indeed, the required computation

time exceeds by far the imposed limit.

Fig 14. Results of similarity for Brevetoxine A on TC. (a) Archangelolide with a similarity of 0.81 (b) Michaolide G with a similarity of 0.79. These molecules does

not have similar structure with Brevetoxin A.

https://doi.org/10.1371/journal.pone.0226680.g014
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Most of the strictly similar molecules provided by the GC approach are either isomers of

amphotericin B (amphotericin B methyl ester) or members of the same family (nystatin A1).

Amphotericin belongs to the family of antifungal. The other fully similar molecules are not

intuitively similar to amphotericin B considering their molecular graphs but the similarity in

terms of cycle structure is chemically relevant (Fig 17). The molecules with a similarity degree

equal to 0.7 in the GC distribution are the ones for which the graph of cycles has the Ampho-

tericin B grah as subgraph, and the molecules with degree of similarity 0.6 are the ones which

graph of cycles is the subgraph of the one of Amphotericin B. Note that these molecules are

not discriminated in the MG and TC approach.

Molecules similar to Amphotericin B according to TC are also similar in GC except those

where the cycle of length 36 is replaced by smaller ones (Fig 18). This is because on Ampho-

terin B there is the same pattern repeated on this cycle and that Tanimoto does not capture the

structure of the molecule. The molecule is actually with a coefficient greater than other mole-

cules having a structure close to the one of Amphotericin B.

Finally, we consider in M the 10 molecules for which the similarity against the Amphoteri-

cin B molecule is more than 0.7. The largest threshold value for which these molecules appear

Fig 16. Distribution of similarity on Amphotericin B. From left to right: Distribution with molecular graphs (MG), graphs of cycles (GC) and Tanimoto

Coefficient (TC).

https://doi.org/10.1371/journal.pone.0226680.g016

Fig 15. Amphotericin B molecular graph and its graph of cycles. According to the definition of graph of cycles, we compute the graph of cycles of the molecule

Amphotericin B.

https://doi.org/10.1371/journal.pone.0226680.g015
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in the same connected component obtained in M from GC is 0.7; this component contains

13 vertices and its density is 0.91. The GC approach makes it therefore possible to identify a

coherent set of molecules being pairwise structurally similar ones associated to Amphotericin

B. The TC approach identifies a connected component in M with 7626 vertices, with a maxi-

mum threshold equal to 0.5 and with a lower density equal to 0.04: TC is therefore unable to

identify a this coherent set of similar molecules.

Fig 18. Molecule Rimocidine. Rimocidine (ChEBI id 80106) on TC with a similarity of 0.93.

https://doi.org/10.1371/journal.pone.0226680.g018

Fig 17. Results of similarity for Amphotericin B on GC. Nystatin A1 (ChEBI id 473992) and Chivosazole A (ChEBI id 80057) with a similarity of 1.0.

https://doi.org/10.1371/journal.pone.0226680.g017
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The experiments described for this molecule and the two previous ones seem to show that

when GC identifies a coherent set of molecules similar to a given molecule, TC also identifies

it but in a less precise way, or does not identify them. As indicated at the beginning of the sec-

tion, the experiments performed for the other selected molecules give similar results.

Conclusion

Solving MCES problems on graphs of cycles provides a relevant approach for establishing the

structural similarity of pairs of molecules. Indeed, the analysis of the performances of the pro-

posed approach shows its efficiency in terms of similarity computation and execution time. As

shown by the related component studies in the similarity graphs synthesized in Table 5, which

conclusions are not contradicted by the precise study of seven representative cases of mole-

cules, the approach we propose seems very often preferable to discriminate the molecules in

terms of structural similarity. Finally, the approach by comparing the graphs of cycles does not

require any prior knowledge of structural patterns to be considered in particular to compare

the structure of molecules.

An extension of the proposed approach would be to be able to set the length of the cycles

(parameter j) according to the characteristics of the molecular graph. Indeed, in many cases,

taking into account large cycles can distort the similarity measurement because these cycles do

not reflect the core structure of the molecules, while in some other cases, taking into account

of such cycles is necessary to take all the core structures into account. It seems that the differ-

entiation between these two cases depends, at least in part, on topological properties of the

molecular graph, which requires further studies. Finally, the use of other similarity metrics

than the resolution of the MCES problem, for example, the use of an editing distance between

the graphs of cycles, could also be considered.
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gerprint similarity search in virtual screening. Methods, 71:58–63, 2015. https://doi.org/10.1016/j.

ymeth.2014.08.005 PMID: 25132639

11. B. Andreas, Jeremy J.L., S. Josef, Sai S.C.K., G. Meir, and D. John W. How similar are similarity

searching methods? a principal component analysis of molecular descriptor space. J. Chem. Inf.

Model., 49(1), 2009.

12. d. G. Kurt and C. F. Molecular graph augmentation with rings and functional groups. J. Chem. Inf.

Model., 50(9):1660–1668, 2010. https://doi.org/10.1021/ci9005035

13. G. Benoit, B. L., and V. D. Graph kernels in chemoinformatics. Quantitative Graph Theory Mathematical

Foundations and Applications, CRC Press, pages 425–470, 2015.

14. Flower D. On the properties of bit string-based measures of chemical similarity. Journal of Chemical

Information and Computer Sciences, 38:379–386, 05 1998. https://doi.org/10.1021/ci970437z

15. F. Abu-khzam, N. Samatova, M. A. Rizk, and M. Langston. The maximum common subgraph problem:

Faster solutions via vertex cover. IEEE/ACS International Conference on Computer Systems and Appli-

cations, pages 367–373, 2007.

16. A. Tatsuya and N. Hiroshi. Comparison and enumeration of chemical graphs. Comput Struct Biotechnol

J., 5, 2013.

17. N. Michel and B. Horst. Bridging the Gap Between Graph Edit Distance and Kernel Machines. World

Scientific Publishing Co., Inc., 2007.

18. S. Roger, M. John, N. O. Boyle, G. Andrew J., S. Stefan, and G. Darren V.S. Chemical similarity based

on graph edit distance:efficient implementation and the challenges of evaluation. 7th Joint Sheffield

Conference on Chemoinformatics, 2015.

19. Rogers D. J. and Tanimoto T. T. A computer program for classifying plants. Science, 132(3434):1115–

1118, 1960. https://doi.org/10.1126/science.132.3434.1115 PMID: 17790723

20. G. Benoit, B. L., and V. D. Relevant cycle hypergraph representation for molecules. 9th IAPR-TC-15

Graph-Based Representations in Pattern Recognition, page 111, 2013.
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