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Abstract

Background: Compositional data refer to the data that lie on a simplex, which are
common in many scientific domains such as genomics, geology and economics. As the
components in a composition must sum to one, traditional tests based on
unconstrained data become inappropriate, and new statistical methods are needed to
analyze this special type of data.
Results: In this paper, we consider a general problem of testing for the compositional
difference between K populations. Motivated by microbiome and metagenomics
studies, where the data are often over-dispersed and high-dimensional, we formulate a
well-posed hypothesis from a Bayesian point of view and suggest a nonparametric test
based on inter-point distance to evaluate statistical significance. Unlike most existing
tests for compositional data, our method does not rely on any data transformation,
sparsity assumption or regularity conditions on the covariance matrix, but directly
analyzes the compositions. Simulated data and two real data sets on the human
microbiome are used to illustrate the promise of our method.
Conclusions: Our simulation studies and real data applications demonstrate that the
proposed test is more sensitive to the compositional difference than the mean-based
method, especially when the data are over-dispersed or zero-inflated. The proposed
test is easy to implement and computationally efficient, facilitating its application to
large-scale datasets.
Keywords: Microbiome, Compositional data, High dimensionality, Centered log-ratio
transformation, Multisample test, Distance correlation

Background
Data that lie on the simplex Sd−1 = {

(x1, x2, ..., xd), s.t. minj xj ≥ 0,
∑d

j=1 xj = 1
}
are

often called (d − 1)-dimensional compositional data, and they arise in many scientific
disciplines such as genomics, geology and economics [1–3]. As the components in a
composition must sum to one, classic statistical tests including two-sample t-test and
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Wilcoxon rank-sum test become inappropriate as they require unconstrained data, and
directly applying these standardmethods to compositional data could result inmisleading
inference [4]. To overcome this difficulty, Aitchison (1982) proposed to use a log-ratio
transformation to relax the unit-sum constraint, so that some classic tests can be applied
to the transformed data. For instance, the generalized likelihood ratio test based on log-
ratios [4] has been widely used to test compositional difference between groups due to its
simplicity and good empirical performance.
It is noteworthy that Aitchison’s test only applies to low-dimensional settings where

the dimension is less than sample size. In recent microbiome and metagenomic studies,
however, the compositional data are often high-dimensional. For instance, in the Human
Microbiome Project, it is common to have hundreds to thousands of bacterial taxa while
only tens of samples are available for analysis. To this end, Cao et al. (2017) developed a
powerful two-sample test for high-dimensional means using a centered log-ratio transfor-
mation [3]. Cao et al.’s test achieves satisfactory statistical power under high-dimensional
sparse settings, and the consistency of the test has been well established under some
regularity conditions. Nevertheless, this test has several shortcomings which has limited
its application in practice. For instance, Cao et al.’s test can only deal with two-sample
comparison, and its validity depends on a list of regularity conditions on the underlying
covariance matrices. In addition, this test is a maximum-type test, and its performance
relies on the sparsity assumption, i.e., only a small proportion of components in the
composition are different across groups.
In this paper, we formulated a new hypothesis from a Bayesian point of view, to handle

high-dimensionality and over-dispersion that are commonly seen in recent microbiome
data. Different from those mean-based hypotheses, we assumed that the abundances
follow a multinomial model with random composition parameters, and redefined the
compositional equivalency using the distribution of random compositions. To directly
target the distributional difference in composition, we suggested a distance based non-
parametric test for detecting the difference betweenmultiple groups. Unlikemost existing
tests for compositional data, our method does not rely on any data transformation, spar-
sity assumption or regularity conditions on the covariance matrix, but directly analyzes
the compositions. Simulation studies demonstrated that our test is more sensitive to the
compositional difference than themean-basedmethod, especially when the data are over-
dispersed or zero-inflated. The proposed test is easy to implement and computationally
efficient, facilitating its application to large-scale datasets.
The remainder of the paper is structured as follows: “Methods” section formulates the

hypothesis testing and introduces our distance based method. “Results” section compares
the proposed method with a log-ratio based test using simulated data from negative bino-
mial models. In addition, we apply the new method to two real datasets on human throat
microbiome and intestinal microbiome. “Discussion” section discusses our method with
some future perspectives. “Conclusions” section concludes the paper.

Methods
Problem formulation

In this part, we briefly reviewed the test by Cao et al. (2017), and then formulated
our new hypothesis. We begin with the notations. Let k ∈ {1, 2, ...,K} be the group
index and j ∈ {1, 2, ..., p} be the index of components in the composition. Denote
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by XXX(k) =
(
XXX(k)
1 , ...,XXX(k)

nk

)T
the observed nk × p data matrix for group k, where

XXX(k)
i =

(
X(k)
i1 , ...,X(k)

ip

)T
represents the composition for subject i that lie on the (p − 1)-

dimensional simplex. We assume that the observed compositional data XXX(k) arise from a
latent matrixWWW (k) =

(
WWW (k)

1 , ...,WWW (k)
nk

)T (
WWW (k)

1 , ...,WWW (k)
nk are iid samples

)
by normalization

X(k)
ij = W (k)

ij
∑p

h=1W
(k)
ih

,

where the unobserved WWW (k) may refer to the true abundance of bacterial taxa for
microbiome data.
As the true abundances WWW (k) are generally unknown, Cao et al. (2017) formulated a

testable hypothesis for two groups:

H0 : E
(
log

(
WWW (1)

1

))
= E

(
log

(
WWW (2)

1

))
+ c111p, for some c ∈ R,

Hα : E
(
log

(
WWW (1)

1

))
�= E

(
log

(
WWW (2)

1

))
+ c111p, for any c ∈ R,

where 111p stands for the vector of p ones. The hypothesis above is mean-based and it can
be tested through a centered log-ratio transformation

Y (k)
ij = log

X(k)
ij

(
�

p
h=1X

(k)
ih

)1/p , k = 1, 2; i = 1, ..., nk .

It can be shown that the centered log-ratio variables Y (k)
ij ’s are only weakly dependent

and satisfy certain desired properties, and Cao et al. (2017) suggested the following test
statistics based on these log-ratio variables

Mn = n1n2
n1 + n2

max
1≤j≤p

(
Ȳ (1)
j − Ȳ (2)

j

)2

γ̂jj
,

where Ȳ (k)
j = ∑nk

i=1 Y
(k)
ij /nk , γ̂jj = ∑2

k=1
∑nk

i=1

(
Y (k)
ij − Ȳ (k)

j

)2
/(n1+n2). The p-value can

be then obtained through Gumbel distribution

p = 1 −
{
exp exp

(
−1
2
Mn − 2 log p + log log p + logπ

)}−1
.

Cao et al.’s test targets the difference in high-dimensional means, and its validity relies
on several assumptions on the underlying covariance matrices, which are impractical to
check in reality. Here, we considered a different hypothesis based on the distribution of
composition instead of means. Under multinomial model, we have

WWW (k)
i ∼ Multinomial

(
N (k)
i , πππ

(k)
i

)
,

where N (k)
i stands for the total abundance of bacterial taxa for sample i from group k,

andπππ
(k)
i represents the true composition. In order to model over-dispersion, we assumed

random parameters, N (k)
i ∼ fN (α) and πππ

(k)
i =

(
π

(k)
i1 , ...,π(k)

ip ) ∼ fπ (���(k)
)
, where α and

���(k) are hyper-parameters. We then define the compositional equivalence between two
groups based on the distribution of parameter πππ :

Definition 1 Two groups k and k′ are said to be compositionally equivalent if fπ
(
���(k)) =

fπ
(
���(k′)

)
.
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By Definition 1, we formulate the null and alternative hypotheses for K groups

H0 : fπ
(
���(1)

)
= ... = fπ

(
���(K)

)
,

Hα : fπ
(
���(k)

)
�= fπ

(
���(k′)

)
for some k and k′.

Throughout this paper, we assume that the total abundance or sequencing depth N (k)
i is

independent of πππ
(k)
i , and N (k)

i ∼ fN (α) for i ∈ {1, ..., nk} and k ∈ {1, 2, ...,K}, therefore
testing H0 amounts to testing the distributional equality of the compositions between K
groups. Let f (k)

XXX (xxx) be the density function of XXX(k)
i , one can test the following equivalent

hypothesis

H∗
0 : f (1)

XXX (xxx) = ... = f (K)
XXX (xxx) for all xxx, ,

H∗
α : f (k)

XXX (xxx) �= f (k′)
XXX (xxx) for some xxx, k and k′,

Here, it is noteworthy that H∗
0 is equivalent to the independence between the com-

position XXX and the grouping variable k ∈ {1, 2, ...,K} (i.e., phenotype), which converts
the problem to testing the independence between the continuous random vector and a
categorical variable.

Distance based test

In this part, we proposed a distance basedmethod to testH∗
0 , i.e., to detect the association

between composition and phenotype. To begin with, we briefly introduce the notion of
distance covariance. The distance covariance between two random vectors XXX and YYY (can
be of different sizes and different types) is defined as the square root of

dCov2(XXX,YYY ) =
∫

Rdx+dy

‖φxxx,yyy(ttt, sss) − φxxx(ttt)φyyy(sss)‖2
cdxcdy‖ttt‖1+dx

dx ‖sss‖1+dy
dy

dtttdsss, (1)

where φ(·) represents a characteristic function, dx and dy are the dimensions of XXX and
YYY , cdx = π(1+dx)/2

�{(1+dx)/2} and cdy = π(1+dy)/2

�{(1+dy)/2} . Unless otherwise specified, ‖zzz‖dz denotes the
Euclidean norm of zzz ∈ R

dz , and ‖φ‖2 = φφ̄ for a complex-valued function φ and its
conjugate φ̄.
One remarkable property of distance covariance is that dCov(XXX, YYY) = 0 if and only if

XXX and YYY are statistically independent, indicating that the distance covariance can also
capture nonlinear associations. In their seminal work, Szekely et al. (2007) also provided
the following alternative definition of distance covariance based on Euclidean distance
and established its equivalency to the original definition in Eq. (1) (see Theorem 1, [5]):

dCov2(XXX,YYY ) = Cov(‖XXX1 −XXX2‖, ‖YYY 1 −YYY 2‖) − 2Cov(‖XXX1 −XXX2‖, ‖YYY 1 −YYY 3‖),
where (XXX1,YYY 1), (XXX2,YYY 2) and (XXX3,YYY 3) be three independent copies of (XXX,YYY ). Here,
we choose to use this alternative definition to derive the explicit formula of distance
covariance between composition and phenotype. For ease of notations, let Y be the phe-
notype, taking values from a discrete set {1, 2, ...,K} with probabilities {p1, ..., pK }, and
XXX = {X1, ...,Xp} be the composition. For illustration purpose, here we assume Y is nom-
inal (without ordering between categories), however, our test can be easily extended to
ordinal Y and the formula is given in the “Discussion” section. Let (XXX1,Y1), (XXX2,Y2) and
(XXX3,Y3) be three independent copies of (XXX,Y ), we define ‖Y1 − Y2‖ = 1, if Y1 �= Y2 and
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0 otherwise. In addition, we define expected inter-point distance as

Dij = E(‖XXX1 −XXX2‖|Y1 = i,Y2 = j), i, j = 1, ...,K .

The distance covariance between Y andXXX can then be derived from the second definition

E(‖Y1 − Y2‖) = 1 −
K∑

i=1
p2i ,

E(‖XXX1 −XXX2‖) =
K∑

i=1

K∑

j=1
pipjDij,

E(‖XXX1 −XXX2‖‖Y1 − Y2‖) =
∑

i�=j
pipjDij =

K∑

i=1

K∑

j=1
pipjDij −

K∑

i=1
p2iDii,

E(‖XXX1 −XXX2‖‖Y1 − Y3‖) =
K∑

j=1

∑

i�=l
pipjplDij =

K∑

i=1

K∑

j=1
pi(1 − pi)pjDij.

Summarizing the results above, we have

dCov(XXX,Y ) = 2
K∑

i=1

K∑

j=1
p2i pjDij −

K∑

i=1
p2iDii −

( K∑

i=1
p2i

)⎛

⎝
K∑

i=1

K∑

j=1
pipjDij

⎞

⎠ .

By Cauchy-Schwarz inequality, it can be shown that dCov(XXX,Y ) ≥ 0 and the equality
holds if and only if Dii = Djj = Dij for all (i, j)’s. When K = 2, we have the following
special case

dCov(XXX,Y ) = 2p2(1 − p)2(2D12 − D11 − D22).

The sample version of dCov(XXX,Y ) can be expressed as

̂dCov(XXX,Y ) = 2
K∑

i=1

K∑

j=1
p̂2i p̂jD̂ij −

K∑

i=1
p̂2i D̂ii −

( K∑

i=1
p̂2i

)⎛

⎝
K∑

i=1

K∑

j=1
p̂ip̂jD̂ij

⎞

⎠ .

Let ni be the sample size in group i, the maximum likelihood estimate of pi is p̂i = ni/n,
and the sample inter-point distance can be computed as follows:

D̂ij = 1
ninj

ni∑

m=1

nj∑

l=1
‖XXX(i)

m −XXX(j)
l ‖, (2)

D̂ii = 2
ni(ni − 1)

ni∑

m=1

ni∑

l=1
‖XXX(i)

m −XXX(i)
l ‖, (3)

where
{
XXX(i)
1 , ...,XXX(i)

ni

}
and

{
XXX(j)
1 , ...,XXX(j)

nj

}
stand for samples ofXXXi andXXXj, respectively.

As the distribution of sample distance covariance is impractical to evaluate [5], we sug-
gest a simple permutation procedure to obtain p-values. In practice, one can randomly
shuffle the vector of Y for M times, and calculate sample distance covariance between
composition and the permuted Y, then the permutation p-value can be computed as the
proportion of distance covariance from permuted data that exceed the observed one.
It is noteworthy that in addition to distance correlation, there are many other depen-

dence measures that could be used in our framework, including the energy-divergence
metric [6], multiscale graph correlation [7] and projection correlation [8], among others.
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One may refer to Josse and Holmes (2014) [9] for a general review of existing depen-
dence measures between random vectors, and Szekely and Rizzo (2013) [10] for a review
of energy- and distance-based measures.

Results
Numerical study

We conduct three simulation studies to compare the distance based test and the log-
ratio based test [3] in detecting the compositional differences between groups. In the
first study, we focus on two-group comparison under various high-dimensional and over-
dispersed models. The dimension is fixed at p = 200 and two different sample sizes n1 =
n2 = 50 and n1 = n2 = 100 are used. The abundance W (k)

ij are generated from three
different settings

• Setting 1:W (k)
ij ∼ NegBin

(
μ

(k)
j , r(k)j

)
, i = 1, ..., ni, j = 1, ..., p, r(1)j ∼ Unif(0.1, 1),

r(2)j = r(1)j , μ(1)
j ∼ Unif(10, 15). Let III = {III+, III−} be the set of taxa with different

abundances in two conditions, μ(2)
j = μ

(1)
j + 	 for j ∈ III+ and μ

(2)
j = μ

(1)
j − 	 for

j ∈ III−, μ(2)
j = μ

(1)
j for j �∈ III, |III+| = |III−| = dp, where | · | represents set cardinality,

and d is the proportion of differential means. We chose d = 5%, 20%, representing
relatively sparse and dense signals in mean difference, and used
	 = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

• Setting 2: Same as Setting 1, but μ
(1)
j ∼ Unif(5, 10).

• Setting 3 (Negative binomial model with excess zeros):W (k)
ij = 0 with probability π

(π = 10%, 20%), andW (k)
ij ∼ NegBin

(
μ

(k)
j , r(k)j

)
with probability 1 − π . Other

settings are same as in Setting 1, and we used d = 10%, 	 = {0.5, 1.0, 1.5, 2.0, 2.5} in
the simulation.

We compute the composition X(k)
ij by normalizing the abundance W (k)

ij , and test the
null hypothesis using compositional data at the level of 0.05. For Cao et al.’s test,
we calculate the test statistics Mn and directly compute the p-value using Gumbel
distribution. For our distance correlation test, p-value is computed based on 5,000
permutations.
For each setting, we simulate 1,000 datasets, and compare the true positive rates (TPRs)

by the two tests. Figures 1, 2 and 3 summarize the TPRs under three settings. It can be
seen that our distance based test consistently outperforms the log-ratio based method in
all settings. Particularly, in the dense setting (d = 20%), our test achieves substantially
higher TPR than the log-ratio test. For instance, in Setting 1, when	 = 2.0, n1 = n2 = 50,
our test achieves a high TPR of 0.97 while the TPR by log-ratio test is only 0.41. However,
when 	 is subtle, e.g., 	 = 0.50, both tests fail to detect the difference, even for relatively
large sample size, e.g., n1 = n2 = 100.
In the second simulation study, we investigate the effect of dimension on the true pos-

itive rate. The sample size is fixed at n1 = n2 = 100, and the dimension p is varied from
100 to 500. The abundance W (k)

ij are generated from two different settings (similar to
settings 1 and 3)

• Setting 4:W (k)
ij ∼ NegBin

(
μ

(k)
j , r(k)j

)
, i = 1, ..., ni, j = 1, ..., p, r(1)j ∼ Unif(0.1, 1),

r(2)j = r(1)j , μ(1)
j ∼ Unif(10, 15). Let III = {III+, III−} be the set of taxa with different
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Fig. 1 True positive rate against mean difference 	, by Cao et al.’s test (red) and our test (blue) in Setting 1.
Results are based on 1,000 simulations

abundances in two conditions, μ(2)
j = μ

(1)
j + 1.5 for j ∈ III+ and μ

(2)
j = μ

(1)
j − 1.5 for

j ∈ III−, μ(2)
j = μ

(1)
j for j �∈ III, |III+| = |III−| = 10, where | · | represents set cardinality.

• Setting 5 (Negative binomial model with excess zeros):W (k)
ij = 0 with probability

π = 10%, andW (k)
ij ∼ NegBin

(
μ

(k)
j , r(k)j

)
with probability 1 − π . Other settings are

same as in Setting 4.

Figure 4 summarizes the TPRs by the two tests based on 1,000 replicates and signifi-
cance level α = 0.05. It can be seen that the distance based test outperforms the log-ratio
test especially when the dimension is relatively low. When the dimension is high, for
instance p = 500, the two tests are comparable. More importantly, there is a substantial
decrease of TPR as p increases, indicating that a feature screening could improve the test
performance when p is large.
In the third study, we consider testing the compositional difference between multiple

groups. We set K = 4 with sample sizes n1 = n2 = n3 = n4 = 50. The dimension p is
fixed at 200. The abundance W (k)

ij are generated from the negative binomial model with

excess zeros. Let π = P
(
W (k)

ij = 0
)
, with probability 1 − π ,W (k)

ij ∼ NegBin
(
μ

(k)
j , r(k)j

)
,

i = 1, ..., ni, j = 1, ..., p, r(1)j ∼ Unif(0.1, 1), r(3)j ∼ Unif(0.1, 1), r(2)j = r(1)j , r(4)j = r(3)j ,
μ

(1)
j ∼ Unif(10, 15), μ(3)

j ∼ Unif(10, 15). Let III = {III+, III−} be the set of taxa with different
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Fig. 2 True positive rate against mean difference 	, by Cao et al.’s test (red) and our test (blue) in Setting 2.
Results are based on 1,000 simulations

abundances in four conditions, μ(2)
j = μ

(1)
j + 	 and μ

(4)
j = μ

(3)
j + 	 for j ∈ III+, μ(2)

j =
μ

(1)
j − 	 and μ

(4)
j = μ

(3)
j − 	 for j ∈ III−, μ(1)

j = μ
(2)
j = μ

(3)
j = μ

(4)
j for j �∈ III, |III+| =

|III−| = 20, where | · | represents set cardinality. We use 	 = {0.5, 1.0, 1.5, 2.0, 2.5} and
π = {10%, 20%} in the simulation.
For the distance correlation test, p-value is computed based on 5,000 permutations.

For Cao et al.’s test, we calculate the p-values by Gumbel distribution from six pairwise
comparisons, and use the smallest p-value for decision-making. Figure 5 summarizes the
TPRs by the two tests, where it can be seen that our proposed test performs consistently
better than the log-ratio based test. Notably, in the setting π = 20% and 	 = 2.0, the
distance correlation test achieves a TPR of 0.83, compared to the TPR of 0.46 by the
log-ratio test.

Twomicrobiome applications

Analysis of throatmicrobiome data

In this part, we use the proposed hypothesis and distance based test to reanalyze
a throat microbiome dataset. Cigarette smokers have an increased risk of infectious
diseases involving the respiratory tract, however, the consequences for global airway
microbial community composition remains unclear. Charlson et al. (2010) used culture-
independent high-density sequencing to analyze the microbiota from the right and left
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Fig. 3 True positive rate against mean difference 	, by Cao et al.’s test (red) and our test (blue) in Setting 3.
Results are based on 1,000 simulations

Fig. 4 True positive rate against dimension p, by Cao et al.’s test (red) and our test (blue) in the second
simulation study (settings 4 and 5). Results are based on 1,000 simulations



Zhang and Dao BMC Bioinformatics 2020, 21(Suppl 9):205 Page 10 of 17

Fig. 5 True positive rate against mean difference 	, by Cao et al.’s test (red) and our test (blue) in the third
simulation study (zero-inflated negative binomial and multi-sample comparison). Results are based on 1,000
simulations

nasopharynx and oropharynx of 29 smoking and 33 nonsmoking healthy adults to assess
microbial composition and effects of cigarette smoking [11]. Bacterial communities were
profiled using 454 pyrosequencing of 16S sequence tags, aligned to 16S rRNA databases.
We are interested in whether there is any significant difference in microbial composi-

tions between smokers and non-smokers. The processed data (observed abundance) were
downloaded from R packageGUniFrac [12], which included the read counts of 856 prede-
fined operational taxonomic units (OTUs, also called phylotypes) on 62 samples. We first
deleted OTUs with extremely small number of reads (less than 20 reads in total), resulting
a final set of 190 OTUs.
Two methods, including the log-ratio based test and distance based test, are applied

to the compositional data. The proposed distance correlation test is implemented in the
following steps

Fig. 6 Histograms and fitted density curves of centered log-ratios of two OTUs (bacteria 2434 and bacteria
2831), red for smokers and blue for non-smokers
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• Step 1: Compute the composition X for each sample by normalizing the abundance
W.

• Step 2: Calculate the sample proportions p̂i, and the inter-group distances D̂ij and
D̂ii, i, j = 1, ...,K (e.g., Euclidean distance) using Eqs. (2) and (3).

• Step 3: Compute the permutation p-value based on ̂dCov(XXX,Y ).

The proposed test yields a p-value of 0.0027, indicating a significant difference between
smokers and non-smokers in microbial composition. In contrast, the test based on log-
ratio transformation gives a p-value of 0.098, thus fails to reject the null hypothesis of
equal means at the level of 0.05.
The disagreement between the two tests may indicate the existence of nonlinear effects

and over-dispersion, because the log-ratio test only targets the mean difference while our
test targets the distributional difference. We illustrate this point by carrying out addi-
tional analyses. Figure 6 gives two examples (bacteria 2434 and bacteria 2831), where
the centered log-ratios exhibite substantially different distributions. However, the mean
difference is not significant due to the nonlinear effect and heavy tails, which inflates the
variance estimates in Cao et al.’s test.
We also compare the distributions of inter-point distance within smokers and

non-smokers. Szekely et al. (2007) illustrated that if two multivariate distributions are

Fig. 7 Distributions of inter-point distance within the smoking group (red solid) and non-smoking group
(blue dashed)
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identical, the inter-point distances within each group have the same distribution. Figure 7
showed the inter-point distance distributions of two groups, where a substantial dis-
crepancy was observed. Furthermore, we used the 3-minimum spanning tree (3-MST),
a tree-based visualization method, to confirm our findings. Figure 8 shows the 3-MST
based on the compositional data, where a connection in the network represents com-
positional similarity between two samples. In theory, if the two groups have the same
distribution, then each sample has equal chance to connect with any other sample,
regardless of which group it is from. However, it can be seen that certain samples from
the same group formed clusters in the network. For instance, we identified a set of 12
smokers (circled) that are highly connected each other, but with very few connections
with non-smokers, indicating a distributional difference in composition between the two
groups.

Analysis of intestinal microbiome data

The microbial communities living in the human intestine have profound impact on
our well-being and health. To understand the mechanisms that control this complex
ecosystem, Lahti et al. (2014) conducted a deep phylogenetic analysis of the intestinal
microbiota in 1,006 western adults from Europe and the United States [13]. The analysis

Fig. 8 The 3-MST for all samples based on Euclidean distance, red nodes are for smokers and green nodes
are for non-smokers. A connection between two samples represents compositional similarity
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is based on 130 genus-like phylogenetic groups that cover the majority of the known bac-
terial diversity of the human intestine. Clinical variables include age, nationality, BMI and
DNA extraction method etc.
One of the key research questions is whether different age groups have different micro-

biome compositions. We use the cutoffs suggested by Lahti et al. (2014) to define three
age groups: young (18–40), middle-aged (41–60) and older (61–77). The distance test
yields an overall p-value of 3.0× 10−6. In addition, we calculate the p-values for the three
pairwise comparisons: 8.2×10−5 for young vs middle aged, 2.2×10−5 for young vs older,
and 0.081 for middle-aged vs older, indicating a significant difference inmicrobiome com-
positions between young andmiddle-aged/older subjects, but a minor difference between
middle-aged and older subjects. To confirm this finding, we identified a list ofmicrobiome
groups with different distributions between age groups. Figures 9 and 10 show two exam-
ples of these, including group 25 and group 60. The distribution of inter-point distance
within each age group is given in Fig. 11, where a discrepancy can be observed between
young and middle-aged/older subjects.

Discussion
Microbiome data are often compositional, high-dimensional and over-dispersed, which
poses great challenges to the statistical analysis. To overcome these obstacles, in this work,

Fig. 9 Histograms and fitted density curves of the log-ratios of group 25, red for young, blue for middle-aged
and black for older subjects
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Fig. 10 Histograms and fitted density curves of the log-ratios of group 60, red for young, blue for
middle-aged and black for older subjects

we formulated a new testable hypothesis from a Bayesian point of view, and suggested a
nonparametric test to detect the compositional difference between multiple populations.
Compared to the existing tests, our method has several advantages. First, the distance
based test is free of parametric assumptions but directly targets the distributional dif-
ference, therefore it is capable of detecting nonlinear effects. The application in throat
microbiome provided a good example, where the new test successfully captured the dif-
ference between two phenotypes, while the mean based test failed to do so. In addition,
our method can deal with multiple groups, while most of existing methods are only for
two-group comparison. Third, our test does not require sparsity assumption on the mean
differences as in Cao et al.’s test, and in our simulation study, the new test worked quite
well against both sparse and relatively dense alternatives.
There are several possible extensions of the proposed test. First, the distance based

method can be readily extended to ordinal phenotypes (or conditions), although we have
been using nominal phenotypes for illustrative purpose. For ordinal phenotype, Y ∈
{1, 2, ...,K}, where there is a natural ordering 1 < 2... < K , (e.g., {mild, moderate, severe}
for severity of a disease, {I, II, III, IV} for cancer stage, or {non-smoking, light smoking,
heavy smoking} for smoking status), we need predefine the distance matrix between cat-
egories i and j, for instance, dij = |i− j|, or dij = |i− j|2. The distance covariance between
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Fig. 11 Distributions of inter-point distance within each age group (red solid for young, blue for
middle-aged and black for older subjects)

compositionXXX and ordinal phenotype Y has the following expression

dCov2(XXX,Y ) =
⎛

⎝
K∑

i=1

K∑

j=1
pipjdij

⎞

⎠

⎛

⎝
K∑

i=1

K∑

j=1
pipjDij

⎞

⎠ +
K∑

i=1

K∑

j=1
pipjdijDij

− 2
K∑

i=1

K∑

j=1

K∑

l=1
pipjpldilDij,

and one may use the same permutation procedure to obtain p-values. In practice, the
distance matrix dij should be carefully chosen to reflect the true spacings between cat-
egories. An inappropriate choice of dij may result in misleading conclusions. Second,
our test might be improved by incorporating more information about bacteria taxa. For
instance, one can assign different weights for different bacterial taxa based on their posi-
tion in the polygenetic tree [14], and use weighted Euclidean distance to construct the test
statistic.
In addition to the microbiome application that we illustrated in this paper, the proposed

test can be readily applied to several other fields. For instance, the market share data in
economics are compositional and often high-dimensional [15]. One may apply our test to
detect the market share difference between multiple countries. In geology, it is often of
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interest to study the compositions of species in sediment [16] and it is possible to apply
our test to detect the difference in species compositions between multiple locations.

Conclusions
We formulate a Bayesian testing framework to identify the compositional differences
between multiple populations. In addition, we propose to use the distance correlation
measure to test the null hypothesis. Simulation studies and two real applications in the
human microbiome demonstrate that our test is more sensitive to the compositional
difference than the mean-based method, especially when the data are over-dispersed
or zero-inflated. The proposed test is easy to implement and computationally efficient,
facilitating its application to large-scale datasets.
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