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Multi‑hazard spatial modeling 
via ensembles of machine learning 
and meta‑heuristic techniques
Mojgan Bordbar1, Hossein Aghamohammadi1*, Hamid Reza Pourghasemi2 & Zahra Azizi1

Considering the large number of natural disasters on the planet, many areas in the world are at risk 
of these hazards; therefore, providing an integrated map as a guide map for multiple natural hazards 
can be applied to save human lives and reduce financial losses. This study designed a multi-hazard 
map for three important hazards (earthquakes, floods, and landslides) to identify endangered areas 
in Kermanshah province located in western Iran using ensemble SWARA-ANFIS-PSO and SWARA-
ANFIS-GWO models. In the first step, flood and landslide inventory maps were generated to identify 
at-risk areas. Then, the occurrence places for each hazard were divided into two groups for training 
susceptibility models (70%) and testing the models applied (30%). Factors affecting these hazards, 
including altitude, slope aspect, slope degree, plan curvature, distance to rivers, distance to roads, 
distance to the faults, rainfall, lithology, and land use, were used to generate susceptibility maps. The 
SWARA method was used to weigh the subclasses of the influencing factors in floods and landslides. 
In addition, a peak ground acceleration (PGA) map was generated to investigate earthquakes in the 
study area. In the next step, the ANFIS machine learning algorithm was used in combination with PSO 
and GWO meta-heuristic algorithms to train the data, and SWARA-ANFIS-PSO and SWARA-ANFIS-
GWO susceptibility maps were separately generated for flood and landslide hazards. The predictive 
ability of the implemented models was validated using the receiver operating characteristics (ROC), 
root mean square error (RMSE), and mean square error (MSE) methods. The results showed that the 
SWARA-ANFIS-PSO ensemble model had the best performance in generating flood susceptibility 
maps with ROC = 0.936, RMS = 0.346, and MSE = 0.120. Furthermore, this model showed excellent 
results (ROC = 0.894, RMS = 0.410, and MSE = 0.168) for generating a landslide map. Finally, the best 
maps and PGA map were combined, and a multi-hazard map (MHM) was obtained for Kermanshah 
Province. This map can be used by managers and planners as a practical guide for sustainable 
development.

One of the main environmental problems that have affected different countries in recent years is natural hazards1. 
According to global statistics, 40% of economic and social damage is caused by natural hazards2. A hazard can be 
described as a potentially destructive physical event with the possibility of human death or injury, socio-economic 
losses, or destruction of the natural environment3. Natural hazards include floods, earthquakes, landslides, 
tsunamis, volcanoes, and erosion4. In one region, one of these hazards or even several different hazards occur 
depending on the origin and effects3. Therefore, it is of great importance to study many of these hazards together 
to achieve integrated management in an area. The multi-hazard was first proposed by the United Nations Envi-
ronment Program (Agenda 21) to manage urban areas susceptible to natural disasters5. Today, economic and 
human losses due to these hazards are rapidly increasing worldwide6. Iran is also one of the regions exposed to 
various natural disasters that have caused significant financial and human losses. Therefore, providing a multi-
hazard map (MHM) can be an effective tool for managers and planners to reduce economic losses and casual-
ties. In this regard, using spatial methods and considering several hazards in an area, it is possible to identify 
at-risk areas7. Remote sensing (RS) and Geographic Information System (GIS) are effective and quick tools for 
identifying areas susceptible to hazards by collecting, storing, combining, manipulating, retrieving, analyzing, 
and displaying information8.

According to the statistics reported, earthquakes are considered as one of the most catastrophic and unpre-
dictable natural hazards, ranking second in terms of the effects and risks of human life among all types of natural 
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disasters9. Iran, which is classified as an earthquake-prone country, has experienced 18 earthquakes with a mag-
nitude of more than 7 Richter in the last 90 years with severe economic and social damage and high mortality10. 
Therefore, it is necessary to conduct research on earthquakes to determine probable areas of earthquakes. Floods 
are also high-risk natural disasters, and one of the main reasons for their occurrence is land use change. Moreover, 
the removal of vegetation and soil, formation of drainage networks, and increased surface runoff and floods11. 
This hazard has affected the lives of more than 20,000 people annually and has caused considerable damage12. 
Therefore, it is of importance to generate a susceptibility map for regions prone to floods8,13–15. Another important 
natural hazard that causes great damage to the mountainous areas is landslides16. Factors affecting landslides 
depend on the features of the region, including natural features such as extreme rainfall, snowmelt, and human-
made factors17. Recently, landslides occurred in Iran have been mostly due to land tectonics, climatic, vegetative, 
and human activities17. Therefore, it is necessary to generate a susceptibility map of this hazard, which has been 
studied in many areas of the world18–22.

To date, various methods have been applied to generate hazard susceptibility maps. Some of these meth-
ods include multivariate statistical methods such as logistic regression (LR)23, the analytical hierarchy process 
(AHP)24, multi-criteria evaluation25 and soft computing models, such as decision trees26, random forest (RF)27, 
artificial neural networks (ANNs)28,29, fuzzy logic30,31, support vector machine method (SVM)32, and adaptive 
neuro-fuzzy inference system algorithm (ANFIS)33 have been applied to assess various hazards. In addition, a 
combination of machine learning and meta-heuristic learning algorithms have been developed with successful 
results for studying natural hazards34. Meta-heuristic algorithms to implement learning machines improve and 
increase the predictability of models35. In this study, the ANFIS machine learning algorithm was selected because 
it uses both ANN and fuzzy logic. To find the optimum weight of the parameters of this learning algorithm and 
increase its capability, grey wolf optimizer (GWO) and particle swarm optimization (PSO) algorithms were 
selected36. Moreover, the PSO and GWO techniques were employed to overcome the limitations of the ANFIS 
method via optimization.

In recent years, the simultaneous study of several natural hazards has attracted the attention of many research-
ers worldwide. Examples include landslides and earthquakes in India37, landslides, floods, erosions, and earth-
quakes in Greece38, climatic hazards in the United States39, climatic hazards in Chile40, and avalanches, rock falls, 
and floods in Iran41. Different characteristics of each hazard and interactions between hazards may provoke each 
other. This means that the occurrence of one hazard can cause another hazard. For example, earthquakes can 
cause landslides or even occur simultaneously42. In addition, landslides and floods are closely related to each 
other and are often accompanied by heavy or prolonged rainfall43. Heavy rains also cause sudden floods, resulting 
in soil erosion and landslides occurrence44.

The earthquake occurred on Sunday evening, November 12, 2017 near Ezgeleh in Kermanshah province (7.3 
Richter), is one of the largest earthquakes in recent years, in which 600 to 700 people died and nearly 10,000 
people injured45. In April 2019, one of the great floods in recent years occurred in this province and caused con-
siderable economic damage (https://​kurdp​ress.​com). Moreover, this province is one of the mountainous areas 
of the Zagros Mountains in Iran, which is at risk of landslides. These three natural hazards, which have caused 
considerable human and financial losses in this province, have not yet been studied together in Kermanshah 
province. Therefore, this study investigates these three natural hazards (earthquakes, floods, and landslides) in 
individuals and in combination with each other in order to determine the areas prone to these natural hazards 
in Kermanshah Province. The SWARA-ANFIS-PSO ensemble model was used for the first time in multi-hazard 
studies to prepare a multi-hazard susceptibility map (MHSM). The results were then compared with those of the 
SWARA-ANFIS-GWO ensemble model.

Results and discussion
Multicollinearity analysis of influencing factors. Multicollinearity test was used in the present study to investigate 
the correlation between factors affecting natural hazards of floods and landslides. Inflation coefficient of vari-
ance (VIF) and Tolerance indicate the effect of collinearity between the factors. If there is linearity between the 
factors, the factor should be removed from the modeling. The results of this method for the hazard of landslides 
showed that factor “Lithology” has the highest VIF value (1.696) and the lowest tolerance (0.590). The results of 
this method for the hazard of floods showed that the factor “lithology” has the highest VIF value (2.068) and the 
lowest tolerance (0.483). The results of the analysis showed that all the factors used in the assessment of flood and 
landslide hazards can be applied in modeling. In other words, there is no multi-collinearity between the factors 
used (Table 1). In addition, the commonly used information gain ratio (IGR) method was used to determine 
the importance of the influencing factors used and it was implemented considering the significant effect on the 
accuracy of the estimation. The results of the information gain ratio (IGR) method showed that the lithology 
factor has the highest impact on Kermanshah’s landslide events (0.56), followed by slope degree (0.52), altitude 
(0.24), distance to road (0.17), land use (0.11), aspect (0.046), distance to fault (0.044), plan curvature (0.041), 
and distance to river (0.02). Moreover, based on the IGR method the altitude factor (0.73) is the most important 
factor for flood events in the study area, followed by lithology (0.44), rainfall (0.28), slope degree (0.22), distance 
to river (0.17), plan curvature (0.10), land cover (0.05), and aspect (0.03) (Table 2).

The step‑wise weight assessment ratio analysis (SWARA) model.  The SWARA model was applied 
to weigh each sub-factor of each influencing factor. The final weights of each class of influencing factors were 
standardized to be between 1 and 0. The SWARA values are presented in Table 3. The analysis for the factor of 
altitude showed that class 1603–1810 m (0.42) were the most prone to landslides, and class 512–828 m (0.37) 
were the most prone to floods. For the slope degree, class 0–5 had the highest SWARA value (0.34) for floods, 
while class 5–10 had the maximum value (0.41) for landslides. For the slope aspect, the highest values of SWARA 
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were obtained for flat areas (0.22) and north areas (0.47), with respect to floods and landslides, respectively. For 
the plan curvature, the maximum SWARA for flood hazard was obtained for the flat region (0.39), while the 
greatest SWARA value was obtained for the landslide hazard for the concave class (0.42). In the case of distance 
to river, for both cases, the class 0–365 m showed the highest value (0.31 and 0.37) for flood and landslide haz-
ards, respectively. For rainfall, the highest weight of SWARA was in the class 270–376 mm (0.35) for floods in 
Kermanshah Province. The Plbk class of lithology, with a SWARA value of 0.30, showed the highest probability 
of flooding, while the KEpd-gu class with a SWARA weight of 0.43 indicated the highest probability of landslide. 
Regarding land use, the highest SWARA was obtained for water areas (0.41), while the greatest value (0.36) was 
found for urban and residential areas with respect to floods and landslides, respectively. For the factor of distance 
to the faults, the greatest weight of SWARA (0.33) was obtained for the class more than 5000 m for landslides. 
According to the results for distance to road, the maximum value of SWARA (0.44) was obtained for the class 
more than 5000 m for landslide hazard. According to previous studies, the areas with the lowest altitude, flat 
regions, lowest slope degree, nearest to the river, and water use are the most prone to flooding46. In addition, Dai 
and Lee.47 demonstrated that the probability of landslides is high at intermediate altitudes. Moreover, urban and 
residential areas are more prone to landslides22. The present study confirmed these findings.

Natural hazard susceptibility maps (NHSMs).  In this work, the SWARA model was used to weight 
influencing factors. ANFIS-GWO and ANFIS-PSO ensemble models were used to train the dataset to gener-
ate NHSMs for flood and landslide hazards. Flood hazard susceptibility (FHS) maps were separately gener-
ated using the SWARA-ANFIS-GWO-Flood (SAGF) and SWARA-ANFIS-PSO-Flood (SAPF) ensemble models 
(Fig. 1a,b). These maps revealed that the western part of Kermanshah Province had the highest susceptibility 
to flooding. Landslide hazard susceptibility (LHS) maps were separately produced from the SWARA-ANFIS-
GWO-Landslide (SAGL) and SWARA-ANFIS-PSO-Landslide (SAPL) ensemble models (Fig. 1c,d). These maps 
show that the northern part of the area exhibits the highest susceptibility to landslide events. These NHSMs 
were then divided into five classes ranging from very low to very high susceptibility using quantile classification 
scheme.

Validation of hazard maps.  The power of the applied models was tested using the ROC curve, RMSE, 
and MSE. For flood hazard, the results illustrated that the SAPF ensemble model had the maximum AUC value 
(0.936) and the least error (RMSE = 0.346 and MSE = 0.120) in the testing step, followed by the SAGF ensemble 
model (AUC = 0.933, RMSE = 0.384, and MSE = 0.147). For landslide hazard, the results illustrated that the SAPL 
ensemble model had the highest prediction power.AUC = 0.894, RMASE = 0.410, and MSE = 0.168), followed by 
the SAGL ensemble model (AUC = 0.880, RMASE = 0.415, and MSE = 0.172) (Figs. 2, 3). Finally, the SAPF and 
SAPL ensemble models were selected as the suitable models for flood and landslide susceptibility assessments, 
respectively (Table 4).

Table 1.   Multicollinearity analysis.

Influencing factor

Landslide Flood

Tolerance VIF Tolerance VIF

Altitude 0.668 1.498 0.616 1.622

Slope degree 0.689 1.451 0.679 1.474

Slope aspect 0.928 1.078 0.951 1.052

Plan curvature 0.868 1.153 0.790 1.266

Distance to roads 0.909 1.100 – –

Distance to faults 0.837 1.194 – –

Distance to rivers 0.921 1.086 0.813 1.230

Lithology 0.590 1.696 0.483 2.068

Land use 0.915 1.093 0.848 1.179

Rainfall – – 0.660 1.515

Table 2.   Importance of natural hazards influencing factors using the information gain ratio (IGR) method.

Flood influencing 
factor Altitude Lithology Rainfall Slope degree

Distance to 
river Plan curvature Land cover Aspect –

IGR value 0.73 0.44 0.28 0.22 0.17 0.10 0.05 0.03 –

Landslide 
influencing factor Lithology Slope degree Altitude

Distance to 
road Land use Aspect

Distance to 
fault

Plan 
curvature

Distance 
toriver

IGR value 0.56 0.52 0.24 0.17 0.11 0.046 0.044 0.041 0.02
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Factor class SWARA weight flood SWARA weight landslide

Altitude (m)

0–512 0.19 0.02

512–828 0.37 0.02

828–1162 0.12 0.03

1162–1416 0.08 0.05

1416–1603 0.06 0.13

1603–1810 0.05 0.42

1810–2056 0.05 0.23

2056–2430 0.05 0.02

2430–3372 0.05 0.08

Aspect

Flat 0.22 0.01

North 0.09 0.47

North-East 0.08 0.01

East 0.12 0.01

South-East 0.08 0.02

South 0.08 0.13

South-West 0.08 0.07

West 0.15 0.04

North-West 0.10 0.24

Distance to river (m)

0–365 0.31 0.37

365–758 0.14 0.21

758–1179 0.20 0.09

1179–1638 0.10 0.06

1638–2150 0.06 0.04

2150–2757 0.08 0.14

2757–3525 0.04 0.03

3525–4616 0.04 0.03

4616–8105 0.04 0.03

Rainfall (mm)

270–376 0.35 –

376–439 0.20 –

439–490 0.14 –

490–553 0.10 –

553–679 0.10 –

679–889 0.11 –

Land use

Urban and residential 0.23 0.36

Water 0.41 0.09

Forest 0.07 0.09

Outcrop 0.07 0.22

Farm land 0.14 0.14

Range land 0.09 0.09

Lithology

Ekn 0.05 0.08

EMas-sb 0.02 0.00

K1bl 0.04 0.00

Kbgp 0.01 0.03

KEpd-gu 0.03 0.43

Klsol 0.00 0.00

KPeam 0.01 0.01

Mgs 0.18 0.00

MuPlaj 0.12 0.01

Ogb 0.00 0.24

OMas 0.07 0.01

PeEtz 0.02 0.00

pd 0.00 0.02

Plbk 0.30 0.04

Qft1 0.01 0.00

Qft2 0.09 0.00

TRKubl 0.02 0.00

Continued
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Earthquake hazard map.  The PGA map for the Kermanshah Province is shown in Fig. 4. The PGA map 
was classified into three classes: low, moderate, and high, which cover 59%, 25%, and 16% of the province, 
respectively. The lowest class was observed in the central parts of the region, whereas the highest class was in the 
western part of the Kermanshah Province.

Multi‑hazards Map (MHM).  Maps of three hazards (i.e., earthquakes, floods, and landslides) were com-
bined to generate a multi-hazard map using a combined tool in ArcGIS software. The multi-hazard map (MHM) 
was obtained as:

Figure 5 shows the multi-hazard map for the Kermanshah province. The map was reclassified into eight 
classes. The multi-hazard map demonstrates that 2.93% of the area is faced with all three hazards, while 28.94% 
of the area is safe for these hazards. In addition, the distribution of other hazards indicates that 29.74%, 6.10%, 
19.22%, 10.34%, 1.25%, and 1.48% of the Kermanshah province are affected by landslides, (landslide + flood), 
(flood), (earthquake + flood), earthquake, and (earthquake + landslide), respectively (Fig. 6).

The advantages of natural multi‑hazards studies.  First, it should be noted that there are substantial 
differences in the natural hazards of earthquakes, floods and landslides. An earthquake is a sudden and rapid 
movement that is caused by breaking and moving rocks deep inside the earth. Moreover, a flood can be defined 
as an overflow of water from the natural range of a watercourse or body of water and or the accumulation of 
drainage water in areas that are not normally underwater. Landslide is also defined as the mass movement of 
rock, debris, and downward movement toward gravity under gravity, which causes the loss of one or more soil 
functions (https://​www.​recare-​hub.​eu/​soil-​threa​ts/​floods-​and-​lands​lides). Despite these substantial differences 
in these hazards, they can still be assessed together in a study and a comprehensive map can be prepared. In 
recent years, researchers’ interest in studying multiple natural hazards has increased significantly37,38. There-
fore, generating a multi-hazard map is of great importance for the integrated management of natural resources 
because it can help to reduce or even prevent economic and human losses. Natural hazards can have major 
effects and interact with each other. The mechanism of these interactions to come into being is different, and 
one may cause the occurrence or stimulation of another event48. Landslides, for example, can cause dangerous 
floods, especially when landslides in creeks are broken. Flooding also increases the possibility of landslides49. Liu 
et al.48 also stated that earthquakes cause landslides and storms cause floods. Temporary small-scale floods can 
significantly affect soil erosion. Floods on slopes are related to soil erosion and landslides in various ways, such 
as surface flow, sheet flow, return flow, and groundwater furrow. Moreover, the accompanying flood may destroy 
soil cavities and soil organisms that make up the soil structure. Therefore, the simultaneous study of several haz-

(1)MHM = SAPF+ SAPL+ PGA

Table 3.   SWARA weight for each influencing factor.

Factor class SWARA weight flood SWARA weight landslide

TRKurl 0.03 0.13

Others 0.00 0.00

Slope (0)

0–5 0.34 0.11

5–10 0.22 0.41

10–15 0.16 0.14

15–25 0.14 0.22

25 <  0.14 0.11

Plan curvature (100/m)

Concave 0.31 0.42

Flat 0.39 0.29

Convex 0.31 0.29

Distance to fault (m)

 < 1000 – 0.15

1000–2000 – 0.12

2000–3000 – 0.20

3000–4000 – 0.10

4000–5000 – 0.10

 > 5000 – 0.33

Distance to road (m)

 < 1000 – 0.24

1000–2000 – 0.06

2000–3000 – 0.08

3000–4000 – 0.06

4000–5000 – 0.13

 > 5000 – 0.44

https://www.recare-hub.eu/soil-threats/floods-and-landslides
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ards in one study covered all gaps in individual studies. Multiple hazard assessments were performed to address 
the limitations of a single risk assessment.

Advantages and disadvantages of the applied models.  Each model has their own advantages and 
drawbacks. The advantages of the ANFIS algorithm are as follows: (1) the ability to process numerous inputs, (2) 
the ability to maintain the advantages of combining two fuzzy algorithms and an artificial neural network, and (3) 
a robust method50. However, its disadvantage is its sensitivity to overfitting; therefore, the training phase should 
be performed carefully. The best way to use this algorithm effectively is to use meta-heuristic techniques in the 
model training phase. The combination of learning-metaheuristic algorithms increase the predictive power and 
accuracy of the models. Therefore, two ensemble models, namely, SWARA-ANFIS-PSO and SWARA-ANFIS-
GWO, were applied to assess the susceptibility to flood and landslide hazards. The advantages of the PSO algo-
rithm are: (1) simplicity, (2) ease of operation, (3) no overlap, and (4) no calculation of mutation51. Moreover, 
the GWO algorithm also has the following advantages: (1) its simplicity, (2) flexibility, (3) robustness, (4) ease of 
operation, (5) low control parameters required, and (6) avoidance of local optimization52.

Comparison with previous studies.  Ensemble methods have dramatically increased because of their 
high efficiency in helping researchers conduct studies on natural hazards (landslides and floods). Moreover, 
ensemble models reduce the uncertainty of each algorithm and increase its reliability53,54. To ensure and sup-
port the results of this study, a comparison was made with previous studies related to the field of study. A 
combination of machine learning algorithm (ANFIS), ant colony optimization (ACOR), and differential evolu-
tion (DE) algorithms were used to study landslide susceptibility by Razavi-Termeh et al55. The results showed 
that the ANFIS-DE model was the suitable model (0.946). Wang et al.36 also reported that the combination of 
ANFIS-BBO (AUC = 0.9045) and ANFIS-ICA (0.9044) algorithms performed better than the standalone ANFIS 
model (AUC = 0.8407) in assessing flood susceptibility. The study by Mehrabi et al.33 also emphasized that the 
combination of GA-ANFIS, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS models had proper performance for 
assessing landslide susceptibility. Arora et al.56 used ANFIS-GA, ANFIS-PSO and ANFIS-DE models to model 

Figure 1.   Natural hazard susceptibility maps generated by (a) SAGF, (b) SAPF, (c) SAGL, and (d) SAPL using 
ArcGIS 10.3.1 software (https://​www.​esri.​com).

https://www.esri.com
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flood susceptibility in a study in India. The ANFIS-GA model showed good results for determining flood sus-
ceptibility in the region. They concluded that the hybrid meta-heuristic and ANFIS models performed well and 
their performance evaluation with the AUC diagram confirmed the results. In the study of Arora et al.56, the 
AUC values are from 0.768 and 0.924. In this study, these AUC values were obtained from 0.880 to 0.936, which 
indicates the excellent performance of the models used in this study. Compared to another study using a combi-
nation of ANFIS and meta-heuristic algorithms, it was found that the performance of the present study is better 
than the study conducted by Hong et al.57 in which ANFIS-GA (0.8488) and ANFIS-DE (AUC = 0.8523) models 
were used to assess flood susceptibility. Moreover, compared with the study of Ahmadlou et al.58, it was observed 
that the results of the AUC values of the current study have higher accuracy in the study of flood susceptibility 
compared to ANFIS-BA and ANFIS-BBO models (0.703). Finally, it can be concluded that a combination of 
optimization and machine learning algorithms can be used to develop measures for reducing losses and sustain-
able management. In addition, the results of this study are practical and useful for assessing natural hazards.

Limitations and future recommendations.  This study had some limitations. Fundamental changes in 
factors affecting natural hazards are the main causes of hazards. However, knowledge about the factors affecting 
natural hazards is incomplete, and some of these unknown factors may still be present. Another limitation of this 
study was the limited data available. In future studies, it is suggested that more influencing factors should be used 
to assess hazards. It is also suggested that in future studies, infrastructure (e.g., schools, hospitals, etc.) should be 
considered for their optimal assessment and location.

Conclusion
Designing a multi-hazard map for an area can reduce economic losses and mortality and result in integrated 
and organized management. The multi-hazard map in this study is a combination of three important hazards 
(i.e., earthquakes, floods, and landslides). In this regard, susceptibility maps of SAPL, SAGL, SAPF, and SAGF 

Figure 2.   MSE and RMSE values of testing step for: (a) SAGF, (b) SAPF, (c) SAGL, (d) SAPL.
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were generated for the Kermanshah province located in western Iran. The accuracy of the results was assessed 
using the ROC curve, RMSE and MSE values, and it was concluded that the SAPF and SAPL models had the 
best performance for both flood and landslide hazards. In addition, a PGA map was generated to assess earth-
quake hazards. Finally, a multi-hazard map was generated from the combination of SAPL, SAPF, and PGA. The 
results showed that the southwestern areas of Kermanshah Province are affected by all three hazards, covering 

Figure 3.   Validation of flood and landslide susceptibility maps using the ROC curve.

Table 4.   ROC, RMSE, and MSE values for each model.

Model ROC MSE RMSE

SAGF 0.933 0.147 0.384

SAPF 0.936 0.120 0.346

SAGL 0.880 0.172 0.415

SAPL 0.894 0.168 0.410
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2.93% of the region, while 28.94% of the province is safe from these hazards. Landslides cover the largest area 
(29.74%) of the region. In the context of sustainable management, the results of this work can be applied as a 
practical tool for managers and experts in order to reduce losses. In addition to being able to be used to study 
several hazards together, these models can also be used individually in other contexts of natural disasters such 
as floods, landslides, erosions, forest fires, etc.

Figure 4.   PGA map for the Kermanshah province using ArcGIS 10.3.1 software.

Figure 5.   Multi-hazard map for the Kermanshah province using ArcGIS 10.3.1 software.
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Methodology
Description of the study region.  The study area, Kermanshah Province, lies between 45°20 39″ to 48°01 
58″ longitude and 33°37 08″ to 35°17 08″ latitude, with a total area of 24,650 km2 (Fig. 7). This province is the 
17th province of Iran in terms of size. The study area is a mountainous area located between the Iranian plateau 
and the Mesopotamian Plain. The highest elevation in the region is 3,372 m. The climate of this province is clas-
sified as temperate or mountainous. Kermanshah Province is exposed to humid Mediterranean fronts, and snow 
and rain fall in colliding with the Zagros highlands. The mean annual temperature in Kermanshah Province was 
15 °C. The coldest and warmest months were February and June, respectively. The average relative humidity in 
this area was over 40% (http://​www.​kerma​nshah​met.​ir/​met/​amar).

Hazards inventory mapping.  This study considered three main hazards (i.e., earthquakes, floods, and 
landslides) in Kermanshah Province, Iran. The earthquake inventory map was obtained from the catalog of his-
torical earthquakes in Iran provided by the International Institute of Earthquake Engineering and Seismology. 
The flooded areas were recognized using Google Earth Engine (GEE) and Sentinel-3 images considering the 
latest flood occurrences in the study area in 2019 and 2020, and they were then transformed into point data. The 
flood detection code was written on the GEE platform (https://​earth​engine.​google.​com). 617 flood points were 
extracted to prepare a flood inventory map in the ArcGIS platform. 70% of the points (432 points) and 30% of 
the points (185 points) were used for modeling and testing the models, respectively. Landslide location points 
were identified using historical data and field surveys by applying a global positioning system (GPS). 115 land-
slide points were used to prepare the landslide inventory map. 81 points (70%) was used for modeling and 34 
points (30%) was used for testing the models. Most of the landslides occurred in the study area are of rotational 
and translational types.

Multi‑hazard influencing factors.  Selecting factors that affect natural hazards is one of the first steps in 
hazard susceptibility maps. In this study, the influential factors were selected and classified based on previous 
research59. These influencing factors include altitude, slope aspect, slope degree, plan curvature, distance to river, 
distance to fault, distance to road, lithology, rainfall, and land use. The details and sources applied in the current 
study are listed in Table 5. All thematic maps were generated using ArcGIS 10.3. The details of the preparation 
of the influencing factors are as follows:

Altitude. Altitude is a useful influencing factor in natural hazard studies. In this study, the altitude factor 
was applied to create flood and landslide susceptibility maps. A basic digital elevation model (with resolution of 
30 m × 30 m) was used to generate the altitude map (Fig. 8a).

Slope aspect. Slope aspect is a critical factor in natural disasters, which was used in this study to assess flood 
and landslide susceptibility. This factor is associated with variables such as rainfall, sunlight, and the morphol-
ogy of an area, which is introduced as an effective parameter for the slope stability34. The slope aspect map for 
Kermanshah Province was classified into nine classes (Fig. 8b).

Slope degree. Another critical factor in natural hazard assessment is the degree of the slope. The slope degree 
map for the study region was classified into five classes. This layer was used to generate flood and landslide 
susceptibility maps (Fig. 8c).

Plan curvature. Plan curvature is a key factor in assessing the natural hazards of landslides and floods, which 
was considered in this study. This factor, which is the curvature of a flow and is shaped from the intersection of a 
vertical plane with the surface22 was generated for the study area. It was then classified into three classes (Fig. 8d).

Distance to river. Distance to the river is also one of the critical factors affecting the natural hazards of 
landslides and floods17. In areas with less distance to the nearest river, the probability of flooding increases60. 
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River networks shape geomorphology, and rivers affect the support force on slopes61. The map of this factor was 
classified into nine classes (Fig. 8e).

Distance to fault. Faults are one of the factors influencing landslides and are used to generate landslide sus-
ceptibility maps. According to Conforti et al.62 as the distance to the faults decreases, the fracture rate and degree 
of rock weathering increase and the resistance decreases, resulting in an increase in the probability of landslide 
event. This map was classified into six classes (Fig. 8f).

Distance to road. The distance to the road is one of the factors influencing landslide assessment22 which was 
applied to produce a landslide susceptibility map. Road construction causes high slopes and disturbances in slope 
stability, resulting in multiple landslides61. The distance to the road map was classified into six classes (Fig. 8g).

Figure 7.   Location map of the Kermanshah province in Iran using ArcGIS 10.3.1 software.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1451  | https://doi.org/10.1038/s41598-022-05364-y

www.nature.com/scientificreports/

Table 5.   Data and their sources used for susceptibility mapping of two hazards.

Data Sources Landslide influencing factor Flood influencing factor

DEM (digital elevation model) (m) ASTER (Global DEM) 30*30 m  ×   × 

Slope degree (°) Extracted from DEM  ×   × 

Slope aspect Extracted from DEM  ×   × 

Plan curvature Extracted from DEM  ×   × 

Distance to roads (m) National Cartographic Center  ×  –

Distance to faults (m) Geological Survey of Iran  ×  –

Distance to rivers (m) National Cartographic Center  ×   × 

Lithology Geological Organization of Iran  ×   × 

Land use https://​code.​earth​engine.​google.​com/​1775e​5c262​dc119​4cf19​4a759​7dd40​bb 
(Ghorbanian et al., 2020)  ×   × 

Rainfall (mm) Weather stations placed in the study area –  × 

Figure 8.   Map of multi-hazard influencing factors: (a) Altitude, (b) slope aspect, (c) slope degree, (d) curvature, 
(e) distance to river, (f) distance to fault, (g) distance to road, (h) lithology, (i) rainfall, and (j) land use using 
ArcGIS 10.3.1 software.

https://code.earthengine.google.com/1775e5c262dc1194cf194a7597dd40bb
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Lithology. Lithology is one of the most critical factors influencing flood and landslide occurrence36,46, and 
was investigated in this study for flood and landslide hazards. The lithology of the area depends on different 
constructs and is determined by the type of rock that might affect landslide occurrence63. In addition, lithology 
plays a significant role in runoff control and surface infiltration because of its effect on soil permeability and 
porosity46. Geologically, the study area included a variety of units (Fig. 8h).

Rainfall. Rainfall is the primary cause of floods. Paul et al.4 also emphasized the strong correlation between 
flood and rainfall occurrences. As rainfall increases, the flood intensity also increases relatively. Long-term 
rainfall data (2001–2020) from meteorological stations located in Kermanshah Province were used to generate 
a flood susceptibility map. A flood map was obtained using the IDW interpolation method (Fig. 8i).

Land use. Land use plays a significant role in the natural hazard events. In the current work, land use was 
considered for both flood and landslide hazards. A variety of land uses have a major effect on the amount and 
number of floods64. This factor has a significant effect on the amount, frequency, and type of landslide, and can 
change the start threshold and accelerate it65. In total, six land-use groups were collected from Kermanshah 
Province through GEE66 (Fig. 8j).

Multi‑hazard spatial modeling.  Figure 9 shows the methodological flowchart of the modeling steps for 
providing a multi-hazard map in Kermanshah Province.

Multicollinearity diagnostic. Multilinearity is a statistical method used to determine the correlation of two 
or more independent variables (predictors) in regression analysis. The two methods of inflation coefficient 
of variance and tolerance are used to examine multicollinearity67. If the VIF is > 10 or tolerance is < 0.1, the 
multilinearity index of the independent variable is involved in regression analysis. In other words, there is the 
problem of multilinearity67.

Figure 8.   (continued)
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Step‑wise weight assessment ratio analysis (SWARA) method.  Keršulienė and Turskis68 intro-
duced a decision-making model with the aim of weighting the criteria and sub-criteria. In this model, each 
expert based on his/her experience, knowledge, and information assigns a weight to each factor according to 
their importance. The steps in implementing this model are as follows. (1) Factor and sub-factor are selected. 
(2) Sub-factors are rated by experts based on their relative importance. The highest rate and the lowest rate are 
assigned to the most important sub-factor (first row) and the least important sub-factor (last row), respectively. 
For more information refer to Keršulienė and Turskis68.

The ANFIS algorithm.  ANFIS is an artificial neural network and fuzzy logic proposed by Jang in 199369. 
This method can solve complex nonlinear problems. Takagi and Sugeno’s fuzzy method uses two if–then rules. 
Membership values are generated from the proper fuzzy sets using the membership function. The output of each 
node indicates the power of each rule34,70. See Zhang et al. 69 for more details.

The PSO algorithm.  PSO is proposed by Kennedy and Eberhart71 based on the random population and 
social behavior of birds in the wild72. This algorithm was used in the swarm intelligence (SI) algorithm group. 
The particles in this method show solutions to the problem, and the solutions (optimal solutions) are randomly 
identified by the vector. The velocity and position are the two main criteria for executing the algorithm. Each 
particle chooses the direction of movement based on the current position and the best position experienced 
between the particles. See Kennedy and Eberhart71 for more information.

The GWO algorithm.  The GWO algorithm is a technique inspired by the social life of grey wolves in wild73. 
In this algorithm, (α), (β), and (δ) wolves are the leaders of hunting, and the ω wolves follow them to identify the 
optimum solution. The GWO was modeled as follows: Social hierarchy, encircling prey, hunting, attacking prey, 
and searching the prey. Link available for more information: http: //www. alimirjalili.com/GWO. html.

The ensemble models.  In the current study, the GWO and PSO meta-heuristic methods were applied for 
training instead of the classic ANFIS model functions. The hybrid SWARA-ANFIS-PSO and SWARA-ANFIS-
GWO algorithms were implemented using MATLAB software. In this regard, training and testing data for floods 
and landslides are required. Therefore, 70% of the data related to floods were defined for training hybrid models, 
and 30% were defined for testing models with code 1. The same number of non-flood points (70% training and 

Figure 9.   Methodological flowchart of the modeling steps for providing a multi-hazard map in the 
Kermanshah province.



15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1451  | https://doi.org/10.1038/s41598-022-05364-y

www.nature.com/scientificreports/

30% testing) was selected, and code 0 was assigned to them. In addition, for data on landslides, 70% of the train-
ing data (1) and 30% of the testing data (1) were selected, and the same number of non-landslide points (70% of 
training and 30% of testing) were defined with code 0. These points were then matched with the factors influenc-
ing natural hazards, and the corresponding values were obtained.

Earthquake hazard map.  Seismic hazard analysis methods can be used to predict the seismic behavior 
of a certain area. These methods study the probability of earthquake occurrences with different magnitudes in 
the study area using the seismic history of a region, historical seismic information, and seismotectonic inves-
tigation. Earthquake risk estimation methods include experimental-statistical, deterministic, and probabilistic 
methods74. In this study, a probabilistic method is used. In the probabilistic seismic hazard analysis method, all 
important earthquakes and springs with different distances to the site were considered, considering the occur-
rence probability of all events. The main assumption in the analysis of earthquake estimation using the proba-
bilistic method is the randomness, and because these events are statistically independent, the time distribution 
function of these events is expressed by the Poisson distribution function. In addition to Poisson functions, there 
is another model called the iteration model, in which the occurrence of an event is related to the occurrence of 
previous events75. The steps in analyzing probabilistic earthquakes using the probabilistic method are: (1) iden-
tifying springs, (2) determining seismicity parameters, (3) selecting appropriate reduction relationships, and (4) 
calculating severe ground motion parameters76. Acceleration maps were estimated for a 475-year return period.

Validation of ensemble models.  In natural hazard studies, the accuracy of the results was verified after 
the implementation of the models46. The three criteria of RMSE, MSE, and ROC diagram were employed to 
estimate the accuracy of the ensemble models. RMSE and MSE are two standard statistical criteria for evaluating 
the accuracy of models35. These criteria were calculated as follows:

 where yi and ŷi are the observed and predicted models.
This curve is designed based on two false-positive axes (x-axis) and true-positive values (y-axis)62. The values 

of the area under the curve are in the range [0.5–1], so that its numerical value determines the accuracy of the 
models used. The more the area under the curve move toward 1, the higher the accuracy of the model is, whereas 
the more the area under the curve moves toward 0.05, the lower the accuracy of the model is62. The ROC was 
obtained from Eq. (4).

Multi‑hazard mapping.  A multi-hazard map of the total hazards of earthquakes, floods, and landslides 
was generated for the Kermanshah Province. First, SWARA-ANFIS-PSO-Flood (SAPF) and SWARA-ANFIS-
PSO-Landslide (SAPL) susceptibility maps were generated and then classified into five classes. In the next step, a 
PGA map was generated for the earthquake hazard. The best selected models were again divided into two classes: 
0 (very low, low, and moderate) and 1 (high and very high classes). In addition, the PGA map was reclassified 
into two classes: 0 (low and moderate) and 1 (high class). Finally, a multi-hazard map was generated by combin-
ing two-class maps of earthquakes, floods, and landslides for the Kermanshah province located in western Iran.

Data availability
The data used in this study are available for researchers upon request to the corresponding author for reasonable 
use in research.
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