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Abstract

Current efforts to assess human health response to chemicals based on high-throughput in

vitro assay data on intra-cellular changes have been hindered for some illnesses by lack of

information on higher-level extracellular, inter-organ, and organism-level interactions. How-

ever, a dose-response function (DRF), informed by various levels of information including api-

cal health response, can represent a template for convergent top-down, bottom-up analysis.

In this paper, a general DRF for chronic chemical and other health stressors and mixtures is

derived based on a general first-order model previously derived and demonstrated for illness

progression. The derivation accounts for essential autocorrelation among initiating event

magnitudes along a toxicological mode of action, typical of complex processes in general,

and reveals the inverse relationship between the minimum illness-inducing dose, and the ill-

ness severity per unit dose (both variable across a population). The resulting emergent DRF

is theoretically scale-inclusive and amenable to low-dose extrapolation. The two-parameter

single-toxicant version can be monotonic or sigmoidal, and is demonstrated preferable to tra-

ditional models (multistage, lognormal, generalized linear) for the published cancer and non-

cancer datasets analyzed: chloroform (induced liver necrosis in female mice); bromate

(induced dysplastic focia in male inbred rats); and 2-acetylaminofluorene (induced liver

neoplasms and bladder carcinomas in 20,328 female mice). Common- and dissimilar-mode

mixture models are demonstrated versus orthogonal data on toluene/benzene mixtures (mor-

tality in Japanese medaka, Oryzias latipes, following embryonic exposure). Findings support

previous empirical demonstration, and also reveal how a chemical with a typical monotoni-

cally-increasing DRF can display a J-shaped DRF when a second, antagonistic common-

mode chemical is present. Overall, the general DRF derived here based on an autocorrelated

first-order model appears to provide both a strong theoretical/biological basis for, as well as

an accurate statistical description of, a diverse, albeit small, sample of observed dose-

response data. The further generalizability of this conclusion can be tested in future analyses

comparing with traditional modeling approaches across a broader range of datasets.
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Introduction

Identification of chemicals that may pose a health risk following chronic decadal exposure to

extremely low doses is a challenge [1], complicated further by possible toxicological interac-

tions among chemicals and other health stressors. Traditional high-dose animal tests have

been expensive in terms of time, expense, and animal subjects, may induce extraneous

responses such as cytotoxicity, and in any case require extrapolation to low doses of regulatory

interest. To address these issues, the U.S. National Research Council [1] recommended assess-

ment based on high-throughput in vitro assays targeting intra-cellular processes, and as a result

such testing is now producing large databases of high throughput screening (HTS) data [2,3].

One approach proposed for setting regulatory standards based on high throughput screen-

ing (HTS) data has been systems biology-based modeling to determine concentrations that

would likely lead to excessive perturbation of intracellular pathways, then physiologically-

based pharmacokinetic (PBPK) modeling to assess concentrations that would cause adverse

effects in humans [4]. However, traditional PBPK models involve extensive efforts to build and

validate, typically performed one-chemical-at-a-time. Hence, the need to relate tested concen-

trations to potential human exposures for thousands of chemicals and assays has led to the

development of “high throughput toxicokinetic” approaches, which are implemented as an ini-

tial screening approach to identify chemicals with low “margins” between environmental

exposures and the exposures that may perturb biological pathways [5,6].

Ultimately, an understanding is needed of the relationship between biological perturba-

tions, including many common stress-response pathways such as oxidative stress response,

heat-shock response, and DNA-damage response, and the apical adverse outcomes of interest

[4]. While this relationship between perturbation and outcome varies widely among stressor-

endpoint pairs, the concept of allostatic load has been used to propose multisystem summary

measures of cumulative health stress which have been used to predict health outcomes [7].

Such measures may include, for example, physiological function parameters, including pri-

mary mediators in the toxicological cascade, as well as secondary mediators reflecting compo-

nents of the metabolic syndrome [8].

Both “bottom-up” biologically-based modeling approaches, as well as “top-down” statistical

or artificial intelligence-based analyses, have been proposed to discern relationships between

collections of related biomarkers, such as changes in gene expression, protein interactions,

or metabolite flux, to phenotypic changes within a cell [9–11]. However, truly predictive

approaches are still some ways away, particularly for complex effects. For developmental,

endocrine, neurotoxicological, and other illnesses, the chronic toxicity of a chemical may

depend not only on intracellular pathways, but on causal network dynamics at the extracellu-

lar, organ, and organism levels. In that case, information beyond cellular responses to pertur-

bations is needed to assess apical response. As a result, HTS has been little used as yet for

chemical regulation [12].

Here, we hypothesize that the lack of a unifying theoretical framework, from cellular pertur-

bation to apical response, is a critical barrier to progress in integrating HTS data into risk

assessment. The need for an understanding of the relationship between intra-cellular response,

and multi-organ, multi-cellular governing processes at the organism level is recognized, but

seems on the face intractable [4]. However, we posit that this relationship is actually reflected

in the overall dose-response function (DRF) viewed as a probability distribution on the mini-

mum dose to cause illness in a randomly-selected individual. Thus, a theoretically-derived

dose-response functional form can provide a top-down template, and a basis for an analysis in

which HTS, multi-tissue co-culture [13], multi-organ chip [14], and animal data can represent

prior and posterior information in a Bayesian assessment [15]. Derivation of an appropriate
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theoretical formulation from which to integrate data at multiple scales can take advantage of

convergent top-down, bottom-up analysis, which is being recognized in many fields of natural

and social science to have advantages over either approach alone [16,17].

The purpose of this work is to derive and demonstrate a general quantal DRF form for

chronic, homogeneously distributed (e.g., not microbial) health stressors, including carcino-

genic and noncarcinogenic chemicals, and mixtures thereof. This general DRF is based on an

emergent autocorrelated first-order model of illness progression [18], to be described. To

derive this model, first, the relationship between the illness severity distribution and the quan-

tal DRF in autocorrelated first-order systems is examined. Then, an emergent first-order

multivariate DRF is derived for single stressors, and for mixtures of stressors with common

endpoint and accounting for interactions. For illustration, several single chemical dose-

response datasets are evaluated using this DRF: chloroform-induced mild cellular liver necro-

sis in mice [19], 2-acetylaminofluorene-induced liver neoplasms and bladder carcinomas in

mice [20], and bromate-induced dysplastic focia in rats [21]. Next, the extension of this

approach to multiple stressors is demonstrated using both common- and dissimilar-mode of

action mixture models, using an orthogonal dataset on mortality in Oryzias latipes due to ben-

zene/toluene mixture exposure [22]. Results are compared with the fit of traditional DRF mod-

els, as well as with previously published empirical demonstration [23,24] of the DRF derived

theoretically in this work. Applicability to traditional and HTS-based dose-response assess-

ment and extrapolation is also discussed, as well as potential future areas for further demon-

stration, including analysis of toxic mode of action and other biological aspects.

Background definitions and methods

Traditional dose-response assessment has involved implicit or explicit extrapolation of

response from high testable doses to low, the result of which is determined by the form of the

DRF [25], and hence much research has focused on this form [23,26,27]. However, general

DRF models, such as the linearized multistage and lognormal models, while relatively flexible,

are not considered intrinsically biological in form [28–30], and are theoretically based on the

assumption of independence among initiating event magnitudes. In particular, the general

form of the linearized multistage model is based on the assumption that “the time from cancer

initiation in a single cell until an observable cancer develops in a tissue is . . . functionally inde-

pendent of the dose rate” [29], and more generally on the assumption of independent num-

bers/sizes of initiating events, or causes, along a mode of action (MOA) through its basis in the

original multistage model [31]. These are important constraints not typically satisfied in com-

plex systems [32]. For example, a cause may be the extent of binding of chromatin modifying

complex with histone methyltransferases, which reportedly causes (i.e., is not independent of)

chromatin activation and transcriptional activation, which are subsequent causes in an adverse

outcome pathway for chemical-induced leukemia [33].

To develop a quantal DRF (i.e. population incidence versus dose), illness must be defined as

equal to or greater than a minimum level of illness severity, such as initial malignancy follow-

ing progressive genetic damage, or non-trivial liver damage. Thus, the form of the population

DRF is determined by the distribution of illness severity across the population at a given dose.

In other fields of risk analysis, the emergent form of such incident size distributions has been

observed in complex systems at the macro-level first, and explained mechanistically thereafter.

Examples include distributions of disasters and smaller events of the same type, the degrees

(number of connections) of nodes in complex dynamical networks, and financial stock return

data, all of which are observed to be nearly log-log linear (power laws) across orders of magni-

tude [34–37]. However, log-log linear probability distributions must be truncated or otherwise
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terminated at one or both extremes to maintain normalization, and thus represent only a part

of the distribution, not extrapolatable beyond the range of available data.

Recently, illnesses and other incidents were argued to arise by a general process in which a

series or network of stochastic autocorrelated (i.e., not independent) causes produces illness

severities by predominantly first-order (i.e., multiplicative) kinetics, and severities produced as

such have emergent Weibull distributions that are characteristically asymptotically log-log lin-

ear, as reviewed in the next section. The Weibull distribution spans the non-negative real line,

representing the full distribution of outcomes of first-order processes across all physical scales,

hence providing a scale-inclusive basis for extrapolation. In particular, the distribution was

demonstrated in preference to competing distributions versus available data on cancer and

non-cancer illness severity [18,38], as well as other complex system outcomes [35,39,40]. The

form was further shown applicable at higher doses, when Michaelis-Menten kinetics begin to

apply due to saturation of toxicant receptors.

Some terms are defined as follows. Dose refers to a numerical level of a chronic health

stressor, potentially including chemical, economic, environmental, occupational, lifestyle, or

other stressors. The size of a cause of an illness is the magnitude of an illness-initiating event,

for example the fraction of a toxicant passed to a receptor (not eliminated), or more generally

the degree of failure of a protective mechanism. An illness severity distribution is a plot of the

population fraction presenting clinical illness, versus a measure of a negative health-effect

exceeding the clinical definition of illness, at a given dose (for example, the distribution of

observable tumor sizes across a population exposed to a particular common dose), as described

in the next section.

Threshold refers to a dose below which no individual responds [41]. The term saturation

refers to a dose above which little additional health effect is observed (e.g., above which the tox-

icant is no longer the rate-limiting reactant). The notations f(.) and F(.) denote continuous

probability density function (PDF) and cumulative distribution function (CDF), respectively.

Non-scalar (vector, matrix, array) quantities are denoted in bold. Multistage model refers to

the one- or two-hit linearized multistage model [29].

Starting with the Weibull illness severity distribution, a new DRF, general to chronic stress-

ors and mixtures thereof, was derived consistent with predominantly first-order kinetics and

standard bio-mathematical requirements for DRFs. The derived DRFs were then fitted to pub-

lished laboratory dose-response data by minimization of the deviance statistic, Y�, an adapta-

tion of the 2-log-likelihood ratio to quantal dose-response data [42]. Fits were evaluated by

inspection, and compared with the fit of the multistage, lognormal (μ, σ), and generalized lin-

ear models as appropriate.

Following visual inspection, fitted DRFs were further appraised for goodness-of-fit (GOF)

based on their p-value. This value was obtained as the value of the chi-squared CDF with I −
m − 1 degrees of freedom, at Y�, a strict test in which I is the number of doses tested, m is the

number of parameters in the fitted distribution, and the degrees of freedom are decremented

by unity to account for the assumption of a particular parametric form. The approach is rigor-

ous and asymptotically-equivalent to the chi-square test [43], though data at doses of zero and

at doses for which either zero positive or zero negative subjects are observed, cannot be used

(due to required logarithmic calculations). Hence, except in analysis of the benzene-toluene

mixture data analyzed and reported previously, the plotting position n = Min[Max(0.25, n), N-

0.25], in which n is the number of positives and N is the total number of subjects, was used.

For example, for N = 10, values of n = 0 would be set equal to 0.25, and values of n = 10 would

be set equal to 9.25. In contrast with other proposed plotting positions [44], this approach

allows use for GOF analysis of the information that< 1 responder (non-responder, for n = N)
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in N individuals was observed at particular doses, by accounting for the finite binomial proba-

bility of observing� 1 responder (non-responder) if the sample size had been larger.

The data processing procedure just described is diagrammed in Fig 1. GOF tests were

coded in Matlab version R2006a with Statistics Toolbox. Results for all datasets tested are

reported herein, except as noted or when found insufficient for evaluation.

Dose-response model derivation

Relationship of illness severity distributions to the quantal DRF

To derive a quantal DRF for chronic health stressors, the relationships between dose, illness

severity, and resulting “response,” or fraction of the population becoming ill, can be examined

as illustrated in Fig 2. As shown, at each constant dose administered to a randomly-selected

subpopulation, the subpopulation presents a continuous (Weibull) distribution (PDF) of

“medical status,” with status deteriorating towards the right. The higher the dose, the longer is

the tail of the distribution representing individuals responding severely. (Note that illness

severities are assumed sampled at a fixed time after exposure, and measured in terms of their

magnitude at that time. For example, cancer progresses through increasing stages of genetic

Fig 1. Diagram illustrating the procedure for data processing.

https://doi.org/10.1371/journal.pone.0211780.g001
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damage, malignancy, and growth, such that severity increases with time and hence population

severity distributions vary with time).

As shown in Fig 2, in general, the medical status distribution can be divided into three

ranges for purposes of constructing a quantal dose-response function, though not all may be

observed for a given stressor: (a) high wellness or health (light green or lightly shaded/white),

e.g. blood pressure or genes representing the normal condition, below the “tipping point” at

which irreversible changes in medical status occur [45], (b) moderate wellness or sub-clinical

effect (yellow or grey), e.g. effects include at least pre-hypertension/hypertension or increasing

genetic damage but no malignant cell, and (c) low wellness or clinically-defined illness (red or

dark grey), e.g. effects include at least hypertension/minor cardiovascular event (minor stroke,

heart attack) or one or more malignant cells. Some healthy individuals may even experience a

health benefit (hormesis) from a low dose, e.g. increased immunity, though this condition

Fig 2. Diagram illustrating hypothetical illness severity distributions for three arbitrary doses, increasing from top panel to

bottom panel. The three PDFs comprise distributions of numerical medical status (e.g., blood pressure), censored at the clinically-

defined lower bound of health impairment, and thus having a monotonically-decreasing shape. The value of population response that

would be indicated on a DRF, for a given dose, is the area (red or dark grey) under the illness severity distribution for that dose,

integrated over the range of illness severity considered to represent the desired illness endpoint.

https://doi.org/10.1371/journal.pone.0211780.g002
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would generally represent a different endpoint not depicted in the severity distribution, and in

any case would not affect the corresponding quantal dose-response function for illness.

To develop a distribution of medical status across the population at fixed dose, status must

be characterized numerically, e.g. in units of blood pressure. Accordingly, the value of medical

status considered clinically to be the lower bound of health impairment is designated for dis-

cussion as Z = 0, and the value considered clinically to be the lower bound of illness is desig-

nated similarly as Z = Z� = 1, in arbitrary units. Then, superimposed on the medical status

distribution is the illness severity distribution, which is the medical status distribution left-cen-

sored at Z = 0. That is, healthy individuals (medical status less than zero) are included with

those having health impairment below clinically-defined illness (0� Z< 1), to make up the

total proportion of individuals not presenting illness. Hence, as shown in Fig 2, illness severity

PDFs generally decrease monotonically, from a high proportion of individuals who are not ill,

towards increasing illness, defined as significant severity. Similarly, causes of illness and inci-

dents also must be large (severe) enough to impact an illness outcome, and therefore the cen-

sored PDFs of cause size are also monotonic. Ultimately, the population response that would

be associated with a particular dose on a quantal dose-response curve is shown to be the area

under the illness severity curve for that dose, from Z = Z� to1.

Each successive cause of an illness, like causes of other seemingly complex systems, typically

affects the size, or severity, of the final illness in proportion to its own size. Hence, if all cause

sizes are fixed, illness severity is largely proportional to the product of the cause sizes. An anal-

ogy is the multiplicative effect of interest rates on the future value of an investment. For exam-

ple in terms of toxicology, the concentration of a toxicant at a target organ results as the

product of fractions (percents) of the toxicant passed at a series of organs along an MOA. Like-

wise, illness severity may result as the product of the rates that mutations in oncogenic or

tumor suppression genes escape cell growth controls and correction processes, such as DNA

repair mechanisms or apoptosis, at successive steps along an MOA.

Because cause sizes vary, each having a monotonically-decreasing distribution across a pop-

ulation, the resulting distribution of products will comprise vastly more healthy individuals

and vastly fewer extremely ill individuals. Further, if such cause sizes were independent of each

other, then the result would be an asymptotic lognormal distribution of illness severity, by the

Central Limit Theorem (sums of logs representing logs of products of random variables are

normally distributed). However, cause sizes in real systems are generally correlated in size

[18,32]. Correlation is due either to a common cause, such as aging or organ (e.g. brain)

damage impacting multiple functions, and/or to the fact that larger upstream failures in physi-

ological defensive mechanisms stress downstream mechanisms more heavily, potentially pre-

cipitating larger downstream failures. This correlation skews the resulting distribution further,

with the result being an emergent Weibull distribution of illness severities across a population

[18], by transformation of variables and the tendency of physical systems towards the maxi-

mum entropy (most likely) distribution [46].

Recognition of the Weibull distribution of illness severities resolves several practical

issues. First, unlike power law distributions, the distribution is scale-inclusive, extending

across the full range of observed severities. Also, as expected for outcomes such as illness

severity, the Weibull PDF can be monotonic, in contrast with the lognormal PDF which

would indicate essentially zero probability of essentially no illness, and can apply over orders

of magnitude. The distribution likewise describes medical status at intermediate points along

the MOA. For example, in a population exposed simultaneously, but not yet fully presenting

illness, a range of blood pressures, or a range in the extent of genetic transcription errors,

may be observed.
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The multiplicative, or first-order, model can be represented in discrete form as

Z ¼ C0C1C2 � � � Ct ¼ C0

Yt

i¼1
Ci, in which Z is illness severity; C0 is the dose, ranging from

threshold to total saturation; the remaining Ci are the i-th succeeding random cause sizes,

ranging from1 to -1 (causes can decrease severity); and t indicates the total number of

increments along an MOA (analogous to the number of time periods of financial compound-

ing) [18]. Note that while the dose may not be random in general, dose is generally autocorre-

lated with succeeding cause sizes, over a range of doses. (The discrete form is functionally

equivalent to the continuous form, Z ¼ C0

YT

t¼1
Ct � C0

YT

t¼1
ð1þ rtÞ � � �!

Dt!0
C0pT

t¼0
erdt, in

which the rt are random dependent first-order rate constants, analogous to interest rates in

time; the ert represent vanishingly-small autocorrelated random cause sizes; r is a continu-

ously-varying first-order rate constant approached in the limit as Δt!0; andpT
t¼0

erdt is a prod-

uct integral [18,32]. Also, in a first-order model, the Ci can be expressed in any units without

affecting the form of the distribution of their product).

Emergent first-order single-stressor model

To derive the (quantal) DRF, let Z = D•W, in which D is the critical dose, or minimum dose to

cause illness in a randomly-selected individual, a random variable with CDF equivalent in

essence to the DRF, also interpreted as the (minimum) size of the initial cause of illness; and

W is severity per unit dose, a random variable also interpreted as the product of the sizes of

causes subsequent to dose absorption. Across a population of individuals with varying suscep-

tibility as indicated by their critical dose, D, all three variables can be random and correlated

for a general exposure scenario, and hence linearity of response, Z, with dose, D, is not implied.

Nevertheless, at any given dose, the distribution of subsequent physiological response, W,

across a population defines the fraction of individuals responding at a particular severity level,

Z. Consequently, for a fixed clinical definition of illness corresponding to a minimum severity,

Z� Z�, the form of the physiologically-based distribution of W defines the form of the physio-

logically-based distribution of D across a population.

Letting the assumed clinical definition of illness be Z� Z� = 1, in arbitrary units, the critical

dose can be written D = Z�/W = 1/W. This inverse relationship between severity per unit dose

and the critical dose, for a constant severity, is expected because individuals who present a

high severity per unit dose (therefore being represented in the upper tail of the severity

distribution) will have a low critical dose (i.e. will respond at the low-dose end of the DRF).

Letting W, like Z, be distributed Weibull [18], then D is proposed to be necessarily distributed

Fréchet by transformation of variables [47]. That is, the probability of response at a dose is

FðdÞ ¼ exp½� ðd=xÞ� Z�, in which η is a positive shape parameter, and ξ is a positive scale

parameter. In physical systems, the exponential parameter η reflects the number of first-order

compounding increments, and the degree of autocorrelation. Overall, the lumped parameter

may be viewed as a logarithmic-scale parameter [18].

The Fréchet distribution is the first-order DRF accounting for response to single stressors

above background. For chemicals and other stressors having a threshold dose, d0, the shifted,

three-parameter Fréchet can be written:

FFðdÞ ¼ expf� ½ðd � d0Þ=x�
� Z
g

FFðd0Þ ¼ expf� ½d0�� Zg; d; d0; d0 � 0:
ð1Þ

in which d' is a scaled dose above threshold. Of note, the Fréchet can be monotonic in shape,

like the single-hit multistage model and as may be expected for stressors having no threshold
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dose, or sigmoidal in shape, like the two-hit multistage model and as might obtain for any

stressor.

Common mode mixture model

When components of a chemical mixture act by a common toxicological mode of action, ill-

ness response is considered to be a function of the sum of the individual doses, scaled by their

relative toxicities [27]. Then, when population response is greater/less than that predicted by

such dose addition, synergism/antagonism is indicated. In this work, the concept of dose addi-

tion is generalized, such that the total dose may also include additive positive or negative terms

of the same order, accounting for synergistic or antagonistic biological interactions among

those stressors. Such terms can be viewed as additional doses, positive or negative, acting by

the same common mode and thus similarly additive. Hence, neglecting three-way and higher

order interactions, all (two-way) interaction terms should be (a) additive, (b) accounting for

both doses while of the same order as individual doses, and (c) naught when either dose is

zero.

To develop a general common-mode mixture DRF, accounting for cases in which interac-

tions are not observed at low doses [48,49], all doses and interactions should be subject to

potential interaction thresholds below which the interaction is not observed (though some

thresholds may appropriately be set at zero, e.g. for cancer). Further, all common-mode

stressors should share toxicological causes, generally common in number, log-scale, and

autocorrelation, and therefore a common value of 1/η by first-order theory [18]. Finally, the

function, when considered a multivariate CDF, should not have Fréchet marginals, otherwise

predicted response would be zero when the dose of any component in the mixture was zero.

Rather, the univariate function obtaining in each dimension when all other doses equal zero,

and thus representing the cumulative distribution given all other doses equal to zero, must be

Fréchet.

The simplest common-mode mixture DRF meeting the criteria just outlined is proposed as:

FCMðdÞ ¼ exp � max
X

j

dj

xj

 !

þ
X

j6¼k

xj;k

ffiffiffiffiffiffiffiffi
djdk

q
 !

� d0

" #

; 0

( ) !� Z" #( )

ð2Þ

In Eq 2, d is a vector of J positive real doses, dj, of different stressors; FCM(d) is the probabil-

ity of response in terms of a common illness endpoint; ξj is the positive real scale parameter of

the j-th chemical or stressor; ξj,k = ξk,j are real scale parameters for the interaction between the

i-th and j-th chemicals or stressors, equal to zero when no interaction occurs; and η is a posi-

tive real shape parameter representing the number, log-scale, and autocorrelation of illness

causes, common across components of the mixture.

Eq 2 is closed-form, and ensures zero response below threshold via the maximum operator

(when d0 6¼ 0). The geometric mean interaction terms are zero when a constituent dose is

zero, and otherwise represent interactions on the same order as those of the individual doses,

like the covariance terms of the multivariate normal distribution. The DRF can be further gen-

eralized to include three-way and higher-order interactions similarly, though at considerable

expense in terms of parameterization and data demand. These interaction “dose” terms are all

assumed subject to threshold values, or interaction thresholds, below which no interaction is

observed. Because scaled doses and interaction terms are additive, and all corresponding

thresholds are constant, all thresholds can be expressed by a single constant. Accordingly, d0 is

a constant representing the overall scaled threshold dose for the total scaled dose of a mixture.
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Dissimilar mode and general mixture model

Dissimilar-mode health stressors, acting along parallel causal pathways, or MOAs, to a com-

mon midpoint or endpoint, have largely independent probabilities of causing illness (e.g., for a

given dose to a randomly-selected human subject, defensive mechanisms of one pathway acts

largely independently of those of other pathways). Therefore, the probability that the critical

total dose, D, of a mixture is less than or equal to some dose, d, corresponds to the union of

the events, Di� di, that any individual stressor causes illness. Then the probability of illness

can be found by the inclusion–exclusion principle as the probability of the union of the events

that doses d1, d2, . . . dI cause illness:

FðdÞ ¼
X

i

FFðdiÞ �
X

i6¼k

FMFðdi; dkÞ þ
X

i6¼k6¼l

FMFðdi; dk; dlÞ � . . .� FMFðd1; d2; . . . ; dIÞ ð3Þ

in which FMF(di, . . .) is the joint probability that the set of doses (di, . . .) is collectively at least

great enough to cause illness.

Eq 3 can be rewritten, as:

Fðd0Þ ¼
X

i

FFðd
0

iÞ �
X

i6¼k

FMFðd
0

i; d0kÞ þ
X

i6¼k6¼l

FMFðd
0

i; d0k; d0lÞ � . . .� FMFðd
0

1
; d0

2
; . . . ; d0IÞ ð4Þ

in which d’ is the vector of scaled effective doses accounting for interactions.

Then a new set of scaled effective doses, adjusted for all two-way interactions (and general-

izable similarly to account for higher order interactions), is proposed as follows:

d0i ¼ max
maxðdi � d0;i; 0Þ

xi
þ
X

k6¼i

xi;k maxð
ffiffiffiffiffiffiffiffi
didk

p
� d0 i;k; 0Þ; 0

" #

ð5Þ

in which the d0 i,k are interaction-specific threshold doses for each of the
XI

i¼1
ði � 1Þ pairs of

dissimilar-mode stressor doses, (di, dk), and I is the number of individual health stressors.

Thus, recognizing their relatively smaller contribution, interactions are represented as additive

adjustments to the effective dose of each individual stressor, rather than as separate stressors

with modes of action (and η) distinct from those of the interacting stressors. Also, distinct

thresholds are provided for each interaction in Eq 4 to maintain generality, e.g. to allow for

nonzero thresholds below individual stressor thresholds as a result of synergistic interactions.

In Eq 4, the FMF(.) terms are typically small relative to F(.) terms, and often neglected [27].

Alternatively, the doses of dissimilar-mode mixture components, following their adjustment

to account for interactions by Eq 5, may reasonably be assumed to act independently. That is,

the events that doses d'1, d'2, . . ., d'I cause illness are essentially independent. Thus, the proba-

bility, FMF, that the doses of more than one stressor in the mixture are sufficient to cause illness

is seen to be:

FMFðd
0

1
; d0

2
; . . .Þ ¼

Y

i

FFðd
0

iÞ ð6Þ

Eqs 4–6 represent a generalization of the concept of response addition, to allow dose adjust-

ment for interactions prior to the assessment of response based on the formula for the proba-

bility of the union of independent events [27]. Note that, in Eqs 4–6, each i-th stressor is

assigned a distinct ηi, to model dissimilar causal pathways, in contrast with the common

mode model. Similarly, distinct d0 i,k are provided for the interactions. Thus, for example, the
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dissimilar-mode model for a two-stressor mixture is [23]:

Fðd0Þ ¼ FFðd
0

1
Þ þ FFðd

0

2
Þ � FFðd

0

1
ÞFFðd

0

2
Þ

FFðd
0

1
Þ ¼ exp � max

maxðd1 � d0;1; 0Þ

x1

þ x1;2maxð
ffiffiffiffiffiffiffiffiffi
d1d2

p
� d0 1;2; 0Þ; 0

� �� Z1
� �

FFðd
0

2
Þ ¼ exp � max

maxðd2 � d0;2; 0Þ

x2

þ x1;2maxð
ffiffiffiffiffiffiffiffiffi
d1d2

p
� d0 1;2; 0Þ; 0

� �� Z2
� �

ð7Þ

Eq 4 can be considered a general DRF for health stressors having a common endpoint,

regardless of MOA, as follows. First, Eqs 4–6 represent a DRF for strictly dissimilar-mode

stressors, acting either independently or with interaction. Also, Eq 4 holds for the union of any

events, regardless of independence or MOA, and hence represents a theoretical generalization

of Eq 2. Therefore, Eqs 4–6 can model partially-dissimilar-mode stressors acting by dissimilar

modes to an intermediate point followed by a common mode to a single endpoint. Further,

Eqs 4–6 can also give the probability of response resulting from any mixture of chronic com-

mon- and dissimilar-mode stressors. That is, any component of the mixture, d, might itself be

a mixture of stressors acting by a single common mode, distinct from the modes of remaining

components of the mixture. Accordingly, any of the di in Eq 4 may represent a total dose of

stressors acting by a distinct but internally-common mode of action, transformed consistent

with Eq 2 as equal to:

di ¼ max
X

j

dj

xj
þ
X

j6¼k

ffiffiffiffiffiffiffiffi
didk

p

xj;k
� d0i; 0

( )

ð8Þ

Representing background risk

Unidentified background stressors typically result in a minor rate of illness in the unexposed

population, which affects the dose-response analysis. For carcinogens, the background risk is

represented by the parameter q0 in the multistage model, FM = 1 − exp(-q0 − q1d − . . . − qkdk),

in which q0, q1, . . ., qk are non-negative parameters and FM is the total response. For non-car-

cinogens, a common approach has been to apply the transformation DRF = c + (1-c) × CDF

[50], in which c is a parameter added to represent the background risk in terms of response.

Mathematically, this technique amounts to response addition with renormalization, implying

a different mode of toxic action by the background stressors relative to the stressor being

analyzed, as may often occur, and this approach can be used with the first-order model. Alter-

natively, a common toxic mode can be assumed for the background stress, by adding a param-

eter, db, representing a “dose” of total endpoint-specific background stress. That is, Eq 1 can be

written FF(d) = exp{-[db + (d − d0)/ ξ]-η}. Similarly, a background stress, db, can be added to

the common-mode mixture model of Eq 2. In the same way, a parameter d'b = (db − d0 b)/ ξb,

again representing background stress, could be added to any of the other doses, di, in Eq 5,

for example to study interactions of background stress with individual dissimilar-mode

stressors.

Empirical evaluation

The emergent first-order DRF of Eq 1 was first compared with observed mild cellular liver

necrosis (any observed necrotic hepatocytes seen) in female CD-1 mice following 14 day
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exposure to orally-administered chloroform [19] (S1 Table). Because of the observed response

at zero dose, these data were used to compare the approaches just described for handling back-

ground risk, assuming both common and dissimilar mode background stress. First, the first-

order model, transformed as FF,DMB = c + (1-c) × FF, was fitted and compared with the lognor-

mal transformed similarly and the multistage model. Then, observed liver damage was consid-

ered to result from a binary mixture of chloroform, modeled with scale parameter ξ1, and

“dose” of background liver stress, db, acting by common mode with no interaction. Again

because a response was observed at dose zero, a threshold dose was not observable and was

assumed conservatively at zero. Thus, the first-order common-mode mixture model FF(d) =

exp{-[db + d/ ξ1]-η} was fitted to the data, and compared with the lognormal, shifted likewise

with the addition of a parameter, db, and the multistage model. As shown in Fig 3 and Table 1,

the first-order model was associated with the highest p-value, suggesting better fit (though p-

values are not strictly comparable across models), particularly when assuming a dissimilar-

mode background (DMB) stress (p = 0.4557), though the lognormal with dissimilar mode

background also passed (p = 0.0799).

Fig 3. First-order/dissimilar-mode background (DMB), first-order/common-mode background (CMB), multi-stage, and lognormal DRFs versus

data on chloroform-induced mild cellular liver necrosis in mice.

https://doi.org/10.1371/journal.pone.0211780.g003
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The first-order model was also compared to the multistage model versus data on chronic

toxicity of aqueous potassium bromate to groups of 20–24 male inbred F344 rats for 104 weeks

(S1 Table) [21]. Data for the endpoint dysplastic focia, considered by the researchers to be a

preneoplastic lesion, represented sufficient range and resolution for the dose-response analy-

sis, and therefore were used. The first-order non-threshold model with DMB and common-

mode background (CMB) stress with no interaction were considered, and compared with the

multistage cancer model. As shown in Fig 4 and Table 1, not all animals responded at the two

highest doses, suggesting the possibility of a fraction of barely susceptible individuals in the

population. As shown, the first-order model assuming CMB stress was associated with the

highest p-value (p = 0.1473), particularly in modeling the barely-susceptible segment.

Though few chemical dose-response datasets are rich enough for significant and general

model comparison, the data on liver neoplasms and bladder carcinomas of the ED01 study [20]

include seven non-zero dose/response pairs for which response was regularly above back-

ground, representing no fewer than 20,328 BALB/c female mice fed chronic doses of 2-acetyla-

minofluorene, including those dying between preselected sacrifice intervals, analyzed for

several endpoints (S2 Table). Data on two endpoints, liver neoplasm and bladder carcinoma,

were sufficient and were used to evaluate the first-order (non-threshold) model for carcino-

gens. Because US human life expectancy was 79.8 y over the period 2010–2013, and the stan-

dard lifetime exposure factor for risk analyses is 70 y, and BALB/c female mouse intermediate

lifespan is 20 months [51], data for each endpoint at (70/80) x 20 = 18 months were used. In

addition, data at 33 months for each endpoint were analyzed for comparison with time-to-

Table 1. Empirical GOF results for all datasets.

Chemical/endpoint DRF Model χ2
p-value

Parameters

Chloroform/ mild cellular liver necrosis First-order DMB 0.4557 c = 0.0496, ξ1 = 0.2719, η = 2.4126

Lognormal DMB 0.0799 c = 0.0507, μ = -1.0434, σ = 0.6393

First-order CMB 0.0306 db = 0. 7886, ξ1 = 1.1711, η = 5.3731

Lognormal CMB 0.0198 c = 0.1896, μ = -0.6417, σ = 0.5555

Multistage 0.0046 q0 = 0.0486, q1 = 2.2191, q2 = 0

Bromate/ dysplastic focia First-order CMB 0.1473 db = 0.5485, ξ1 = 7.0161, η = 2.1617

First-order DMB 0.0434 c = 0.0243, ξ1 = 2.6715, η = 1.0072

Multistage 0.0905 q0 = 0.0113, q1 = 0.1367, q2 = 3.0472e-8

2-acetylaminofluorene/liver neoplasms 18 mo. First-order CMB 0.5894 db = 0.7015, ξ1 = 1025.7, η = 4.4386

First-order DMB 0.8116 c = 0.0116, ξ1 = 653.1273, η = 0.5455

Multistage 0.6318 q0 = 0.0119, q1 = 1.0133e-7, q2 = 5.9001e-6

2-acetylaminofluorene/liver neoplasms 33 mo. First-order CMB 2.5134e-011 db = 0.7023, ξ1 = 106.6296, η = 1.6303

First-order DMB 2.7750e-011 c = 0. 1676, ξ1 = 50.3095, η = 0.7745

Multistage 1.2779e-013 q0 = 0.3378, q1 = 9.6018e-8, q2 = 8.6465e-5

2-acetylaminofluorene/bladder carcinomas 18 mo. First-order CMB 0 db = 0.0070, ξ1 = 135.1038, η = 3. 8718�

First-order DMB 0.1827 c = 0.0070, ξ1 = 135.1038, η = 3.8718

Multistage 0 q0 = 7.1776e-4, q1 = 8.5288e-8, q2 = 1.1109e-5

2-acetylaminofluorene/bladder carcinomas 33 mo. First-order CMB 0 db = 0.25, ξ1 = 110, η = 7�

First-order DMB 0.3304 c = 0.0106, ξ1 = 84. 0961, η = 5.1121

Multistage 0 q0 = 0, q1 = 1e-20, q2 = 0.00008�

Benzene-toluene/mortality First-order CM 0.2825 ξ1 = 3, ξ2 = 30, ξ1,2 = -0.095 η = 1, d0 = 4.2

First-order DM 0.7804 ξ1 = 6, ξ2 = 30, ξ1,2 = 0, η1 = 1, η2 = 1, d0 1 = 10, d0 2 = 125, d0 1,2 = 0

�Parameters selected manually based on substantially improved visual fit.

https://doi.org/10.1371/journal.pone.0211780.t001
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tumor analysis of this dataset presented previously [18]. Because a background rate of illness

was apparent (all datasets have non-zero y-intercepts), the same models incorporating back-

ground stress as shown in Fig 4 were compared for these cancer data. Empirical DRFs were

plotted versus the first-order CMB, first-order DMB, and multistage cancer DRF models.

Results are shown in Fig 5 and Table 1. Again, the first-order model was associated with the

highest p-values for all datasets. In addition, the fit of the first-order model was accepted for all

datasets by GOF analysis (p� 0.05), except for the data on liver neoplasms at 33 months

which include an apparent extreme outlier (at 35 ppm) and which therefore did not fit any

models. Although the much higher p-values for the first-order DMB model, when fitted to the

18 and 33-month bladder carcinoma data, appear anomalous when compared with the p-val-

ues for the first-order CMB models, which appear almost identical visually and mathemati-

cally, the result is factual. That is, the high p-values for the first-order DMB model represent

sharp minimums in the log-likelihood function at the specific values of the background

parameter, c, given in Table 1. Such a minimum could not be reproduced using the other mod-

els. Thus, it appears that in this case the χ2-test is able to clearly distinguish between the models

and their treatment of background stress, due to the extremely large sample numbers. In gen-

eral, the one- and two-hit multistage models could not be reasonably fitted to the bladder car-

cinoma data, which were much more sigmoidal than the model could represent. This lack of

flexibility of the multistage model was confirmed in convergence checks, in which fit to the

18-month data could not be improved manually, and visual fit of 33-month data could be

improved (somewhat) only at the expense of the p-value.

Fig 4. First-order/dissimilar-mode background (DMB), first-order/common-mode background (CMB), and

multi-stage DRFs versus data on bromate-induced dysplastic focia (reported pre-neoplastic) in male inbred F344

rats.

https://doi.org/10.1371/journal.pone.0211780.g004
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To allow demonstration of the models for mixture dose-response assessment, a dataset rep-

resenting a full matrix of dose pairs, developed at least in part for examining mixture dose-

response relationships, was provided by Teuschler, Thiyagarajah, and coworkers (S1 Table)

[22]. Common- and dissimilar-mode first-order models, Eqs 2 and 7, were compared with this

orthogonal multivariate data on mortality in Japanese medaka (Oryzias latipes) following

10-day embryonic exposure to binary mixtures of benzene and toluene (Table 1). Parameters

of the first-order models were estimated by visual fitting of the 2-D curves shown in Figs 6(a)

and 7(a). Subsequent to this work, similar fits to these data were obtained using a proposed

gradient Markov chain Monte Carlo computational technique, presented previously [23].

Results of the first-order common mode model are shown in Fig 6 and Table 1, with the

non-zero parameter ξ1,2 = -10.5 suggesting antagonism. Of note, the J-shaped dose-response

Fig 5. First-order/dissimilar-mode background (DMB), first-order/common-mode background (CMB), and two-stage DRFs versus data on

2-acetylaminofluorene-induced liver neoplasms and bladder carcinomas at 18 and 33 months, in mice. (p = 0 denotes a p-value below machine precision).

https://doi.org/10.1371/journal.pone.0211780.g005
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relationship, which can be seen in one dimension for either chemical in the presence of the

other on the response surface plot, can be seen to result from this antagonism. For example, as

the concentration of toluene increases from zero in the presence of a constant 200 mmol/kg/d

benzene, the antagonistic effect increases, so that net toxicity decreases before eventually

increasing at higher doses of toluene. No significant difference was found between Eq 2 and

the data (n = 8 doses; α = 0.05; p = 0.2825). Thus, results indicate that an observed J-shaped

DRF may sometimes point to the presence of a second, possibly unrecognized, antagonistic,

common-mode stressor, rather than to non-monotonic toxicity.

In Fig 7 and Table 1, the first-order dissimilar mode DRF, Eq 7, is fitted to the data of Fig 6.

Interactions were not analyzed due to the lack of sufficient data to fit eight parameters of the

bivariate model. Again, the fit was accepted (n = 8 doses; α = 0.05; p = 0.7804). While the some-

what improved fit suggests the possibility of dissimilar mechanisms, this improvement may

also be explained by the higher parameterization of the general first-order model (in this case,

6 parameters versus 5 for the common mode model).

As a comparison of Eqs 2 and 4 with competitive DRFs, a general alternative would be the

log-linear form of the generalized linear model [52]. However, that model could be written as

Fig 6. First-order common mode DRF fitted to data on medaka mortality following 96 hours of embryonic

exposure to benzene/toluene mixtures. (a) mortality versus toluene dose, with and without 142 mmol/kg/d benzene,

and mortality versus benzene dose, with and without 14 mmol/kg/d toluene; and (b) fitted DRF, showing suggested

antagonism.

https://doi.org/10.1371/journal.pone.0211780.g006
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Eq 2 with η = 1, and in fact the fitted values of η, η1, and η2 found for these data were all con-

stant at unity. Therefore, for these data the log-linear model is equivalent to Eq 2 in terms of fit

and form.

Discussion

As mentioned previously, the single-chemical and mixture DRFs presented in Eqs 1–6 can be

considered special cases of Eq 4, termed here the emergent DRF. This DRF is derived based on

a general mechanism by which outcomes have been argued to develop across scales [32],

accounting for important cause size correlation along a trajectory, and producing a distribu-

tion of outcome sizes previously demonstrated for illness severity [18] and other physical and

biological outcomes [35,39,40]. Because no biological mechanisms specific to particular toxi-

cants were assumed as bases for the resulting emergent DRF, it may be useful, for example, as

an alternative to the lognormal and multistage dose-response models for carcinogens, noncar-

cinogens, and other non-microbial stressors. However, uncertainty in the parameters of any

DRF, such as related to extrapolation from (possibly genetically homogeneous) lab animals to

humans, and experimental variability, must generally be accounted for [53–55].

Fig 7. First-order dissimilar mode DRF fitted to the data of Fig 6. (a) mortality versus toluene dose, with and

without 142 mmol/kg/d benzene, and mortality versus benzene dose, with and without 14 mmol/kg/d toluene; and (b)

joint fitted DRF for mortality, assuming no interaction.

https://doi.org/10.1371/journal.pone.0211780.g007
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Dose-response uncertainty has most often been accounted for by computing confidence

bounds [50,53,56,57]. Alternatively, a DRF which is unconditional with respect to parameter

uncertainties and hence somewhat “broader” such that the dose associated with a policy-

derived acceptable response level is lower, can obtained by the theorem of total probability

[23,58,59]. (That is, the unconditional DRF is obtained by multiplying the DRF by the univari-

ate or joint distribution of parameter uncertainty, and integrating over the parameter range.)

In either case, Bayesian implementation allows use of non-traditional input information such

as HTS data. In fact, a tiered Bayesian strategy for characterizing population variability, using

in vitro data as Bayesian prior information to reduce reliance on animal data, has recently

been proposed and evaluated [15]. In all of these approaches, the underlying form of the distri-

bution of population variability is important for uncertainty analysis and extrapolation beyond

the range of the data, and as a template for integrating multiple input information types.

The emergent DRF model may be useful as an indicator of toxicological mechanisms, when

data are sufficient. As an example, the proposed common- and dissimilar-mode models were

previously fitted [23] to published data [60] on cholangiocarcinoma following exposure to

mixtures of PCB 126 and PCB 153. Effects of both PCBs are well-known to include cancer and

other health impairments [61,62]. Although the common-mode model contained only four

parameters, whereas the dissimilar-mode model had five, the common-mode model produced

a higher GOF p-value (0.8348 versus 0.1925). While data were insufficient to distinguish

between the models, and neither model could be rejected, such a result based on more data

might suggest some commonality in the toxicity of these structurally-similar compounds,

though PCB 126 is biochemically dioxin-like whereas PCB 153 is not. In addition, the com-

mon-mode model suggested significant synergism between the two toxicants (1/ξ1,2 was on

the same order as ξ1 and ξ2), consistent with reports of pharmacokinetic interactions between

PCB 153 and dioxin-like compounds including PCB 126 [63].

Based on current results, the following conclusions can be drawn:

1. A general emergent DRF is derived theoretically, initially demonstrated in preference to the

lognormal and multistage models for all cancer and non-cancer datasets analyzed, and

shown to fit all datasets except one with extreme outlier included. These results are consis-

tent with previously published demonstration of the model versus dose-response data on

crocidolite, and on benzene-toluene and PCB 126-PCB 153 mixtures [23,24];

2. Subject to continued verification, e.g. versus animal and PBPK data, the derived common-

and dissimilar-mode mixture models allow the assessment of the cumulative risk of chronic

stressors, potentially including chemical, environmental, occupational, lifestyle, economic,

and other factors, that can be expressed in terms of a homogeneous (e.g., non-microbial)

“dose;”

3. Because of the scale-inclusive and general nature of the model, extrapolation across scales

in terms of dose and physiological processes, and applicability across toxicological pathways

and endpoints, are theoretically supported for generalized cases;

4. Though the basic univariate form of the emergent DRF has only two parameters, like the

lognormal and the single-hit cancer models, it can assume either monotonic form like the

single-hit, as may be plausible for non-threshold toxicants, or sigmoidal form like the log-

normal, as may be expected particularly for threshold toxicants;

5. The common-mode emergent mixture DRF is a generalization of the log-linear form of the

generalized linear model; and
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6. Results of the mixture dose-response analysis presented illustrate how a difference in toxic

mode of action affects the joint DRF, and particularly how a chemical having a typical

monotonic DRF can present a J-shaped DRF when a second, antagonistic, common-mode

stressor is present in the mixture.

Though the generality of the emergent model may sacrifice some specificity, generality may

be important in toxicity screening, low-dose extrapolation, and the identification of disease

drivers, when uncertainty is accounted for explicitly [23,24]. Therefore, it is suggested that:

1. The model be further demonstrated versus traditional and new data types, due to the limita-

tions of biological data and the potential for stressor interactions;

2. The model be tested as an alternative for traditional dose-response assessment of chronic

chemical and other health stressors, and mixtures having common endpoint, and in Bayes-

ian and other non-traditional assessments potentially using HTS, multi-tissue co-culture,

multi-organ chip, and animal data;

3. To address parameter estimation for multicomponent mixtures, development of new fitting

algorithms should be continued, e.g. building on computer programs published previously

for the bivariate emergent DRFs and corresponding predictive Bayesian versions [23];

4. The theoretical basis of the emergent DRF may be considered in using HTS and other bio-

marker data to estimate parameters, and perhaps vice versa. For example, HTS data may be

useful in estimating the distributions of illness cause sizes from which the DRF derives,

likely via predominantly first-order kinetics. Also, selected biomarker data may represent

intermediate medical status along an MOA, though such status may be below the tipping

point for irreversible impairment, and the first-order severity model applies to such inter-

mediate status as well as to final severity. Thus, for example, the value of the parameter, η,

of the DRF, which is directly related theoretically to the analogous parameter (theoretically

constant with dose) of the illness severity distributions, might reasonably be inferred to be

smaller than the value of η found for the Weibull distribution of severity of the preceding

biomarker, because the inverse value of η indicates the extent of first-order compounding

to that point along an MOA.
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