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For assessing the fit of item response theory models, it has been suggested to apply

overall goodness-of-fit tests as well as tests for individual items and item pairs. Although

numerous goodness-of-fit tests have been proposed in the literature for the Raschmodel,

their relative power against several model violations has not been investigated so far. This

study compares four of these tests, which are all available in R software: T10, T11, M2,

and the LR test. Results on the Type I error rate and the sensitivity to violations of different

assumptions of the Rasch model (unidimensionality, local independence on the level of

item pairs, equal item discrimination, zero as a lower asymptote for the item characteristic

curves, invariance of the item parameters) are reported. The results indicate that the

T11 test is comparatively most powerful against violations of the assumption of parallel

item characteristic curves, which includes the presence of unequal item discriminations

and a non-zero lower asymptote. Against the remaining model violations, which can be

summarized as local dependence, M2 is found to be most powerful. T10 and LR are

found to be sensitive against violations of the assumption of parallel item characteristic

curves, but are insensitive against local dependence.

Keywords: item response theory, Rasch model, item fit, type I error, power

INTRODUCTION

The application of models of item response theory (IRT) in psychological assessments requires
a good fit of the chosen model to the data (see, for instance, Maydeu-Olivares, 2013). This is
particularly true for the Rasch model (Rasch, 1960), which makes strong assumptions on the
underlying item response process, which include local independence and parallel item response
curves (see also Fischer, 1995). These assumptions lead to numerous unique characteristics of
this model. For instance, the sum score is a sufficient statistic for a respondent’s ability, the item
and person parameters are separable, and comparisons of subpopulations are independent from
the items used for this comparison, which is also named specific objectivity (McDonald, 1999).
Numerous approaches for testing the model fit have been proposed (for overviews, see e.g., Glas
and Verhelst, 1995; Maydeu-Olivares and Montaño, 2013). Among the described methods, overall
goodness-of-fit tests can be discerned from tests which assess the model fit of individual items, item
pairs, or persons. This article focuses on tests of the first type.

Among the overall goodness-of-fit tests, tests based on first-order statistics, which are built upon
the comparison of expected and observed scores for individual items, can be discerned from tests
based on second-order statistics, which are built upon the comparison of expected and observed
scores for item pairs (van den Wollenberg, 1982; Glas, 1988; Suárez-Falcón and Glas, 2003).
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Following Suárez-Falcón and Glas, tests based on first-order
statistics aim to be sensitive against violations of the assumption
of parallel item characteristic curves. Tests based on second-
order statistics, on the other hand, are designed to detect
violations of the local independence assumption.

Some authors recommended the use of omnibus tests, like
the M2 statistic of Maydeu-Olivares and Joe (2005), which aim
to be sensitive against all model violations of practical relevance.
This suggestion was supported by some simulation studies (e.g.,
Maydeu-Olivares and Montaño, 2013). In the classification of
first- and second-order statistics,M2 is a second-order statistic.

Another practical concern of many global fit statistics for the
Rasch model is that they are usually based on asymptotic theory,
and may lead to unreliable results in small datasets. To assess the
global model fit for small datasets, Ponocny (2001) suggested a
non-parametric approach. Since the asymptotic distribution of a
test statistic under the Rasch model does not need to be known
in this framework, several additional test statistics were defined
under this framework, of which only some have been evaluated
in systematic simulation studies (e.g., Ponocny, 2001; Chen and
Small, 2005; Koller et al., 2015).

Under a practical perspective, the problem of assessing the
fit to the Rasch model has at least two aspects. The first aspect
concerns the question which model test should be selected to test
against a specific alternative model. The second aspect concerns
the question which model violations can and cannot be detected
by a specific model test. Both aspects make it necessary to
evaluate the available test statistics with regard to their relative
power against several alternative models of interest. Only few
studies have evaluated the Type I error rate and power of
the non-parametric model tests for larger datasets (an example
being the unpublished diploma thesis of Jordan, 2010), and
no studies seem to be available which compare non-parametric
model tests for the Rasch model with omnibus tests like the M2

statistic.
This study therefore adds to the literature by comparing

four available parametric and non-parametric first- and second-
order statistics for the Rasch model with regard to their Type
I error and their power against several alternative models in a
broad simulation study. The evaluated test statistics were selected
based on three criteria: First, all tests are currently available
in published software and can therefore be easily applied to
empirical datasets. Second, all tests were found to have power
against several alternative IRT models in previous studies. Third,
the tests are designed as global tests of model fit to the Rasch
model. Based on these criteria, the following four test statistics
were selected for this study: The LR statistic of Andersen (1973),
the T10 and T11 test statistics of Ponocny (2001), and the M2

statistic of Maydeu-Olivares and Joe (2005).
The rest of this paper is organized as follows: In the following

section Four Statistics for Testing the Fit of the Rasch Model, the
four statistics are described. SectionMethod describes a variety of
simulation studies for evaluating the various approaches, whose
results are reported in section Software Used in This Study.
In section Results, the application of all tests to an empirical
dataset is illustrated. In section Empirical Data Example, all
results are discussed and suggestions for practical applications
are given.

FOUR STATISTICS FOR TESTING THE FIT
OF THE RASCH MODEL

As is widely known, the Rasch model uses the following item
response function for describing the probability of a positive
response of respondent j to item i:

P(Xji = 1|θj,βi) =
eθj − βi

1+eθj−βi
(1)

In the context of psychological and educational testing, the item
parameter βi can be interpreted as a difficulty parameter for item
i, whereas the person parameter θj can be interpreted as an ability
parameter for respondent j. The following subsections provide an
overview of the tests which are compared in this study.

The LR Test of Andersen
This test was proposed by Andersen (1973) and further evaluated
in a number of simulation studies (e.g., Suárez-Falcón and Glas,
2003). It aims at evaluating the stability of the item parameters
βi over different groups of respondents by comparing two
conditional likelihoods. In order to calculate the test statistic,
the original sample of test respondents is partitioned in G score
groups. For each of the score groups and the total sample, the
conditional likelihood of the observed responses is calculated.
Given these likelihoods, the LR statistic is given by Glas and
Verhelst (1995, p. 87):

LR = 2(

G∑

c=1

lnLc(β̂c)− lnL
(
β̂
)
)

In this equation, L(β̂) denotes the conditional likelihood in
the total sample based on the conditional maximum likelihood
estimations of the item parameters, whereas Lc(β̂c) denotes the
conditional likelihood of the responses of group c based on the
CML estimations of the item parameters in this score group.
Under the Rasch model, the LR statistic is asymptotically χ2-
distributed, with degrees of freedom equal to the number of
parameters estimated in all respondent groupsminus the number
of parameters estimated in the total sample. LR is a first-order
statistic. A widely used global test for the Raschmodel is obtained
if two groups, which consist of respondents with a raw score
above or below the median raw score, are used for calculating LR.
It was found to be sensitive against violations of the assumption
of parallel item characteristic curves, but insensitive against
multidimensionality (e.g., van den Wollenberg, 1982).

The M2 Test of Maydeu-Olivares and Joe
This test is based on the general idea of using limited information
statistics for assessing the global model fit. In contrast to the LR
statistic, it is based on marginal maximum likehood estimation
procedures for the item parameters, which assume a normal
distribution for the person parameters. Maydeu-Olivares and Joe
(2005) proposed a family of test statistics which are based on the
moments of the multivariate Bernoulli distribution. It consists
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of statistics of the type (Maydeu-Olivares and Montaño, 2013, p.
119):

Mr = N(pr − πr(θ̂))
′Ĉr(pr − πr(θ̂))

Cr = Ξ−1
r − Ξ−1

r ∆r(∆
′
rΞ

−1
r ∆r)

−1
∆′

rΞ
−1
r

In these equations, N denotes the sample size, πr(θ̂) denotes the
vector of moments of the multivariate Bernoulli distribution up
to order r, pr denotes the vector of sample joint moments up
to order r. Ĉr denotes the evaluation of Cr at θ̂ , whereas Ξ is

the asymptotic covariance matrix of
√
N(pr−πr

(
θ̂

)
). Finally,

∆r= ∂πr(θ)
∂θ ′ , with θ ′ denoting the transpose of θ .

The basic idea of these statistics is the comparison of the
observed moments for the multivariate Bernoulli distribution
with those expected under a specific IRT model. Large deviations
between the observed and expected moments indicate a model
violation. Under the assumption of model fit, Mr follows a χ

2-
distribution with s×q degrees of freedom, where s=

∑r
i=1

(
n
i

)
,

with n being the number of items, and q the number of
estimated item parameters. Of this proposed family of statistics,
M2 was recommended by Maydeu-Olivares and Montaño (2013)
for testing IRT models, since it does not only use bivariate
information, but also has an accurate asymptotic approximation
in small samples.M2 is a second-order statistic.

This test was recently evaluated in several studies (Maydeu-
Olivares and Joe, 2005; Ranger and Kuhn, 2012;Maydeu-Olivares
and Montaño, 2013). Their results indicated that it has power
against violations of various assumptions made in commonly
used IRT models, like the unidimensionality assumption, the
assumption of local independence, and misspecifications of the
form of the item characteristic curves.

The Non-parametric Tests of Ponocny
Ponocny (2001) proposed a framework of tests for assessing
the fit of the Rasch model in small samples. Since these tests
do not require the estimation of person or item parameters,
they are non-parametric. Tests in this framework are based on
comparing the value of a test statistic, which represents a model
violation of interest, against its distribution in a bootstrap sample
of data matrices with the same marginal sums (i.e., the row and
column sums) as the original dataset. This comparison leads to
the calculation of p-values. Small p-values typically indicate a
violation of the Rasch model. Statistically, these tests were shown
to be uniformly most powerful tests of the Rasch model against
more general IRT models. The bootstrap samples necessary for
this procedure can be generated using algorithms proposed by
Ponocny (2001), Chen and Small (2005), or Verhelst (2008). An
important aspect of the non-parametric tests is that they are not
feasible for large datasets because the related calculations become
computationally too demanding.

We now consider two statistics proposed by Ponocny (2001)
for assessing the overall model fit of the Rasch model in this non-
parametric approach. The first test statistic, T10, is designed as
a global test statistic for subgroup-invariance. It is calculated as

T10=
∑

ij |N
(h)
ij N

(l)
ji −N

(l)
ij N

(h)
ji |, where N(h)

ij denotes the number

of respondents giving a positive response to item i, but not to
j, and obtaining a raw score which corresponds to at least the

median of the observed raw score distribution. N
(l)
ij corresponds

to the number of respondents showing the same response
behavior, but obtaining a raw score below the median. This
statistic can be considered as a non-parametric counterpart to
the LR test and thus as a first-order statistic. Both tests were
compared by Koller et al. (2015) in the context of the detection of
differential item functioning (DIF) in small datasets, where T10

outperformed LR.
The second test statistic, T11, is designed as a global test for

the violation of local stochastic independence. This statistic is
calculated in two steps: First, the average inter-item correlation
ρij between all items i and j is calculated using the generated
bootstrap samples, leading to an estimation of its expected value
under the Rasch model. It is interesting to note that this step
does not require the calculation of Rasch model parameters.
T11 aims at comparing the expected values with its observed
inter-item correlation rij and is calculated in a second step as
T11=

∑
ij

∣∣rij−ρij

∣∣. Since T11 is based on comparing the observed

and expected inter-item correlations, it is a second-order statistic.
This test was found to be sensitive against multiple alternative
models in an unpublished study of Jordan (2010).

Goals of This Study
This study aims at comparing the tests based on the
aforementioned first- and second-order statistics with regard to
their Type I error rate and their power against several model
violations (unidimensionality, local independence on the item
level, equal item discrimination, zero as a lower asymptote for the
item response function and invariance of the item parameters).
Type I error rates and power rates will be reported for different
conditions of sample size and test length.

These evaluations will be based on a variety of simulation
studies, which will be described in the next section. Furthermore,
the results of the four model tests in an empirical dataset will be
compared.

METHODS

A variety of simulations studies was conducted to compare the
four global model tests. Among the simulated datasets, there were
four levels of sample size (100, 200, 500, and 1,000) and three
levels of test length (10, 30, and 50). These sizes of the simulated
respondent samples and item sets were chosen to be comparable
to those typically reported in psychological research.

In all simulations, values for all model parameters were drawn
from specific distributions, with the item parameters being fixed
over all iterations and the person parameters being redrawn
for each iteration. After having drawn all model parameters,
standard functions from the eRm (Mair et al., 2015) and mirt
(Chalmers, 2012) software packages were used to generate data
under the various data generating models.

To obtain stable results, 5,000 iterations were run under each
condition. The following subsection provides an overview of
the data generating models used in this study. It is stated with
each alternative model which tests were expected to be sensitive
against it.
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Models Used for Data Generation
In a first simulation study, the empirical Type I error of all
goodness-of-fit tests was investigated. In this study, the Rasch
model, whose item response function is given by Equation (1),
was used as data generating model. In each simulated dataset,
the person parameters θj and the item difficulty parameter βi

were drawn from a standard normal distribution. All tests were
expected to hold their nominal alpha level.

The second simulation study simulated a specific violation
of local independence between two items. This type of model
violation can occur as a result of similar item content or learning
effects, or if one item is a prerequisite of another. The underlying
idea of this model violation is inspired by the theory of knowledge
spaces (e.g., Albert and Lukas, 1999; Doignon and Falmagne,
1999). It is assumed that there is a partial order in the item
set, which is based on the knowledge or the abilities that are
necessary for solving the individual items. As a consequence,
it is not possible to solve difficult items from this order, which
require more advanced knowledge, without being able to solve
easier items, which require more basic knowledge. To simulate
this model violation, all data were first generated based on the
Rasch model as in the first simulation study and then altered
subsequently. In this model violation, item 1, which had an item

difficulty parameter of −0.626 in the data generation, was seen
as a prerequisite of the more difficult item 2 with a difficulty
parameter of 0.184. If the person parameters are drawn from a
standard normal distribution, item 2 is typically solved by about
46% of the respondents. To simulate local dependence between
these items, the response patterns of all respondents who gave
a positive response to item 2, but not item 1, were considered.
For 90% (corresponding to a major model violation) or 80% of
these respondents (corresponding to a minor model violation),
the response to item 1 was set to be a positive one. Simulations
indicated that, as a consequence of this change, only 1.3% of all
respondents provided a positive response to item 2 but not item
1 under the major model violation, whereas this was the case
for 2.6% under the minor model violation, leading to a partial
order between these items in a majority of the sample. This type
of model violation resembles another model violation named
surface local dependence (Chen and Thissen, 1997; Edwards
et al., 2018) that is based on identical response patterns between
pairs of items. The data generating model in our simulation study
resembles surface response dependence because easier items in
the simulated partial order are set to be solved when the more
difficult items have been solved too, what makes the response
vectors of these item pairs more similar than it is expected under
the Rasch model. We expected the second-order tests M2 and
T11 to be sensitive against this model violation, but not LR
and T10.

The third simulation study aimed at the simulation of
multidimensional data, which is another violation of the local
independence assumption. Multidimensionality is commonly
found in empirical datasets, and many methods for its detection
have been proposed (e.g., Reckase, 2009). In these simulations,
two person parameters θj1 and θj2 were drawn from a bivariate
standard normal distribution with a covariance of r for
each respondent j. Again, the item difficulty parameters were

drawn from a standard normal distribution. After drawing all
parameters, Equation (1) was used to generate the response
matrix, with each person parameter used to generate responses
for one half of the item set. r was set to 0.3 or 0.7, depending
on the simulated condition. These conditions were chosen to
mirror a weak or medium relationship between two latent traits.
Similar designs were used in the studies of Maydeu-Olivares and
Montaño (2013) and Suárez-Falcón and Glas (2003). Since this
condition concerns another violation of local independence, we
again only expected the second-order tests M2 and T11 to be
sensitive against this model violation, and not LR and T10.

The fourth simulation study aimed at testing the power of
the various model tests against a mixed Rasch model (Rost,
1990; Rost and von Davier, 1995), in which the parameter
invariance assumption of the Rasch model is violated. Again,
this is a common model violation whose detection is of high
practical relevance (Holland and Wainer, 1993; Magis et al.,
2010). In this simulation study, data were generated similar to
the first simulation study, which investigated the Type I error
rate. However, the item difficulty parameters of the first 20
or 40% of the items were reduced by 0.8, depending on the
simulated condition, for 40% of the simulated respondents. The
resulting two classes of respondents were assumed to be latent.
This model violates the local independence assumption, since the
probability of a correct response depends on the class to which
the respondent belongs. This simulation study was inspired by
previous studies on DIF detection in IRT studies (e.g., DeMars
and Jurich, 2015; Kopf et al., 2015). As in the previous two
simulation studies, we expected a sensitivity of M2 and T11

against this model violation.
The remaining simulation studies addressed violations of

the assumption of parallel item characteristic curves. In these
studies, data were generated under IRT models which generalize
the Rasch model and have been regularly applied in empirical
analyses.

In a fifth simulation study, the model tests were further
evaluated using datasets generated from the 2PL model
(Birnbaum, 1968). This model violates the assumption of equal
item discrimination of the Rasch model. The probability of a
positive response was therefore given by:

P(Xji= 1|θj,αi,βi) =
eαi(θj−βi)

1+eαi(θj−βi)

Both the person parameters θj and the item difficulty parameters
βi were drawn from a standard normal distribution. Depending
on the simulated condition, the item discrimination parameters
αi were drawn from a log-normal distribution lnN(0, 0.09) or
lnN(0, 0.25), corresponding to a weak or strong violation of
this assumption. Again, similar designs were used in the studies
of Suárez-Falcón and Glas (2003) and Maydeu-Olivares and
Montaño (2013). We expected all tests to be sensitive against this
model violation, with the most powerful possibly being LR and
T10, which are designed to detect this model violation.

The sixth simulation study aimed at evaluating the sensitivity
of the four model tests against the violation of the assumption
that the item characteristic curves have 0 as a lower asymptote.
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In empirical datasets, this assumption can be violated if
respondents are able to guess the correct response. In the
resulting one-parametric logistic (1PL) model with a pseudo-
guessing parameter, the probability of a correct response is given
by:

P(Xji= 1|θj,βi,γi) =γi+(1−γi)
eθj−βi

1+eθj−βi
(2)

As in the other models used in this simulation study, the
item difficulty parameters βi and the person parameters were
drawn from a standard normal distribution, whereas the pseudo-
guessing parameters γi were set to 0.1 or 0.25, depending on
the simulated condition. Again, these values correspond to a
weak or strong violation of this assumption. These values were
drawn to mimic a situation where respondents with low ability
would randomly select one response among ten (γi= 0.1) or four
(γi= 0.25) response alternatives. Again, we expected all tests to
be sensitive against this model violation with the most powerful
possibly being LR and T10.

SOFTWARE USED IN THIS STUDY

The free open framework for statistical computing R (R Core
Team, 2017) was used in version 3.4.2. The following R packages
were used for the data analysis: In order to apply the LR test
of Andersen (1973) and the nonparametric tests of Ponocny
(2001), the eRm package of Mair et al. (2015), version 0.16-
0, was used. The M2 test of Maydeu-Olivares and Joe (2005)
was applied using the mirt package of Chalmers (2012), versions
1.27.1 and 1.29. In the simulation studies involving the T10 and
T11 statistic, the calculation of the p-values for these tests was
based on 500 bootstrap samples for each dataset, using the default
settings of the eRm package. The simulation studies were carried
out using the SimDesign software package, versions 1.9 and 1.11
(Chalmers, 2018).

Under all conditions, an EM algorithm was used to estimate
the item parameters in the mirt package. In the estimation of
the difficulty parameters of the Rasch model, this algorithm
converged within 500 iteration cycles under all conditions, which
is also the default setting.

RESULTS

The results of the simulation studies are presented in three
separate subsections. The first section contains results pertaining
to the preservation of the nominal Type I error rate of each
test. In the remaining two sections, the results on the sensitivity
against alternative IRT models are summarized.

We first present results concerning IRT models which violate
the local independence assumption of the Rasch model. These
models encompass the two-dimensional Rasch model, the model
with surface local dependence and the mixed Rasch model. We
then present results on IRT models which violate the assumption
of parallel item characteristic curves. These models include the
2PLmodel and the 1PLmodel with a pseudo-guessing parameter.

The results on the power of the four tests are presented
as figures, which illustrate the power under conditions with
major violations of the Rasch model. Readers who are interested
in detailed results for all conditions are pointed to the
Appendix, where these results are presented as tables.

The Type I Error Rate
In general, the nominal alpha level of 0.05 was preserved under
almost all conditions. For the tests based on LR and T10, the
Type I error rate was between 0.04 and 0.06 under all conditions.
For T11, the Type I error rate was between 0.056 and 0.063
for conditions with 30 items and between 0.067 and 0.070 for
conditions with 50 items. For conditions with 10 items, the Type
I error rate was between 0.048 and 0.052. There was no obvious
relationship between an increase of the Type I error rate and the
underlying sample size. For the test based on M2, an increased
Type I error rate was generally observed for conditions with long
tests and small samples. For this test, a Type I error rate above
0.060 was observed for conditions with samples of 100 or 200
respondents working on tests of length 30 or 50. Under all other
conditions, the Type I error rate of this test was between 0.047
and 0.058. Analogous results were found for a nominal alpha
level of 0.01. Detailed results are presented in Table A1 in the
Appendix.

Sensitivity Against Violations of Local
Independence
The power of the four tests against alternative models which
violated the local independence assumption of the Rasch model
are summarized in Figure 1 for major model violations, whereas
detailed results are reported in Tables A2, A4 in the Appendix.

We will first discuss the results of the simulation study
where the data were generated based on a multidimensional
Rasch model with a correlation of 0.3 between the latent traits,
indicating a major model violation. Under these conditions,
M2 showed power rates between 0.471 and 1.000 and was
overall most powerful. T11 was slightly less powerful under these
conditions, with power rates between 0.378 and 1.000. For LR and
T10, the power rates did not exceed 0.103. For a minor violation
of multidimensionality (r = 0.7), analogous results were found.
Detailed results are presented in Table A2.

Similar results were found for the model in which solving
item 1 was a prerequisite for solving item 2 in a large part of
the sample. This model thus simulated a partial order between
these items. In case of a major model violation, the rate of
significant results was between 0.130 and 1.000 for M2. The
power of T11 was slightly smaller, with corresponding rates
between 0.087 and 0.876. For LR and T10, these rates ranged
between 0.050 and 0.690. For all tests, these rates were higher
in datasets with a larger sample of respondents and smaller item
sets. Similar results regarding the relative power of the tests were
found in conditions with a minor model violation. In summary,
M2 was the most powerful test against this model violation,
although the other tests still had considerable power, particularly
in datasets with small item sets. Detailed results are presented in
Table A3.
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FIGURE 1 | Power of the T10, T11, M2, and LR tests against major violations of local independence under various conditions of test length and sample size.

M2 and T11 also had some power against differential item
functioning, i.e., the mixed Rasch model, although the power
rates were smaller than in the other simulation studies that

investigated violations of local independence. If 40% of the items
were affects by DIF for 40% of the respondents, the power rates
ranged between 0.056 and 0.354 for M2 and between 0.051 and
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0.277 for T11. For LR and T10, the power rates were 0.081 or
below and therefore only slightly above the Type I error rate.
Again, analogous results were found for a minor model violation.
Detailed results are presented in Table A4.

In summary, in line with the expectations, the tests based
on T11 and M2 were most powerful against violations of local
independence, withM2 being slightly more powerful. LR and T10

had some power against local dependence on the level of item
pairs and were insensitive against the mixed Rasch model and
multidimensionality. This last finding is consistent with results
reported by van den Wollenberg (1982), who used this finding to
motivate the development of second-order statistics. The results
for LR and T10 were not unexpected, since these statistics do not
aim at detecting violations of the local independence assumption.
It was overall surprising that none of the tests had much
power against DIF, which is a model violation of high practical
relevance.

Sensitivity Against Violations of Parallel
Item Characteristic Curves
In datasets generated from models which violated the
assumptions of parallel item characteristic curves, a quite
different pattern for the relative power of the four model tests
was observed. The results for the major model violations are
illustrated graphically in Figure 2, whereas detailed numerical
results are given in Tables A5, A6 in the Appendix.

We first discuss the results on the power against the 2PL
model. In summary, all tests were sensitive against the 2PL
model, with many power rates being identical to or close to
1.000. Overall, T11 was the most powerful test against this model
violation, with power rates of 0.532 or above for a major model
violation and 0.194 or above for a minor model violation. LR
and T10, which aim at detecting this model violation, are of
comparable power and slightly less sensitive than T11, with
power rates of 0.453 or above for major model violations and
0.176 or above for minor model violations. M2 was overall
least powerful against this model violation, with power rates of
0.392 or more for major model violations and 0.147 or more
for minor model violations. Detailed results are presented in
Table A5.

Similar results were found for the 1PL model with a pseudo-
guessing parameter. Again, T11 was overall most powerful,
with LR and T10 being slightly less sensitive and M2 being
least powerful. For major model violations, the power rates
of T11 ranged between 0.079 and 0.999, depending on the
sample size and test length. For LR and T10, the power
rates were between 0.066 and 0.993. For M2, the power rates
were between 0.076 and 0.492. Again, similar results were
found for minor model violations. Table A6 presents detailed
results.

In summary, T11 was most powerful against these model
violations, which is a surprising result given that it is not
designed to detect model violations of this type. M2, on
the other hand, which is designed as an omnibus test, was
unexpectedly found to be rather insensitive against a 1PL model
with a pseudo-guessing parameter. In agreement with their

aim, LR and T10 had considerable power to detect these model
violations.

EMPIRICAL DATA EXAMPLE

To further compare the results of the four tests, all methods were
applied to an empirical dataset. This dataset was part of a larger
dataset used by Janssen and Geiser (2010) to investigate solution
strategies in mental rotation tasks, and was later made available
in the TAM package for R (Kiefer et al., 2016). It contains the
responses of 346 German students to eight items of a cube
comparison task; a more detailed description of the sample and
the test was provided by Janssen and Geiser. Other authors have
found a good fit of similar tasks to the Rasch model (e.g., Tanzer
et al., 1995). Janssen and Geiser found evidence for different
solution strategies in these tasks, which may result in a violation
of the assumption of local independence in the Rasch model,
similar to the mixed Rasch model. Based on this hypothesis and
the results of our simulation studies, we may select the M2 or
T11 statistic to test the Rasch model against models with local
dependence.

For both the M2 (M2 = 72.642, df = 27) and the T11

test, p-values smaller than 0.001 were obtained. In summary,
these results indicate a violation of local independence, which is
consistent with the hypothesis of Janssen and Geiser (2010). For
the sake of completeness, we also report p-values for the other two
tests: A p-value of 0.029 was found for the LR test (LR = 15.633,
df= 7), and for the T10 test, a p-value of 0.016 was calculated.

DISCUSSION

An important question in the practical application of any
statistical test is whether the empirical Type I error equals the
nominal Type I error rate. It was found that the nominal level of
significance was preserved by the LR and the T10 tests, whereas
the Type I error rate for T11 was increased for longer tests and
for M2 in datasets with small samples working on long tests.
Given these results, we will now discuss whether each test is
sensitive against the model violations it was designed to detect,
and whether it is sensitive against other model violations.

Although the T11 test was designed as a global test for
local independence, it was found to be also sensitive against
alternative models which violate the assumption of parallel item
characteristic curves. These results indicate that it should rather
be seen as a test that is sensitive against various alternative
models. Although T11 was designed for small samples, the
reported results indicate that this test has a slightly increased
Type I error rate in longer tests, which had not been previously
reported in the literature.

The results for M2 indicate that this test is particularly
useful to detect local dependence when testing the Rasch model.
Compared to the other three tests, it has overall less power against
violations of the assumption of parallel item characteristic curves,
which was not reported by previous studies. Another important
difference between M2 and the other tests is that M2 is based on
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FIGURE 2 | Power of the T10, T11, M2, and LR tests against major violations of the assumption of parallel item response curves under various conditions of test

length and sample size.

MML estimation and thus assumes a normal distribution of the
person parameters.

The LR and T10 tests were found to be particularly sensitive
against alternative models which violate the assumption of
parallel item characteristic curves. Although these first-order
statistics do not aim to be sensitive against a violation of local
independence on the level of item pairs, the results indicate that
these tests also have some power against this model violation in
small tests. The results also show that these tests are not sensitive
against multidimensionality or the mixed Rasch model.

As was already stated in the introduction, the problem of
selecting an appropriate global fit test for the Rasch model
involves two related, but distinct questions. The first question
concerns the selection of a fit statistic to test against a specific
alternative model. Generally, not all model violations detected by
overall goodness-of-fitness tests need to be of practical relevance
(cf. van der Linden and Hambleton, 1997, p. 16), but the

application of insensitive model tests might result in overlooking
model violations of practical relevance. A sensible strategy for
avoiding this pitfall might entail the formulation of alternative
IRT models which correspond to practically significant model
violations, the selection of model tests which are most powerful
against these models, and an estimation of the necessary sample
size for testing against these models with sufficient power. The
evaluation of the relative power of the available model tests
against various alternative models, as it was done in this study,
is a necessary step in the development of tools for power analysis
and sample size planning in the field of IRT. We also note that
a number of approaches have been proposed in the literature
to assess whether a model misfit has practical significance, for
instance, using model residuals (Sinharay and Haberman, 2014)
or graphical model checks (Sinharay, 2005).

The second question concerns the interpretation of the results
of the model tests. Our results indicate that not all test statistics
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are specifically sensitive against the model violations they were
designed to detect (for instance T11, which is not only sensitive
against violations of local independence), and that no model
test has power against all model violations considered here.
For practical test evaluations, this leads to the recommendation
to carry out several model tests if there are multiple plausible
alternative models. These tests can be complemented by fit
statistics for individual persons, items or item pairs to assess
the fit of a given dataset to the Rasch model. A similar advice
was given by van der Linden and Hambleton (1997, p. 16) for
assessing the fit of the 2PL and 3PL models, and by Maydeu-
Olivares and Liu (2015). Glas andVerhelst (1995, chap. 5.2.3) give
an overview of tests on the level of individual items, whereas Kim
et al. (2011) evaluate several general tests of model fit on the level
of item pairs, which can also be applied in the context of the Rasch
model. Methods for the detection of DIF effects in the context of
the Rasch model entail tests based on focal and reference groups
(for an overview: Magis et al., 2010), mixed Rasch models (Rost,
1990; Rost and von Davier, 1995) and Rasch trees (Strobl et al.,
2015). The application of these tests may help in detecting the
exact nature of the model violation.

Another question of practical relevance, which was not
addressed in this study, concerns the problem of assessing model
fit in the presence of missing data (for an overview: Mislevy,
2017). Of the four tests considered in this study, the statistic of
the LR test can be calculated even in the presence of missing
data. On the other hand, this is not directly possible for M2,
T11, and T10. The mirt software package uses data imputation

(e.g., Schafer and Graham, 2002) to allow the calculation of
M2 even in the presence of missing data. However, missing
data might be generated by various different processes (Mislevy,
2017), and the use of data imputation and similar methods
may or may not lead to a bias in the test statistics, depending
on the specific process. This important topic is left to future
research.
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