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Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist,
has been employed clinically as an intravenous anesthetic since the 1970s. More
recently, ketamine has received attention for its rapid antidepressant effects and
is actively being explored as a treatment for a wide range of neuropsychiatric
syndromes. In model systems, ketamine appears to display a combination of neurotoxic
and neuroprotective properties that are context dependent. At anesthetic doses
applied during neurodevelopmental windows, ketamine contributes to inflammation,
autophagy, apoptosis, and enhances levels of reactive oxygen species. At the
same time, subanesthetic dose ketamine is a powerful activator of multiple parallel
neurotrophic signaling cascades with neuroprotective actions that are not always
NMDAR-dependent. Here, we summarize results from an array of preclinical studies
that highlight a complex landscape of intracellular signaling pathways modulated by
ketamine and juxtapose the somewhat contrasting neuroprotective and neurotoxic
features of this drug.

Keywords: ketamine mechanism, neuroprotection, ketamine-induced neurotoxicity, BDNF, NMDA receptor, AMPA
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INTRODUCTION

Over the past several years, ketamine has garnered significant interest as a novel therapeutic within
the research and lay/media communities for its efficacy as a rapidly acting antidepressant. In
March 2019, the United States Food and Drug Administration approved esketamine nasal spray
as an adjunct therapeutic for treatment-resistant depression (Duman et al., 2016; Daly et al., 2019;
Kim et al., 2019). As ketamine infusion protocols gradually become integrated into mainstream
psychiatry practices (Sanacora et al., 2017), a large body of preclinical research, encompassing a
range of model systems, has shed light on the complex pharmacodynamic landscape of ketamine,
which extends well beyond N-methyl-D-aspartate receptor (NMDAR) antagonism. A growing
body of research seeks to identify one or more biologically active metabolites of ketamine (Zanos
et al., 2016) or agents with similar pharmacodynamic properties (Kang et al., 2017) that may
avoid psychotomimetic and cardiovascular side effects (Zanos et al., 2016). As clinical protocols
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for repetitive ketamine treatments continue to evolve, delineating
the long-term safety profile of ketamine administration remains
a work in progress. In this review, we summarize a body of
basic science literature to provide a forecast about ketamine’s
potential as a neuroprotective agent (defined as a treatment
that promotes glial/neuronal health during adversity), as well
as clarify ketamine’s cellular actions that may cause it to
function as a neurotoxic agent (resulting in adverse neuronal/glial
health or cell death).

On the History of Ketamine
Ketamine was first synthesized in 1962 as a shorter acting analog
of phencyclidine with less intense postoperative delirium (Li
and Vlisides, 2016), and was approved for use in humans as
an anesthetic in the United States by 1970 (Dong and Anand,
2013; Mion, 2017). Ketamine began to be abused as a dissociative
psychotomimetic in the late 1970s, primarily by soldiers in
the Vietnam War (where it was widely used as a battle-field
analgesic/anesthetic), and on the East Coast of the United States
(Mion, 2017). The Drug Enforcement Agency classifies ketamine
as a Schedule III drug because of its low to moderate potential
for dependence (Lopez and Tadi, 2020). Ketamine’s anesthetic
effects require infusions at a rate of ∼1 mg/kg/hr, and its
low cost has made it useful for surgeries in low-resource
settings, in pediatric age groups, and in those vulnerable to
hypotension. It has also been applied as an adjunct treatment for
chronic pain (∼0.1 mg/kg/hr), including for patients with opioid-
induced hyperalgesia. The ability of subanesthetic ketamine
(0.5 mg/kg over∼40 min) to serve as a fast-acting antidepressant
in treatment-resistant depression was demonstrated first in a
clinical trial published in 2000 (Berman et al., 2000; Abdallah
et al., 2018). More widespread and routine clinical use has
been limited by ketamine’s side effects and its abuse potential
(Pribish et al., 2020). Nevertheless, its antidepressant properties
have since been studied extensively, and more recent research
suggests that the neuroprotective effects of subanesthetic dose
ketamine infusions may provide a novel therapeutic avenue for
acute neuronal injury, neurodegenerative disorders, and other
neuropsychiatric disorders (Bell, 2017; Pribish et al., 2020).

ON THE CELL MEMBRANE
PHARMACOLOGY OF KETAMINE

Ketamine is a non-competitive antagonist of NMDARs.
NMDARs are Ca2+-permeable ion channels that play critical
roles in synaptic function, plasticity, learning, and memory
as well as excitotoxicity and nervous system injury and
disease (Cull-Candy et al., 2001; Zhou and Sheng, 2013).
NMDARs function as heterotetramers comprised of two
obligatory GluN1 subunits in combination with two GluN2
(A-D) and/or GluN3 (A,B) subunits, each with distinct
biophysical, pharmacological, and signaling properties (Cull-
Candy et al., 2001). NMDAR activation requires both the
binding of the excitatory neurotransmitter glutamate (with
co-agonist glycine or D-serine) and depolarization, which
relieves a voltage-dependent magnesium (Mg2+) block to allow

cation entry. Ketamine inhibits NMDARs at sub-micromolar
concentrations, and its inhibitory actions are enhanced by Mg2+

in a subunit specific manner (Kotermanski and Johnson, 2009).
Stereoisomers and metabolites of ketamine [such as esketamine
or (2S,6S)-hydroxynorketamine] also inhibit NMDARs to
varying degrees. Multiple lines of evidence across a range of
preclinical models indicate that NMDAR antagonism plays a
central role in ketamine’s neuroprotective effects, particularly as
it relates to glutamate-mediated excitotoxicity and downstream
dysregulation of calcium homeostasis following status epilepticus
(SE) or traumatic brain injury with administered doses ranging
from 5 to 45 mg/kg (Yang et al., 2016; Fujikawa, 2019; Pribish
et al., 2020). For example, one study showed that ketamine
(45 mg/kg) and midazolam (4.5 mg/kg) were equivalent in
their ability to abort SE and reduce its long-term effects in
adult rats (Niquet et al., 2017). Another study looking at
neuroprotection against SE-induced brain damage during
developmental periods demonstrated that blockade of GluN2B-
containing NMDARs by CI-1041 (10 mg/kg) and ketamine
(25 mg/kg) substantially reduced SE-induced neurodegeneration
and microglial recruitment/activation (Loss et al., 2019).
The neuroprotective effects achieved by ketamine’s NMDA
antagonism may extend to other conditions associated with
a loss of blood-brain barrier integrity (such as depression,
schizophrenia, and high grade glial tumors), negating the
potentially deleterious excitotoxic effects of plasma-circulating
glycine and glutamate (Saija et al., 1989; Sumiyoshi et al., 2004;
Madeira et al., 2018; Dudek et al., 2020).

Insights into the neuroprotective features of ketamine may
be extrapolated from a rich and recent rodent literature on the
mechanisms of ketamine’s rapid antidepressant actions, which
have been linked to increases in hippocampal neurogenesis
(Yamada and Jinno, 2019), enhanced synaptogenesis (Deyama
and Duman, 2020), and synaptic connectivity (Abdallah et al.,
2018). NMDAR antagonism is central to ketamine’s therapeutic
potential and extends to its antidepressant-like properties. Autry
et al. (2011) demonstrated that a single ketamine injection
(3 mg/kg) produced a rapid antidepressant effect on the forced
swim test (FST) that was similar to (and more long lasting
than) the NMDA antagonist MK-801 (0.1 mg/kg), reproducing
earlier results by Maeng et al. (2008) (2.5 mg/kg). Similarly,
a selective blockade of GluN2B-containing NMDARs produced
rapid antidepressant-like effects in rats (Li S.X. et al., 2018).

While NMDARs are broadly expressed in both excitatory and
inhibitory neurons, the antidepressant-like effects of ketamine
seem to require actions at inhibitory interneurons (iINs) (Miller
et al., 2015; Widman and McMahon, 2018; Gerhard et al., 2020).
As such, the “disinhibition hypothesis” posits that ketamine’s
antagonism of NMDARs on GABAergic iINs causes the
disinhibition of downstream excitatory pyramidal neurons (PNs),
resulting in activity-dependent synaptic plasticity (that requires
protein synthesis) and antidepressant-like or neuroprotective
effects (Miller et al., 2015; Widman and McMahon, 2018; Bartlett
et al., 2020; Grieco et al., 2020). In support of this hypothesis,
genetic deletions of GluN2B in iINs abolished the antidepressant
effects of ketamine (Gerhard et al., 2020). Similarly, at 10 mg/kg,
ketamine’s inhibition of parvalbumin-positive iINs was found to
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be crucial for its ability to promote plasticity in the primary visual
cortex using a model of monocular deprivation (Grieco et al.,
2020). Widman and McMahon (2018) also demonstrated that
ketamine and NMDAR antagonists with antidepressant effects
function to reduce input from iINs, ultimately enhancing the
excitability of excitatory PNs. While such disinhibition might be
among the most immediate triggers of antidepressant cascades,
other mechanisms, including direct NMDAR antagonism on
PNs, are also likely involved (Widman and McMahon, 2018).

The “direct inhibition” hypothesis, also supported by a range
of preclinical studies, suggests that the direct inhibition of PNs
through NMDAR antagonism induces a rebound homeostatic
synaptic plasticity (as opposed to excitation-induced activity-
dependent synaptic plasticity), which in turn causes an enhanced
excitatory synaptic drive onto these neurons (Miller et al., 2015).
For example, Kiselycznyk et al. (2015) showed that genetic
deletion of NMDARs from iINs does not prevent a GluN2B-
specific antagonist from being able to elicit an antidepressant-like
response in the medial prefrontal cortex (mPFC), as measured
by the FST (Miller et al., 2015). The two distinct cellular
pathways described by the “disinhibition” and “direct inhibition”
hypotheses may not be mutually exclusive, and the relative
contributions of NMDARs in inhibitory and pyramidal neuron
populations may vary by brain region and synapse types, as well
developmental stage (Miller et al., 2015). Furthermore, the role
of NMDARs in ketamine’s mechanism of action more generally is
unclear: Zanos et al. (2016) reported that the metabolite (2R,6R)-
hydroxynorketamine possesses similar antidepressant effects but
with substantially lower NMDAR affinity, and instead involves
and early and sustained activation of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPARs) (Highland
et al., 2021). While the NMDAR-independence of ketamine’s
antidepressant actions remains an ongoing debate (Collingridge
et al., 2017; Suzuki et al., 2017; Zanos et al., 2017), clinical
evaluations of HNK levels have also been explored (Highland
et al., 2021): one study showed that higher levels of this
ketamine metabolite in plasma are associated with less clinical
improvement and suicidal thoughts (Grunebaum et al., 2019).

N-methyl-D-aspartate receptors are positioned both at
synaptic compartments and extrasynaptic compartments. While
the precise quantitative contribution of extrasynaptic NMDAR
signaling (activated by excess ambient glutamate) has been
classically difficult to measure (Hardingham and Bading, 2010),
extrasynaptic NMDARs are thought to constitute about 29–
33% of the total NMDAR pool (at least in hippocampal
dendrites) (Moldavski et al., 2020) with NMDAR subunit
mobility within the membrane contributing to a shifting
pool of synaptic and extrasynaptic NMDARs (Tovar and
Westbrook, 2002). While synaptic NMDAR signaling plays a
central role in activity-dependent plasticity and downstream
transcriptional changes that ultimately mediate modifications
in synapse strength, extrasynaptic NMDAR signaling is linked
to the downstream excitotoxic effects secondary to glutamate
spillover. The predominant working model regarding these
distinct NMDAR subpopulations is that the activation of synaptic
NMDARs initiates pro-survival pathways, whereas the activation
of the extrasynaptic receptors activate pro-apoptotic pathways

(Li S.X. et al., 2018). Kokane et al. (2017) substantiate this
model, showing that the cytotoxicity of repetitive ketamine
exposure in the anterior cingulate cortex of neonatal rats was
linked to heightened channel activity at GluN2B. Furthermore,
several studies have found that selective antagonism of GluN2B,
found more predominantly in extrasynaptic pools within adult
model systems (Parsons and Raymond, 2014), is sufficient
to produce antidepressant-like effects, including increased
levels of synaptic proteins (Li et al., 2010; Xia et al., 2010;
Miller et al., 2014; Kiselycznyk et al., 2015; Li S.X. et al.,
2018).

The association of synaptic receptors with neuroprotection
and extrasynaptic receptors with neurotoxicity seems to shed
some light on the question of how the same drug can have
opposite effects at different doses. However, other experiments
suggest that this understanding of the difference between
NMDAR subtypes may be flawed. By measuring protein
levels associated with pro-death (caspase-3) and pro-survival
(phosphor [p]-CREB, p-AKT, p-ERK 1/2, BDNF) signaling
pathways, Zhou et al. (2013) found that NMDAR-mediated
glutamate excitotoxicity in 14-day old rat primary cortical
neurons was a function of the magnitude and duration of co-
activation of both types of receptors. Such findings cast doubt
on the hypothesis that synaptic and extrasynaptic NMDARs play
oppositional roles (Zhou et al., 2013). Chen et al. (2014) further
substantiated this co-activation hypothesis: extending upon the
experiments done by Zhou et al. (2013) they found that in
acute brain slices of the adult rat frontal cortex, NMDAR co-
activation led to an inhibition of pro-survival signaling pathways
(decreased levels of p-CREB, p-ERK1/2, p-AKT) and cell death.
Questions surrounding these alternative hypotheses are further
complicated by the substantial differences in pharmacological
properties of NMDARs between laboratory rodents and humans.
Differences in subunit localization, composition and resultant
patterns of NMDAR inhibition may influence downstream
signaling cascades and the neuroprotective/neurotoxic balance of
ketamine (Chen and Roche, 2007; Hedegaard et al., 2012).

More recent explorations of ketamine’s upstream membrane
targets indicate that the full-fledged antidepressant actions of
ketamine require AMPAR signaling. Zanos et al. (2016) showed
that (2R,6R)-HNK, which has a relatively low binding affinity for
the NMDAR and does not act as an NMDAR antagonist, was
nevertheless able to exert antidepressant-like effects. Blocking
AMPARs with NBQX abolished ketamine’s antidepressant effects
on the FST, tail-suspension test, and learned helplessness
paradigm (Autry et al., 2011; Lepack et al., 2015; Miller et al.,
2015; Fukumoto et al., 2019). Another study concluded that
AMPAR activation was necessary for ketamine’s activation of
the mammalian target of rapamycin (mTOR) pathway, and
subsequent upregulation of synaptic signaling proteins and
dendritic spine formation (Li et al., 2010). Maeng et al. (2008)
also showed that the antidepressant effects of ketamine (0.5,
2.5, 10 mg/kg), Ro 25-6981 (1, 3, 10 mg/kg), and MK-801
(0.05, 0.1, 0.2 mg/kg) all required AMPAR activation, and
that the combination of AMPAR potentiating agents with even
lower doses of NMDAR antagonists might be useful for the
treatment of depression.
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Studies examining the involvement of AMPAR activation in
ketamine’s mechanism of action have largely focused on the
antidepressant effects of ketamine; a role for AMPAR signaling
in broader forms of neuroprotection has not been addressed
with as much vigor. Several other membrane receptors have
also been demonstrated to bind ketamine, including sigma-
1 receptors, nicotinic acetylcholine receptors, voltage gated
calcium channels, and HCN channels (Lavender et al., 2020).
In addition, Wray et al. (2019) identified a novel mechanism
by which ketamine might exert its neuroprotective effect. Using
an immortalized C6 glioma cell line, this group showed that
ketamine induced a translocation of Gαs from lipid raft to non-
raft domains, resulting in an increase in intracellular cAMP and
a subsequent phosphorylation and activation of transcriptional
regulator CREB, ultimately upregulating production of brain-
derived neurotrophic factor (BDNF). This effect was present after
subunit GluN1 knockdown, demonstrating the possibility of yet
another NMDAR-independent mechanism of ketamine (Wray
et al., 2019). While GluN3/GluN2 subunits display a substantial
reduction in glutamate or glycine-activated currents, the actions
of ketamine on GluN1 lacking NMDARs remains poorly defined
(Smothers and Woodward, 2007).

KETAMINE AS A REGULATOR OF BDNF
SIGNALING

Reductions in the expression or release of BDNF, which act
on tropomyosin-related kinase B (TrkB) receptors, have been
implicated as both a mediator and modulator of neuronal
degeneration, and as an important cellular biomarker of the
depressed state (Krishnan and Nestler, 2008; Bawari et al.,
2019). Two major arms of intracellular signaling responses
to subanesthetic ketamine have been explored, both of which
ultimately culminate in the upregulation of BDNF. The first
signaling pathway emphasizes ketamine’s activation of the mTOR
pathway. BDNF release activates TrkB receptors and downstream
signaling pathways which in turn upregulate synaptic signaling
proteins and dendritic spine formation in brain regions such
as the prefrontal cortex (Jelen et al., 2021). Blockade of mTOR
signaling abolished ketamine-induced synaptogenesis and the
corresponding antidepressant-like behavioral responses (Li et al.,
2010). Another study showed that subanesthetic ketamine
(20 mg/kg) attenuates the development of levodopa-induced
dyskinesia (LID) and in a 6-hydroxydopa model of parkinsonism.
This long-term anti-dyskinetic effect was associated with BDNF
release in the striatum and subsequent activation of ERK1/2 and
mTOR pathway signaling, and the behavioral effects correlated
more with changes in synaptic morphology (Bartlett et al.,
2020). Although significant basic science literature suggests that
ketamine’s effects are mediated by mTOR activation, a recent
clinical study found that blocking mTOR with rapamycin prior
to administering ketamine did not alter the antidepressant effects
of ketamine after 24 h and actually prolonged the antidepressant
effects after 2 weeks (Abdallah et al., 2020). These unexpected
results reflect challenges in translating the preclinical findings
regarding ketamine’s modulation of mTOR to a clinical setting.

Likely nodes in intracellular signaling downstream of
TrkB connecting ketamine to mTOR activation include
PI3K, AKT, and GSK-3 (which is inactivated by PI3K-AKT
signaling). In a rat model of combined amyloid-beta and
isoflurane-induced cognitive impairment, ketamine (2.5, 5,
or 10 mg/kg) rescued spatial memory deficits on the Morris
Water Maze paradigm and promoted BDNF production
through upregulation of the PI3K/AKT/GSK-3β pathway.
Ketamine-treated rats also displayed a dose-dependent reduction
in Aβ peptide accumulation (Wang et al., 2019). Another
study employing GSK-3α21A/21A/β9A/9A knockin mice, which
express constitutively active GSK-3 isoforms that are resistant
to ketamine inhibition, demonstrated that GSK-3 inactivation
is necessary for ketamine-induced upregulation of AMPAR
GluA1 subunits associated with ketamine’s antidepressant
effects (Beurel et al., 2016). In contrast, Tavares et al. (2018)
showed that ketamine’s ability to offer cytoprotective effects
against cortisone-induced cell death occur via the activation
of Akt/mTOR/S6 kinase signaling without inactivating GSK-3.
Harraz et al. (2016) propose a separate potential mechanism
for mTOR activation and neuroprotection, in which ketamine
mediates the NO/GAPDH/Siah1 NMDAR-dependent pathway.
Normally, NMDAR activation leads to the degradation of
the small GTPase Rheb, which prevents mTOR activation. By
blocking NMDAR activation, ketamine stabilizes Rheb, which in
turn increases mTOR activation (Harraz et al., 2016).

The second intracellular pathway implicated in inducing
BDNF upregulation in response to subanesthetic ketamine
treatment involves the eukaryotic elongation factor 2 kinase
(eEF2K) as responsible for BDNF upregulation (Monteggia
et al., 2013). Autry et al. (2011) focused on eEF2K rather
than mTOR and found that ketamine’s fast-acting and sustained
antidepressant responses required AMPAR activation and BDNF
translation through the deactivation of eEF2K. In line with
these findings, one study demonstrated that memantine’s inability
to inhibit the phosphorylation of eEFK2 precluded it from
upregulating BDNF expression and imparting an antidepressant
effect (Gideons et al., 2014). The antidepressant effects of
(2R-6R)-HNK (10 mg/kg intraperitoneally or 50 µM bath
application) also include eEF2 inactivation (Zanos et al.,
2016; Suzuki et al., 2017) and mice with deletions of
eEF2K do not display ketamine-induced antidepressant effects
(Nosyreva et al., 2013).

Ketamine-induced increases in BDNF may promote
synaptogenesis: one study examined the effects of genetically
impaired BDNF mRNA trafficking in mouse mPFC pyramidal
neurons and found that ketamine-induced synaptogenesis is
dependent on the dendritic translation and release of BDNF (Liu
et al., 2012). Even (2R-6R)-HNK, a ketamine metabolite with a
significantly lower NMDAR affinity, requires BDNF and TrkB
activation for its antidepressant effects (Fukumoto et al., 2019).
Finally, Autry et al. (2011) showed that 3.0 mg/kg ketamine
administered to mice with a conditional Bdnf -knockout failed
to produce antidepressant-like effects. These findings suggest
that the mTOR/BDNF pathway, possibly through an NMDAR-
independent mechanism, is critical for the antidepressant-like
effects of ketamine (Fukumoto et al., 2019).
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DOWNSTREAM EFFECTS OF KETAMINE:
INFLAMMATORY SIGNALING,
ANTIOXIDANT STRESS, AUTOPHAGY,
AND APOPTOSIS

Given ketamine’s popular use as an anesthetic for pediatric
patient populations (Young et al., 2005; Soriano et al., 2010;
Yan and Jiang, 2014), the vast majority of studies that have
explored ketamine’s potential neurotoxic effects have applied
ketamine within developmental critical windows. Ketamine is
known to have neurotoxic effects at high doses especially in
models of developing neurons (Dong and Anand, 2013; Kurdi
et al., 2014; Mion, 2017; Pribish et al., 2020), which display
greater and longer NMDAR blockade when compared to mature
neurons (Jin et al., 2013; Yan and Jiang, 2014) and have relatively
lower quantities of GluN2A (Paoletti et al., 2013; Szczurowska
and Mares, 2013). Ketamine and other NMDAR antagonists
have also been described to result in cytoplasmic vacuolization
in cingulate and retrosplenial neurons (“Olney’s lesions”) at
doses of 40 mg/kg, but not at 5, 10, and 20 mg/kg (Olney
et al., 1989). A more contemporary neuropathological evaluation
compared single and multiple doses of ketamine (up to 60 mg/kg)
and MK801 and 2R-6R-HNK: only rats treated with single or
multiple doses of MK-801 developed evidence of Olney’s lesions
(Morris et al., 2021).

Ketamine’s ability to promote either cell survival or cell
death depending on its dose was aptly illustrated by a
study which found that subanesthetic ketamine (5 mg/kg)
prevented widespread apoptosis caused by more anesthetic
doses (20 mg/kg) via the upregulation of Activity-Dependent
Neuroprotective Protein (ADNP) (Brown et al., 2015). This
finding may have enormous clinical relevance, given ketamine’s
popularity as an anesthetic in pediatric age groups. A review by
Yan and Jiang (2014) argues that even at anesthetic doses,
ketamine can have neurotoxic and/or neuroprotective
effects on developing brains, depending on dose, timing,
frequency, and the presence or absence of noxious stimuli.
Anesthetic ketamine may exert neurotoxic effects through
NMDAR blockade and subsequent compensatory NMDAR
upregulation, while also serving a neuroprotective role by
inhibiting inflammation-mediated toxicity associated with
surgery and promoting synaptic plasticity through the release of
BDNF in the hippocampus (Yan and Jiang, 2014). A significant
number of preclinical studies have explored the mechanisms
underlying ketamine-induced neurotoxicity in search for
therapeutic agents that might protect developing neurons
against the neurotoxicity of ketamine (Zuo et al., 2016; Wang
Q. et al., 2017; Li Y. et al., 2018). Preclinical findings, however,
are not always obviously observable clinically, and long-
term neurocognitive safety assessments following anesthetic
ketamine exposure in pediatric age groups have not consistently
identified clinically meaningful correlates of neurotoxicity
(McCann and Soriano, 2019).

The neurotoxic properties of ketamine on developing neurons
may be ameliorated by harnessing the very same pathways
implicated in ketamine’s neuroprotective effects. For example,

one study showed that siRNA mediated inhibition of GSK-3β can
prevent ketamine-induced toxicity in neural stem cell-derived
neurons (Zhang et al., 2018), and another showed that the
antioxidant edaravone can protect cultured primary rat cortical
neurons from ketamine-induced apoptosis through activation
of the PI3K/Akt signal pathway and by reducing oxidative
phosphorylation (Zhang et al., 2018). Additionally, several
studies have linked ketamine-induced neurotoxicity to high
levels of reactive oxygen species (ROS)/malondialdehyde (MDA)
generation, reduced total antioxidant capacity, and subsequently
to high levels of autophagy- and apoptosis-related proteins (Bai
et al., 2013; Li X. et al., 2018; Li Y. et al., 2018). However, a
recent study showed that in a zebrafish model, ketamine had a
protective effect and actually reduced levels of ROS in vivo in a
concentration-dependent manner (Robinson et al., 2019).

Even at the cellular level, ketamine’s effects at different
dosages can be directly oppositional. The literature on ketamine’s
neuroprotective potential emphasizes the increased expression
of BDNF as crucial to promoting synaptogenesis, cell survival,
and in vivo, improvement in terms of a variety of behavioral
measures. However, one recent study showed that prolonged
exposure of postnatal day 7 (P7) rat pups to ketamine (20 mg/kg
per dose) decreased BDNF expression and the phosphorylation
of AKT and ERK and increased apoptosis in the developing
rat hippocampus, which corresponded with later cognitive
impairments (Meng et al., 2020).

Ketamine’s activation of mTOR appears to play a central
role in its neuroprotective and antidepressant-like effects, yet
some studies show that mTOR activation can have differential
effects on cell health (Fan et al., 2017; Mansouri et al., 2017;
Liu et al., 2019). For example, Fan et al. (2017) showed
that subanesthetic ketamine injections (8 mg/kg) produced
neuroprotective effects in a mouse model of Parkinson disease
(PD), which corresponded with elevated expression of autophagy
markers and reduced mTOR activation compared to untreated
PD mice. These results suggest that subanesthetic ketamine
may support motor and cognitive function in PD by actually
enhancing autophagy, degrading abnormally aggregated proteins
and thereby preventing neuronal apoptosis (Fan et al., 2017).
Liu et al. (2019) showed that ketamine treatment of cultured
rat hippocampal neurons induced a dose-dependent increases in
apoptosis that was associated with a dose-dependent activation of
the mTOR pathway. Inhibition of mTOR signaling by rapamycin
protected rat hippocampal neurons from ketamine-induced
injuries by reducing apoptosis, oxidative stress, and Ca2+

concentration (Liu et al., 2019), and co-administered rapamycin
blocks ketamine’s antidepressant effects (Li et al., 2010). Notably,
Liu et al. (2019) used immature fetal hippocampal neurons in
their study, so their results may have been impacted by known
differences in the predominance and localization of GluN2A and
GluN2B-containing NMDARs in developing brains as compared
to adult brains (Paoletti et al., 2013). Lastly, in attempting
to assess the ability of pituitary adenylate cyclase-activating
polypeptide (PACAP) to shield adult neural stem cells from
the neurotoxic effects of anesthetic ketamine (50 µM, 200 µM,
400 µM, and 1 mM s-ketamine medium), Mansouri et al. (2017)
also showed that ketamine’s activation of AMPA receptors leads
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to mTOR activation in vitro, which, rather than promoting
neuroprotection, contributed to ER stress and apoptosis.

Ketamine’s ability to exert contradictory effects extends to
proteins involved in inflammation and autophagy. In evaluating
ketamine’s effectiveness as a neuroprotectant in rat hippocampal
tissue in a model of TBI, Wang C.Q. et al. (2017) demonstrated
that at 10 mg/kg every 24 h up to 7 days, ketamine attenuates
neuroinflammation by inhibiting production of IL-6 and TNF-α
and downregulates autophagy by activating the mTOR pathway.
One study showed that in human lymphocytes, NMDAR
activation resulted in ROS production and upregulation of
NMDAR expression. MK-801, a non-competitive NMDAR
antagonist, mitigated this process, suggesting that the anti-
inflammatory effects of ketamine might also be mediated in
part by ketamine’s regulation of non-neuronal cells (Mashkina
et al., 2007). Another study found that IL-6, IL-8, and IL-
1β production increased in the hippocampus after 80 mg/kg
intravenous ketamine administration regardless of frequency and
duration (Li et al., 2017). This study also found that TNF-α
expression increased after a single administration of 80 mg/kg
ketamine but decreased significantly after multiple and long-term
administration (20, 40, and 80 mg/kg, 6 doses at 1 h intervals)
(Hudetz and Pagel, 2010; Li et al., 2017).

DISCUSSION

Although there has been a substantial increase in preclinical
research regarding ketamine’s neuroprotective potential over
the past two decades, uncertainty persists at each mechanistic
step. At the cell membrane, ketamine clearly functions as
an NMDA antagonist, but whether this is required for all
forms of ketamine’s ultimate neuroprotective actions is less
clear. AMPAR activation, whether a response to NMDAR
blockade or to some other cellular effects of ketamine,
appears to play an important functional role in ketamine’s
antidepressant mechanisms. Ketamine’s upregulation of BDNF,
crucial for synaptogenesis and adaptive plasticity mechanisms,
may occur through mTOR pathway activation, inhibition of
eEF2K phosphorylation, or both. A wealth of preclinical evidence
also clarifies the neurotoxic effects of ketamine, with endpoints
that include increased oxidative stress autophagy and apoptosis.
This apparent contradiction can likely be explained by the dose
of ketamine used or by molecular differences between developing

and adult brains, such as the number, strength, and composition
of NMDAR-containing synapses and increases in synaptic
contacts that occur during development (Nosyreva et al., 2014).

A comprehensive understanding of ketamine’s effects on
intracellular signaling remains a work in progress. Even
within the realm of rapid antidepressant effects, there remain
controversies about NMDAR independence and the cellular
sites of action (PNs vs. INs). Currently, the basic science
literature on ketamine paints a mixed picture as ketamine is
studied in the context of a variety of disease models, cell
types, brain regions, and employing a range of administration
protocols (dose, frequency, route, etc.). It is therefore necessary to
undertake more systematic studies of ketamine’s long-term safety
that incorporate a multidisciplinary approach to incorporate
measures of wellbeing, including cell death and protein (such
as BDNF) levels for in vitro studies, and in vivo behavioral
assessments that go beyond the forced swim test. Since ketamine
is used broadly in veterinary research and medicine, non-rodent
animal subjects are also viable models for study and could
be used to help bridge the gap between basic science and
clinical research. In addition, some standardization among cell-
culture based models would allow us to obtain a more unified
perspective on ketamine’s actions. Rather than focusing solely on
particular nodes in the proposed mechanistic pathways, “omics”-
based approaches may offer a more unbiased appreciation
of the spectrum of ketamine’s cellular effects. Finally, it will
be important to continue to develop and investigate analogs
of ketamine that might serve as alternatives with decreased
neurotoxic potential and reduced psychotomimetic effects.
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