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Abstract

Background: Zidovudine (AZT) constitutes part of the recommended regimens for prevention and treatment of HIV-1
infection. At the same time, AZT as well as HIV-1 infection itself may induce mitochondrial damage. In this study, we
analyzed the impact of prenatal AZT-exposure on mitochondrial alterations in HIV-infected women and their infants.

Methods: Mitochondrial DNA (mtDNA) levels in placentas of HIV-1 infected Tanzanian women with and without prenatal
AZT exposure, and in the umbilical cords of their AZT-exposed/unexposed infants were quantified using real-time PCR.
Furthermore, we checked for the most common mitochondrial deletion in humans, the 4977 base pair deletion
(dmtDNA4977) as a marker for mitochondrial stress.

Results: 83 women fulfilled the inclusion criteria. 30 women had been treated with AZT (median duration 56 days; IQR 43–
70 days) while 53 women had not taken AZT during pregnancy. Baseline maternal characteristics in the two groups were
similar. The median mtDNA levels in placentas and umbilical cords of women (311 copies/cell) and infants (190 copies/cell)
exposed to AZT were significantly higher than in AZT-unexposed women (187 copies/cell; p = 0.021) and infants (127
copies/cell; p = 0.037). The dmtDNA4977 was found in placentas of one woman of each group and in 3 umbilical cords of
AZT-unexposed infants but not in umbilical cords of AZT-exposed infants.

Conclusions: Antenatal AZT intake did not increase the risk for the common mitochondrial deletion dmtDNA4977. Our data
suggests that AZT exposure elevates mtDNA levels in placentas and umbilical cords possibly by positively influencing the
course of maternal HIV-1 infection.
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Introduction

HIV-positive pregnant women can decrease the risk for in-utero

vertical HIV transmission by intake of antiretroviral drugs (ARVs).

Zidovudine (AZT) during pregnancy is a frequently used and

WHO- recommended drug regimen [1]. However, it has been

proven in human and animal studies that Nucleoside Reverse

Transcriptase Inhibitors (NRTIs) like AZT can cause mitochon-

drial damages including depletion of mitochondrial DNA

(mtDNA) [2–10].

One underlying mechanism of AZT-induced mitochondrial

toxicity is the inhibition of human DNA polymerase gamma [11–

12], the enzyme needed for replication of mtDNA. Other assumed

mechanisms include increased mitochondrial oxidative stress,

introduction of mtDNA mutations, negative effects on nucleotide

phosphorylation and mitochondrial gene expression, depletion of

L-carnitine and inhibition of the mitochondrial bioenergetic

machinery [13–17].

However, also HIV-1 infection itself causes mitochondrial

damage, like depletion of mtDNA and decreased activities of the

mitochondrial respiratory chain complexes [18–21]. HIV-1 has

been shown to induce mitochondrial toxicity in several ways: by

loss of mitochondrial membrane potential, by increase of reactive

oxygen species and through different mechanisms of the viral

proteins Vpr, Tat and HIV protease [22].

In humans, the mitochondrial toxicity of antenatal NRTI-

exposure was determined by measuring different mitochondrial

parameters like the emergence of clinical mitochondriopathy or

death [23–25], quantification of mtDNA [18,26–29], analysis of
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mtDNA mutations [30] or expression of mitochondrial respiratory

chain proteins [27].

Studies indicating NRTI-induced mitochondrial toxicity include

a detailed analysis by Barret [23], who found a higher incidence of

neuro-mitochondrial diseases in NRTI-exposed infants compared

to NRTI-unexposed infants; Divi [28] found a decrease of mtDNA

in umbilical cords of infants of HIV-positive mothers exposed to

Combivir compared to infants of HIV-negative women. Shir-

amizu [26] measured lower mtDNA contents in placenta and cord

blood of HIV-positive women following NRTI-exposure in

comparison to HIV-negative individuals. Torres [30] detected

a higher frequency of mtDNA mutations in umbilical cords of

HIV-positive AZT exposed infants compared to HIV-negative

infants.

In contrast, McComsey [27] identified increased mtDNA levels

without changes in expression of mitochondrial respiratory chain

proteins in infants of HIV-positive mothers having taken NRTIs

compared to NRTI-unexposed infants of HIV-negative mothers.

Williams [31] did not detect lower mental or motor functioning

scores in HIV-exposed, uninfected infants who were in-utero

exposed to ARVs including NRTIs compared to those unexposed

to ARVs during pregnancy. Accordingly, two large cohort studies

did not discover an increased risk for death or clinical

manifestations suggestive of mitochondrial abnormalities in

NRTI-exposed infants [24–25].

The only two studies comparing mtDNA levels exclusively

among HIV-positive mothers and their infants came to contra-

dictory conclusions. In blood samples of HIV-positive mothers and

infants with and without prenatal AZT exposure, Poirier [29]

found lower mtDNA levels in AZT-exposed infants, whereas

Aldrovandi [18] identified higher mtDNA levels in women and

newborns with antenatal AZT exposure.

Altogether, it has not been clarified whether the net effect of

short-course AZT for drug-naive HIV-1 infected pregnant women

and their infants is a positive or a negative one with regard to

mitochondriopathy. In the present study, we therefore quantified

the mtDNA content in placentas of HIV-1 positive women with

and without antenatal AZT exposure and in umbilical cords of

their AZT exposed/unexposed infants. Furthermore, we checked

for the most common mitochondrial deletion in humans, the 4977

base pair deletion (dmtDNA4977) as a marker for mitochondrial

stress [32].

Methods

Ethics Statement
Ethical approval was obtained from the local Mbeya Medical

Research and Ethics Committee, the National Institute for

Medical Research of Tanzania and the ethical committee of

Charitè-Universitätsmedizin Berlin, Germany. All participants

had given written informed consent, and data and samples were

treated strictly confidentially.

Clinical Samples
The present study is a sub-evaluation of an observational study

analyzing feasibility and adherence regarding combination pro-

phylaxis for the prevention of mother-to-child transmission of

HIV-1 (PMTCT) at Kyela District Hospital (KDH), Mbeya

Region, Tanzania between October 2008 and September 2009

[33].

According to the WHO guidelines from 2006 and the National

Tanzanian PMTCT guidelines from 2007 [34–35], HIV-1

positive women without treatment indication (CD4 cell count

.200 cells/ml) took AZT, starting in gestational week 28

(26300 mg per day), or anytime thereafter followed by single-

dosed Nevirapine (200 mg) at labor onset and AZT (300 mg)

every three hours, plus Lamivudine (150 mg) every 12 hours

during labor; additionally, the mother took postnatal AZT/

Lamivudine for one week. Newborns received single-dosed

Nevirapine after birth and AZT for 1 week [33].

PMTCT clients who had taken antenatal AZT for at least

4 weeks and who delivered at KDH within the study period were

eligible for this sub-study if placenta and/or umbilical cord

specimens were available, if the mother delivered a singleton, and

if both mother and infant were alive 48 hours after birth. The

same eligibility criteria applied for HIV-1 positive women

delivering at KDH who had not taken AZT during pregnancy,

constituting the control group. These women were offered the

same intrapartum and postpartum drug regimen as described

above. Since the half-life of mtDNA in mammalian cells is several

days [36], ARV exposure during labor and thus shortly before the

samples were taken should not affect mtDNA levels and the

presence of the dmtDNA4977 deletion. Aliquots of placenta and

umbilical cords of HIV-1 positive women and their infants were

sampled at delivery, frozen and stored at 220uC for future DNA

extraction. For the detection and quantification of HIV-1 RNA

viral load in newborns, a plasma sample from delivery was used

and analyzed by RT-PCR according to our previously published

protocol [37]. Socio-demographic data, AZT intake and maternal

and newborn parameters were documented using specific ques-

tionnaires during antenatal care and at delivery [33].

Quantification of Mitochondrial DNA and the
Mitochondrial 4977 bp Deletion (dmtDNA4977)

DNA extraction. 50 mg of each tissue (placenta and umbil-

ical cord) were subjected to DNA extraction using the Invisorb

Spin tissue mini kit. Samples were incubated at 52uC overnight

and vortexed in an Invisorb Gyrator to intensify the lysis process

(both STRATEC Molecular, former Invitek, Berlin, Germany).

DNA was eluted in 55 ml elution buffer and stored at 4uC or

analyzed immediately by PCR.

Real-time PCR for absolute quantification of nuclear

DNA. Nuclear DNA was quantified as previously described [38].

Briefly, a 98 bp fragment of the telomerase gene (forward primer:

59-GGC ACA CGT GGC TTT TCG-39, reverse primer: 59-

GGT GAA CCT CGT AAG TTT ATG CAA-39) was used to

specifically amplify nuclear DNA. Dilutions of control DNA

(Promega, Mannheim, Germany) were prepared (100 ng, 10 ng,

2.5 ng, 1.0 ng, 0.5 ng, 0.1 per ml) and used as standards assuming

approximately 1,500 haploid copies of the telomerase gene in

10 ng total control DNA [39]. Every sample was amplified in

triplets using 2 ml of pure DNA extract. The thermal cycling

program was: 10 s at 50uC and 10 min at 95uC for enzyme

activation (allowing an automated hot start PCR), 40 cycles of

denaturation for 30 s at 94uC and 60 s annealing at 65uC on an

ABI 7300 Real Time PCR System (Applied Biosystems). This

approach allowed calculation of the amount of DNA/ml in ng and

the number of cells/ml.

Real-time PCR for absolute quantification of

mitochondrial DNA. Absolute quantification of dmtDNA4977

and total mtDNA was done as presented in [40] with some

changes. To test the precision and reliability of the real time PCR,

the primer pair L15/H16 (np: L3304-L3328/H3564-H3539 in

[41] was employed to produce synthetic ND1 targets of 260 bp in

length, which were used as specific template molecules for

undeleted wildtype mtDNA in the subsequent PCRs. These

ND1 targets were purified from primer sequences by ultrafiltration

through Centricon 30 membranes and quantified after gel

mtDNA in Placenta and Umbilical Cord

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e41637



electrophoresis and detection on a gel imaging system (Geldoc,

Biorad). Then, the molecules were serially ten-fold diluted from

106 to 1 copies/10 ml, and mixed with 100 ng mouse DNA

(15,000 haploid genome equivalents) per 10 ml each to simulate

the complexity of the human genome.

For quantification of dmtDNA4977, a 238-bp fragment was

amplified using the primer pair L35/H45 (np: L8285-L8310/

H13499-H13475, [41]). These primers flank the breakpoints of the

common deletion and preferentially amplify dmtDNA4977 under

short cycle conditions. Known numbers of the purified 238-bp

products served as targets for quantification of specifically deleted

molecules in our DNA samples. The standard preparation was

done in the same way as described for total mtDNA. For detection

of specific PCR products, we used FAM-labeled probes for

wildtype and VIC-labeled probes for dmtDNA4977. For sample

analysis, a real time duplex-PCR was performed using standard

mixtures of 1, 10, 100 and 1000 dmtDNA4977 specific fragments

on a background of 106 wildtype specific template molecules.

Each amplification was done in triplets. PCR was performed using

a standard Immuno buffer and an Immolase polymerase at

a concentration of 1 U/25 ml per reaction (both Bioline

Germany). The concentrations of the primers, magnesium

chloride, and dNTPs were 0.0002 mM, 1.5 mM, and 0.2 mM

per dNTP, respectively. Dimethylsulfooxide (DMSO, SIGMA,

Steinheim, Germany) was added as an additive in a concentration

of 2%.

Statistical Analysis
For statistical analysis, the non-parametric Mann-Whitney U

test was used to assess significant differences with regard to

continuous variables between two independent samples whereas

the Chi-Square test or Fisher’s exact test were applied to analyze

the independence of categorical variables. Testing of significant

correlations between two continuous variables was done by

Pearson’s correlation coefficient. Levels of mtDNA in placenta

and umbilical cord were logarithmically transformed and pre-

sented as box and whisker plots. For descriptive analysis, median

and interquartile ranges (IQR) were calculated. Two-sided tests

were used and P,0.05 was considered as statistically significant.

Statistical analysis was carried out using PASW Statistics 18 (SPSS

Inc., Chicago, Illinois, USA).

Results

Sample Characteristics
In total, 83 women and their infants fulfilled the inclusion

criteria. Samples of 30 women having taken AZT antenatally for

a median duration of 56 days (IQR 43–70 days) and their infants

were compared with samples of 53 women without pre-delivery

AZT exposure and their infants. No significant differences

between the two groups could be observed with regard to

maternal CD4 cell count or socio-demographic variables like age,

weight, education or marital status of the mother or infant’s birth

weight and length (table 1).

The proportion of HIV-1 infected newborns at birth was similar

in the two groups; 4/44 AZT-unexposed infants versus 2/30 AZT-

exposed infants (p = 1.0). Since the exclusion of data of HIV-1

infected infants did not change the results (data not shown) we

decided to keep the data of HIV-infected infants in the analysis.

Levels of mtDNA in Placenta and Umbilical Cord
The median mtDNA level was significantly higher in women

exposed to AZT (311 copies per cell, IQR 166–475) compared to

women without AZT-exposure (187 copies per cell, IQR 115–352;

p = 0.021). Accordingly, the median mtDNA level was significantly

higher in umbilical cords of infants exposed to AZT (190 copies

per cell, IQR 121–323) compared to infants without AZT-

exposure (127 copies per cell, IQR 70–234; p = 0.037). The box

and whisker plots of mtDNA levels in placentas of HIV-1 infected

women and in umbilical cords of their infants according to

antenatal AZT-exposure are shown in figure 1. Restricting the

analysis to women having taken AZT during pregnancy, we did

not find a correlation between the duration of antenatal AZT

intake in days and mtDNA levels in placenta (p = 0.95) and

umbilical cord (p = 0.76).

Frequency of dmtDNA4977 in Placenta and Umbilical
Cord

The mitochondrial 4977-bp deletion was rarely found in

placental tissues (1/43 AZT- unexposed women versus 1/24

AZT-exposed women, p = 1.0). These two women displayed the

mtDNA4977 at very low proportions with mutant DNA in

percentage of the total DNA being 2.6E-05 (woman unexposed to

AZT and 2.9E-05 (woman exposed to AZT).

In umbilical cords of infants, the dmtDNA4977 was detectable

in 3/47 (6.4%) infants without AZT exposure and in no infant

with prenatal AZT exposure (0/23); this was not statistically

different (p = 0.55). The proportion of mutant DNA in percentage

was higher in umbilical cords than in the placental tissues: 9.4E-

04, 6.9E-03 and 1.4E-02.

In no case, the dmtDNA4977 was detected in both placenta and

umbilical cord of a mother-child-pair.

Discussion

There is a high level of evidence from animal and human

studies that both AZT and HIV-1 can cause mitochondrial

toxicity and reduce mtDNA levels [2–10,18–22].

As a main finding, our study detected higher mtDNA levels in

AZT-exposed mother-child- pairs compared to unexposed ones.

This is in accordance with findings by Aldrovandi [18], who

analyzed samples of HIV-positive mothers with similar HIV-1

disease progression but differing antenatal exposure towards

NRTIs; higher mtDNA levels in the AZT-exposed mother-infant

group were detected even five years later. Contradictingly, Poirier

et al. [29] achieved results indicating lower mtDNA levels in the

AZT-exposed infants. Yet, this study is only partly comparable

because both infant groups differed remarkably in the HIV-1

disease progression of their mothers, with those having taken AZT

displaying a tenfold higher viral load and .twofold lower CD4 cell

count levels [29].

We analyzed mtDNA levels in placentas and umbilical cords

instead of PBMCs. While mtDNA levels in PBMCs do not

necessarily correlate with mtDNA levels in other tissues or with

clinical signs of mitochondriopathy [42–44], placentas and

umbilical cords seem to reflect mitochondrial changes induced

by AZT: antenatal AZT–exposure led to decreased mtDNA levels

in placentas and umbilical cords of fetal patas monkeys, which was

correlated with an increase in mitochondrial morphological

changes [6,9]. This suggests that mtDNA levels in placenta and

umbilical cord reflect mitochondrial damage and are thus suitable

markers of potential mitochondrial toxicity following AZT-

exposure.

To our knowledge, this study is the first to analyze the presence

and the relative amount of dmtDNA4977, the most common

mitochondrial mutation, in placentas of HIV-infected women and

umbilical cords of their infants with and without exposure to

ARVs. In our study, dmtDNA4977 detection was rare and could

mtDNA in Placenta and Umbilical Cord
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only be detected in placentas of a single AZT-exposed and AZT-

unexposed woman each, at very low proportions. This finding is

consistent with other studies [45–46] which did not find the

dmtDNA4977 in human placenta samples.

The occurence of mtDNA4977 has been shown to be age-

dependent and was undetectable in tissue biopsies of children [47–

48]. However, the deletion has been identified in brain, liver,

kidney, heart, and muscle samples taken at autopsy of deceased

neonates [49]. The authors speculate that mtDNA4977 could be

generated by perinatal hypoxia or temporary oxygen oversatura-

tions during the intensive care of the neonates.

Here, we demonstrate that mtDNA4977 can also be observed in

newborns of HIV-1 infected women. We identified the

dmtDNA4977 in umbilical veins of 3/70 (4.3%) infants, all

unexposed to AZT. The amount of dmtDNA4977 out of the total

mitochondrial DNA was low and varied between 0.00094% and

0.014%. As there was no significant difference between AZT-

exposed and AZT-unexposed newborns (p = 0.55), we suggest that

our findings could be explained by the influence of external factors

other than AZT. It is well known that mitochondrial mutagenesis

depends on many different factors such as alcohol [38,50] or

nicotine [51]. While these stressors are known to damage

mitochondrial DNA there are also findings on protective factors,

e. g. green tea [52] or other dietary components. We did, however,

not investigate such possibly influencing factors. It is also

imaginable that the difference was not significant due to low

sample size. On the other hand, since none of the AZT-exposed

infants displayed the deletion, we cannot rule out the possibility

that AZT has a benefical impact with regard to the emergence of

the mtDNA4977.

Altogether, we did not find evidence for an increased risk

resulting from AZT for the most common mitochondrial deletion

in placenta or umbilical cord tissues of HIV-1 infected women and

their infants.

There is no doubt that AZT can cause mitochondrial toxicity.

However, the mitochondrial toxicity of AZT may be counter-

balanced by the positive effect of AZT on maternal HIV-1

infection. Compared to individuals under ARV long-term

treatment, the situation may be different in pregnant, drug-naive

women taking AZT for a short period only. Generally, HIV-

infection of the mother has a profound derogatory effect on the

cell-mediated immunity and T-cell maturation of the infant [53].

In HIV-positive individuals, the inflammatory cytokine tumor

necrosis factor alpha (TNF-alpha) is elevated [54–55] which also

applies to placental trophoblastic cells [56–57]. However, in-

creased TNF-alpha levels lead to mitochondrial DNA damage

including mtDNA depletion [58–60]. Interestingly, AZT has been

shown to down-regulate the expression of TNF-alpha in placental

tissue [61]; this mechanism could prevent HIV-induced mito-

chondrial damage and explain the higher mtDNA levels in

placenta and umbilical cord samples of AZT-exposed women and

infants as observed in our study.

Accordingly, it has been shown that mtDNA levels in PBMCs of

HIV-positive adults and infants increase after start of ARV

treatment. This finding has been interpreted by some authors as

restorative effect due to suppression of HIV-1 infection and by

others as over-replication to compensate for mitochondrial

dysfunction [21,44,62]. However, we believe that mtDNA over-

replication as a sign for mitochondrial dysfunction is unlikely in

our study, as it has been shown that antenatal AZT exposure leads

to decreased mtDNA levels but increased mitochondrial morpho-

logical damage in placenta and umbilical cords of fetal patas

monkeys [6,9].

There is a wide variety of factors influencing the mitochondrial

toxicity of NRTIs, like the type of NRTI (e.g. d4T or AZT), the

material to be analyzed (e.g PBMCs or tissues), mitochondrial

outcome parameter (e.g mtDNA or activities of mitochondrial

respiratory chain complexes) or stage of HIV-1 disease; this could

explain the somewhat ambiguous results of the studies conducted

so far.

There are also technical issues involved. Contamination with

platelets is one possible confounder of measuring mtDNA

Table 1. Demographic and clinical characteristics of HIV-1 infected women and their infants with or without AZT exposure during
pregnancy.

No antenatal AZT (n =53) Antenatal AZT (n =30)

Characteristics n % or median (IQR) n % or median (IQR) p-value

Duration of AZT intake, days 53 No intake 30 56 (43–70)

Maternal age, years 51 25 (23–29) 30 28 (25–30) 0.12

Maternal weight, kg 46 59 (55–68) 29 61 (56–65) 0.38

Education, years 45 7 (6–7) 26 7 (7–7) 0.26

Marital status, married 50 72 28 75 0.77

Gravidity 51 3 (2–3) 30 3 (2–3.3) 0.54

Parity 51 2 (1–2) 30 2 (1–2.3) 0.68

Maternal CD4 count at delivery, uL 36 307 (184–462) 19 402 (272–492) 0.10

Prematurity (,37 wk gestation) 51 3.9 30 13.3 0.19

Mode of delivery, caesarean section 49 6.1 30 6.7 1.0

Apgar score at 1 minute 41 9 (8–9) 29 9 (8.5–9) 0.08

Female sex of infant 50 58 30 40 0.12

Infant birth weight, g 48 3100 (2800–3300) 29 3200 (2950–3500) 0.30

Child length, cm 42 48 (46–50) 27 48 (46–50) 0.71

Child head circumference, cm 42 35 (34–36) 27 36 (34–36) 0.11

doi:10.1371/journal.pone.0041637.t001
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content in PBMCs by real-time PCR, as platelets are not

completely removed during standard Ficoll gradient separation

method [63–64]. In real time PCR, the mtDNA/nDNA-ratio is

calculated; as platelets do contain mtDNA, but not nDNA, every

increase of platelets leads automatically to a higher mtDNA/

nDNA-ratio resulting in higher calculated mtDNA levels.

Furthermore, other factors like human mitochondrial DNA

mutations and haplotypes may influence the development of HIV-

and NRTI-associated mitochondrial dysfunction [65–70]. There

are nine known European mitochondrial DNA haplotypes,

whereas the greatest and still insufficiently characterized variety

of mitochondrial haplotypes can be found in Africa; one study

revealed 105 haplotypes with 75 forming a single, unique African

haplogroup L [71]. Since we analyzed samples from Tanzanian

women, it cannot be excluded that other populations harboring

different mitochondrial DNA haplotypes react differently towards

AZT-exposure.

In conclusion, in our setting of relatively immunocompromized

drug-naive pregnant women from rural Tanzania, antenatal AZT

intake seemed to improve mitochondrial parameters in the women

and their infants.
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Figure 1. Box/whisker plots of mitochondrial DNA levels in AZT-exposed and AZT-unexposed placenta and umbilical cords. Box and
whisker plots show mitochondrial DNA (mtDNA) levels in placentas of HIV-1 infected women and in umbilical cords of their infants according to
exposure to antenatal AZT. The median mtDNA level was significantly higher in women exposed to AZT compared to women without AZT-exposure.
Accordingly, the median mtDNA level was significantly higher in umbilical cords of infants exposed to AZT compared to infants without AZT-
exposure.
doi:10.1371/journal.pone.0041637.g001
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20. Miró O, López S, Martı́nez E, Pedrol E, Milinkovic A, et al. (2004)

Mitochondrial effects of HIV infection on the peripheral blood mononuclear

cells of HIV-infected patients who were never treated with antiretrovirals. Clin
Infect Dis 39:710–716.

21. Miura T, Goto M, Hosoya N, Odawara T, Kitamura Y, et al. (2003) Depletion
of mitochondrial DNA in HIV-1-infected patients and its amelioration by

antiretroviral therapy. J Med Virol 70:497–505.
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