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Abstract

Purpose

The objective of this paper is to provide a new method for estimating crash rate and severity

simultaneously.

Methods

This study explores a Heckman selection model of the crash rate and severity simulta-

neously at different levels and a two-step procedure is used to investigate the crash rate and

severity levels. The first step uses a probit regression model to determine the sample selec-

tion process, and the second step develops a multiple regression model to simultaneously

evaluate the crash rate and severity for slight injury/kill or serious injury (KSI), respectively.

The model uses 555 observations from 262 signalized intersections in the Hong Kong met-

ropolitan area, integrated with information on the traffic flow, geometric road design, road

environment, traffic control and any crashes that occurred during two years.

Results

The results of the proposed two-step Heckman selection model illustrate the necessity of dif-

ferent crash rates for different crash severity levels.

Conclusions

A comparison with the existing approaches suggests that the Heckman selection model

offers an efficient and convenient alternative method for evaluating the safety performance

at signalized intersections.

Introduction

The simultaneous estimation of crash frequency and severity at signalized intersections is a big

challenge for safety performance, which has drawn significant attention in past decades. A
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variety of different approaches and perspectives (Park & Lord (2007), Ye et al. (2009), Venka-

taraman et al. (2013)) [1–3] have been used in prediction modeling. Studies have indicated

that either separate crash frequency or separate crash severity levels at signalized intersections

might have led to bias in results estimations (Lord & Mannering (2010)) [4], as possible corre-

lations between crash frequency and severity levels were not taken into account.

In general, the simultaneous estimation of crash frequency and severity includes the follow-

ing methods: multi-level hierarchical structures (Kim et al. (2007)) [5], simultaneous equations

(Ye et al. (2009), Kim & Washington (2006), Ye et al. (2013) [2, 6, 7] and two-stage bivariate/

multivariate analysis (Park & Lord (2007), Ma & Kockelman (2006), Xu et al. (2014) [1, 8, 9],

all of which can be considered either combined crash frequency/severity models, or two-stage

models.

In terms of combined crash frequency/severity models, Abdel-Aty and Keller (2005) [10]

initially explored crash type and severity levels simultaneously. An ordered logistic model for

overall crash severity levels and a hierarchical tree-based regression model for specific crash

severity levels were developed. The results indicated that the aggregation of crash types was a

less effective method than the development of separate models for each level of collision. How-

ever, the results exhibited a weakness, as the two models presented were kept relatively sepa-

rate with no interaction permitted. Combining the two models, Pei et al. (2011) [11] later

extended and constructed a joint-probability model to integrate crash occurrence and severity

predictions within a single framework. The Markov-chain Monte Carlo approach was adopted

to establish a fully Bayesian estimate of the effects of the explanatory factors. The results indi-

cated that the proposed model was appropriate for signalized intersections and roadway safety,

but only the binary approach to crash severity was provided as an illustrative example. Mean-

while, the integrated models of crash frequency and severity revealed the potentiality. El-

Basyouny and Sayed (2011) [12] used a multivariate Poisson-lognormal intervention model to

analyze crash counts by severity levels, and extended the model to incorporate random param-

eters to account for the correlation between sites (Barua et al., 2016) [13]. To deal with the

number of zero counts involved, Dong et al. (2014) [14] extended the multivariate zero-

inflated Poisson-lognormal regression model as an alternative for modeling multivariate crash

count data by severity at signalized intersections, which showed the potential of accommodat-

ing excess zeros in correlated count data. Chiou and Fu (2013) [15] addressed crash frequency

and severity simultaneously in an integrated model with a multinomial generalized Poisson

structure. The proposed covariance structure was shown to enhance the model’s performance.

Successively Chiou and Fu (2015) [16] extended their study to address spatio-temporal depen-

dence, which is complicated and difficult to realize.

Various studies then turned to two-stage bivariate/multivariate analysis. Wang et al. (2011)

[17] adopted the less-common two-stage model to model crash frequency at different severity

levels. A two-stage mixed multivariate model was proposed, and the results showed how disag-

gregated data at the level of individual accidents could be used to predict a certain type of low-

frequency accident. Hanley and Sikka (2012) [18] explored the impact self-reporting driver

distraction on the likelihood estimates of the injury severity category of crashes using a two-

step correction technique, and the findings showed that self-reporting bias understates the

true effect of driver distraction on injury severity. A recent study by Bhat et al. (2014) [19] inte-

grated a count outcome model with a multinomial probit selection model, which accommo-

dated unobserved heterogeneity and endogeneity issues at intersections. Their model can be

used for crash analysis at intersections. Xu et al. (2014) [9] developed a two-stage bivariate

logistic-Tobit model of crash severity and risk at different severity levels, and their results veri-

fied that the proposed model provided a good statistical fit and offered an effective alternative

method for evaluating safety performance at signalized intersections. From the perspective of
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incident clearance time, Ding et al. (2015) [20] constructed the joint two-stage model with

binary probit model and switching regression model tackling incident response time and

clearance time, respectively. The results suggested that the casual effect of response time on

incident clearance time would be overestimated without considering the self-selection bias. All

of these studies verified that two-stage analysis provides potential for future study.

During a certain observation period, no crashes may occur at each roadway segment and

intersection. Under this condition, the crash or crash rate can be considered as either zero—

inflated data or censored data, i.e., left-censored at zero. As for the former, studies by Miaou

(1994), Shankar et al., (1997), Carson and Mannering (2001), Lee and Mannering (2002), Lord

et al. (2005, 2007) [21–26] provided and discussed the preponderance of “excess” zeros fre-

quently observed with zero-inflated count models;Malyshkina and Mannering (2010) [27] pro-

posed a two-state Markov switching count-data model as an alternative to deal with the

preponderence of zeros and allowed for the direct estimation of the zero-crash or normal-count

state in roadway segment. The results showed that Markov switching model is a viable alterna-

tive and superior to the zero-inflated models. All of models mentioned above divides the crash

data into zero state and non-zero state automatically instead of by model self-selection process;

as for the latter, censored data conform to the requirements of the Tobit model and has been

used by scholars to conduct crash analyses. Anastasopoulos et al. (2008) [28] used the Tobit

regression to address the censoring problem, and investigated the significant influencing factors

of accident rates on interstate highways. Later, Anastasopoulos et al. (2012) [29] established a

multivariate Tobit regression model to investigate accident-injury severity rates, and the results

indicated that the multivariate Tobit model helped to analyze the factors that determined

accident-injury severity on roadway segments. However, censored data, whether left- or right-

censored, ignore some parts of the sample, which may not completely reflect the actual features

of crashes and probably lead to erroneous estimation results.

To take advantage of the merits of two-stage analysis and address the zero-sample issue

simultaneously, this study adopts a sample selection model known as the Heckman selection

model. This model was presented by Heckman (1979) [30], who won the Nobel Prize for the

contribution. Although various studies in the economics field have adopted this model, not so

many have done so in the transportation field. Mannering and Hensher (1987) [31] provided a

general overview of the discrete/continuous modeling and the application to transport analy-

sis, which was initially used in transportation and improved our understanding of transport

phenomena. Recently, Mannering and Bhat (2014) [32] summarized the evolution of method-

ological application and traditional data in accident research, and future methodological devel-

opments and emerging data were discussed. The issues related to unobserved heterogeneity

and selectivity bias/endogeneity expand our understanding of injury severity and highway

crashes. Specifically, Mannering et al. (2016) [33] focused on unobserved heterogeneity issue

with various models and presented their strengths and weaknesses. However, the clearly-

named study by Kaplan et al. (2016) [34] used the Heckman selection model in Denmark to

explore the distance young adolescents covered by walking and cycling. Their results showed

that walking and cycling necessitated different urban environments and should be encouraged

for urban form planning. Based on these studies, Heckman selection model not only handles

discrete/continuous modeling issue, but also addresses unobserved heterogeneity and selectiv-

ity bias/endogeneity problems simultaneously, which helps to compare the suitability of

models.

The purpose of this paper is to explore a version of the Heckman selection model capable of

addressing crash rate and severity at different levels simultaneously. The model provides a

two-step analysis and deals with the zero-sample issue, based on which it can accommodate

the heterogeneity (i.e., shared unobserved factors) between signalized intersections and then
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address the endogeneity (between crash rate and severity) at signalized intersections. An illus-

trative example using a crash dataset from signalized intersections in Hong Kong is used to

evaluate the suitability of the proposed model.

Data description

As this study aimed to investigate crash rate and severity at different levels, the crash rate and

severity variables for modeling purposes were integrated into one dataset. This study used

Hong Kong traffic crash data from 262 signalized intersections in two years 2002 and 2003,

which were obtained from the Traffic Accident Database System (TRADS) maintained by the

Hong Kong Transport Department and Hong Kong Police Force. In the analyses, the crash

information of an intersection in a particular year is considered as an independent observa-

tion. There are a total of 555 observations distributed across three major districts including

Hong Kong Island, Kowloon and the New Territories (see Xu et al. (2014) [9]). The counted

data included intersections without crashes and one or multiple crashes with different severity

levels. Specifically, if there was zero crash occurred within the signalized intersection, there

was no severity level, thus only one state was recorded, i.e. one observation was counted; if

there was one crash occurred, there existed at least two severity levels, one for slight injury,

and the other for KSI, i.e. two observations were counted; if there was more than one crash

happened, it should be determined how many crashes belonged to slight injury or KSI, and

then decided how many observations were counted. Among the 555 observations, 134 exhib-

ited zero crashes, accounting for 24% of the sample, and 421 exhibited one or more crashes,

accounting for 76% of the sample.

TRADS classifies crashes as slight injury, serious and fatal. As there are few fatal crashes

and both serious and fatal crashes lead to very serious injury, crashes resulting in death and

serious injury are considered to fall into a single category: kill or serious injury (KSI). Among

the 555 observations, 335 belonged to the slight injury category, amounting to 60% of the data-

set, and 85 belonged to the KSI category, accounting for 15% of the dataset. Table 1 gives the

mean and standard deviation of the crash rate for both slight injury and KSI. The crash rates

for slight injury and KSI are respectively defined as the numbers of slight-injury and KSI mil-

lion crashes per year divided by the annual exposure. The annual exposure is calculated by

multiplying the annual average daily traffic (AADT) by 365.

Traffic volume significantly influences crash occurrence, which has been demonstrated by

the non-linear relationship between crash occurrence and exposure. The AADT is therefore

quantified and is expected to reveal the proportionality of the relationship between the crash

rate and traffic volume.

Other influencing factors, such as geometric road design, traffic characteristics, roadway

environment and signal phasing, are collected from traffic impact assessment reports made in

Hong Kong. As these reports are documented for planning and design purposes, the sampling

process of this study should not have been affected by any marked bias. Therefore, variables

including roadway characteristics (number of approach lanes, number of conflict points, num-

ber of turning movements required, average lane width and reciprocal of the turning radius),

traffic characteristics (proportion of commercial vehicles and speed limit), signal-phasing

scheme (number of signal phases, signal cycle time and number of pedestrian crossings), geo-

metric characteristics (number of approaches, presence of tram stops and light rail transit

[LRT] stops), road environments on Hong Kong Island and in Kowloon and presence of turn-

ing pockets were considered. Xu et al. (2014) [9] provided a detailed description of these vari-

ables (Listed in S1 File). The available characteristics of the data sample are presented in

Table 1.

Heckman selection analysis of intersections
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Method

The Heckman selection model is a two-equation model. First, there is the regression model

yi ¼ Xibþ m1 ð1Þ

Second, there is the selection model

Zigþ m2 > 0 ð2Þ

Table 1. Sample characteristics for the selected signalized intersections.

Variable Description Categories

Dependent variables

Slight Slight injury Yes: 60% No: 40%

KSI Killed and severe injury Yes: 15% No: 85%

Mean Std. dev. Min. Max.

SCrRt Crash rate of slight injury 0.62 0.50

KCrRt Crash rate of KSI 0.60 0.47

Exposure

AADT AADT 35,934.16 23,219.35 903 121,221

Roadway characteristics

Nolanes Number of approach lanes 8.49 3.52 2 18

Noconflict Number of conflict points 8.74 8.53 0 30

Notrnstream Number of turning movements required 6.32 2.70 1 12

Lanewidth Average lane width (m) 3.31 0.31 2.7 5.5

Reciprad Reciprocal of the turning radius 0.09 0.03 0 0.2

Traffic characteristics

Comveh Proportion of commercial vehicles 0.21 0.10 0.01 0.66

Speed Speed limit (km/h) 50.04 0.85 50 70

Signal-phasing scheme

Nostages Number of signal stages 3.14 0.78 2 7

Cycletime Cycle time (s) 98.31 18.30 44 140

Pedcrossing Number of pedestrian crossings 4.06 2.21 0 8

Indicator variables

Geometrical characteristics

2 Appr. Two approaches (Yes = 1, No = 0) 0.16 0 1

3 Appr. Three approaches (Yes = 1, No = 0) 0.30 0 1

4 Appr. Four or more approaches (Yes = 1, No = 0) 0.69 0 1

Tramstop Presence of tram stops (Yes = 1, No = 0) 0.06 0 1

Lrtstop Presence of LRT stops (Yes = 1, No = 0) 0.02 0 1

Road environment

HKI Hong Kong Island (Yes = 1, No = 0) 0.23 0 1

KLN Kowloon (Yes = 1, No = 0) 0.58 0 1

Signal-phasing scheme

Turningpock Presence of a turning pocket (Yes = 1, No = 0) 0.08 0 1

https://doi.org/10.1371/journal.pone.0181544.t001
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with the following holds:

m1 ~ Nð0; sÞ ð3aÞ

m2 ~ Nð0; 1Þ ð3bÞ

corrðm1; m2Þ ¼ r ð3cÞ

where yi denotes the dependent variables, Xi denotes the observable features of the indepen-

dent variables, β denotes the parameters to be estimated and μ1 is a normally distributed error

term with a mean of zero and a standard deviation σ to be estimated. Zi denotes observable fea-

tures including the overlapping variables with Xi, and γ denotes the vectors of parameters to be

estimated. μ2 is a distributed error term with a mean of zero and a standard deviation equal to

one. ρ represents the correlation between the two error terms to be estimated. Using these two

equations, samples larger than zero can be selected and estimated based on various modeling

methods, through which the Heckman selection model provides consistent, asymptotically

efficient estimates for all of the parameters.

In the main equation of this study, it is assumed that a regression model can be used to

explain the crash rate for slight injury/KSI:

yi ¼ X1ib1 þ Cib2 þ mi ¼ Xibþ mi ð4Þ

where yi denotes the crash rate for slight injury/KSI; Xi is a vector of observable features related

to slight injury/KSI, in which X1i represents the endogenous variables; Ci stands for the exoge-

nous variables; β1, β2 and β are vectors of parameters to be estimated; and μi is a normally dis-

tributed error term with a mean of zero and a standard deviation σ to be estimated. Here, the

dependent variable yi may not always be observed, and it is specially observed only when the

crashes actually belong to the slight injury/KSI categories. Therefore, in the selection model,

the dependent variable is observed if:

Z1ig1 þ Cig2 þ ui ¼ Zigþ ui > 0 ð5Þ

where Zi is a vector of observable features related to slight injury/KSI, which includes the over-

lapping variables with Xi; Z1i represents the endogenous variables that may or may not be the

same as X1i; γ1, γ2 and γ are vectors of the parameters to be estimated; and υi is a distributed

error term with a mean of zero and a standard deviation equal to one. This equation describes

the probability that slight injury/KSI is greater than zero.

The error terms hold the following distribution:

mi ~ Nð0; sÞ

ui ~ Nð0; 1Þ

corrðmi; uiÞ ¼ r

ð6Þ

where ρ represents the correlation between the two error terms to be estimated. The parameter

λ = σρ, known as the inverse Mills ratio, is the estimated selection coefficient.

There are two popular estimation methods for the model: maximum likelihood (full-

information maximum likelihood, FIML) and the two-step procedure (limited-information

maximum likelihood, LIML) (Leung and Yu, 1996)[33]. As the FIML estimator does not pro-

vide estimates of the “structural” variance-covariance parameters, i.e., those parameters in the

unconditional distribution of the error terms, the two-step model, i.e., the LIML approach, is

preferred and widely used as an alternative.
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Unlike the order of the model structure, the estimation of the Heckman selection regression

starts from the selection model. The estimation steps are as follows. In the first step, the probit

regression is used to model the sample selection process in Eq 5, and then the inverse Mills

ratio λ, the error from the probit equation explaining selection, is calculated based on the

probit regression results. In the second step, the inverse Mills ratio is added to multiple regres-

sion analysis as an independent variable, and ordinary least square is used to provide the con-

sistent parameter estimates in Eq 4. The likelihood function is given by

L ¼
Y

0
� ½1 � FðZigÞ� �

Y

1
Fð

Zigþ rðyi � XibÞ=s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p Þ

�ððyi � XibÞ=sÞ

s
ð7Þ

where ∏0 and ∏1 denote the products over the censored and uncensored samples, respectively.

F(•) and ϕ(•) denote the standard normal cumulative distribution function and standard nor-

mal probability density function, respectively.

In this study, the inverse Mills ratio term includes two parts: a selection effect and an effect

due to the endogeneity. If the endogeneity is absent, the endogeneity effect is zero, and the

model is reduced to the general two-step selection model. The selection effect gives the

expected outcome of the fully observed sample while holding the entire explanatory variables

constant (including the endogenous variable), and the sign of the selection effect with the

endogenous variable is determined by the correlation coefficient ρ. Leung and Yu (1996) [35],

Mokatrin (2011) [36], Schwiebert (2015) [37] and Kaplan et al. (2016) [34] provided more

detailed estimation procedures. By estimating the preceding equations, the crash rate and

severity at different levels can be simultaneously and respectively calculated, and the zero sam-

ples are addressed along with the heterogeneity and endogeneity at the signalized

intersections.

Results

The results are obtained after the significant variables are examined in the model, and all of the

predictor variables are verified as statistically independent without co-linearity before the

model is finalized. STATA 12.0 (StataCorp LP, 2011) is used to perform the relevant analysis

and estimates.

To avoid correlations between the variables, the correlation test is conducted to identify the

variables to be included in the model. From the correlation matrix, the number of approach

lanes, conflict points, turning movements and signal stages are highly correlated with one

another. Therefore, these variables are not included in the model at the same time.

We run two models with Heckman selection regression. The first model is a selection

model that determines whether there is slight injury/KSI or not. The second stage then exam-

ines the effect of the independent variables on the crash rate. Each stage has a residual for each

observation, or a set of unknowns for each observation. To test for bias, we examine the rela-

tionship between the residual for the two stages (stages 1 and 2). If the unobservables in the

selection model are correlated with the unobservables in the stage 2 model, we have biased esti-

mates without correction, which implies that unobservables in the crash occurrence selection

are also affecting the stage 2 model. If the unobservables in stage 1 are unrelated to the unob-

servables in stage 2, it indicates that stage 1 does not affect the stage 2 results. This implies that

selection into the stage 2 sample is a random process, unaffected by different observables. If all

of the right variables are picked for our models, and there are few unobservable variables left

that affect our outcome, the chances of selection bias decrease.

The results are presented for the best model specification of slight injury and KSI as Heck-

man selection models in Tables 2 and 3, respectively. When ρ is positive, this indicates that the
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unobservables are positively correlated with one another; similarly, when ρ is negative, the

unobservables are negatively correlated. As shown in Tables 2 and 3, the error terms for ρ are

0.778 and -0.856, meaning that the unobserved factors that cause slight injury/KSI are posi-

tively and negatively correlated with one another, respectively. The crash rate of the slight

injury/KSI error terms has a large standard deviation, which implies that the heterogeneity is

captured in terms of slight injury/KSI. The Wald test reveals that the joint models are preferred

to the independent probit and linear regression models, with values of 45.85 and 21.90, respec-

tively. This indicates that the two models reject the independence of the equation at the 95%

confidence level.

The next thing to determine is how to interpret the estimated selection effect. To do this,

we compute the average selection or truncation effect. The average truncation effect is com-

puted as lambda�[average mills value] = 0.778�0.117 = 0.091, which depends on how much the

conditional slight injury is shifted up (or down) due to the truncation effect. The interpretation

of this is that injury severity with the sample set of average characteristics secured by slight

injury [exp (0.091)-1�100 = 9.52% is higher than the injury severity at random from the popu-

lation with the average set of characteristics. Thus, the numerical values suggest that there are

positive truncation effects in these data.

Table 2. Estimated results of the Heckman selection model for slight injury.

Variables Coefficient Std. Err. Z-statistic

Crash rate of slight injury

• Reciprad 4.923* 1.005 4.90

• Cycletime 0.004* 0.001 2.63

• Tramstop 0.244* 0.112 2.19

• KLN 0.279* 0.068 4.12

• Cons -0.714* 0.215 -3.32

Slight injury model

• AADT 0.001* 0.001 7.43

• Reciprad 4.256* 2.094 2.03

• Tramstop 0.872* 0.240 3.63

• KLN 0.698* 0.123 5.68

• Speed -0.230 0.004 -52.06

• Cons 10.267* 0.010 3.68

Goodness-of-fit assessment

• Rho 0.778

• Sigma 0.486

• Lambda 0.378

• Number of observations 555

• Wald Chi-square 45.85

• MAD 0.257

• RMSE 0.409

Note:

* Significant at the 5% level. Themean absolute deviation ðMADÞ ¼ 1

nSn
i¼1
jYi � Ŷi j, and root mean square errorðRMSEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðYi � Ŷ Þ

2
q

, where Yi is the

observed value, Ŷ i is the predicted value and n is the number of observations.

https://doi.org/10.1371/journal.pone.0181544.t002
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Exposure effects

Slight injury model. Various studies have demonstrated that AADT is significantly

related to crash rate, but here AADT is shown to positively influence the slight injury, implying

that traffic volume increases the possibility of slight injury. The more traffic volume on the

roadway, the higher the probability that conflicts will be generated. However, because there is

greater traffic volume, the vehicles may not speed much, thus the severity mostly resides in rea-

sonable slight injury.

General remarks. The results show that AADT is significant in slight injury. AADT is a

significant factor in crash rate, as demonstrated in various studies [9]. Nevertheless, previous

studies have not verified that higher traffic volume increases the probability of slight injury,

thus this study shows the potential result. Notably, this study considers both the slight injury

and KSI separately, avoiding the confusing factors not addressed in the previous studies. Fur-

ther research on the factors affecting slight injury and KSI severity could be helpful for the geo-

metric designs of signalized intersections.

Roadway characteristics

Slight injury model. The reciprocal of the turning radius is significantly and positively

correlated with the crash rate and slight injury. A larger turning radius, i.e. smaller reciprocal

of the turning radius, is accompanied by better sight distance, such that the severity of crashes

decreases. However, for slight injury, the positive relation to crash rate and slight injury indi-

cates that the possibility of crashes and slight injury still increases with the traffic flow, even

under the large turning radius condition.

Table 3. Estimated results of the Heckman selection model for KSI.

Variables Coefficient Std. Err. Z-statistic

Crash rate of KSI

• Lanewidth -0.039* 0.014 -2.81

• Cycletime 0.007* 0.003 2.24

• KLN 0.330* 0.113 2.91

• Cons 0.854* 0.561 1.52

KSI model

• Comveh 1.767* 0.628 2.81

• Tramstop 0.585* 0.228 2.57

• Speed 0.229* 0.003 71.98

• Cons 9.979* 0.004 2.58

Goodness-of-fit assessment

• Rho -0.856

• Sigma 0.636

• Lambda -0.545

• Number of observations 555

• Wald Chi-square 21.90

• MAD 0.385

• RMSE 0.635

Note:

* Significant at the 5% level.

https://doi.org/10.1371/journal.pone.0181544.t003
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KSI model. The average lane width is negatively linked to a higher risk of KSI severity,

which is uniform with previous findings from Xu et al. (2014) [9]. Currently, there is contro-

versy about whether wider or narrower lanes are safer in roadway design, and this study sug-

gests that wider lanes are safer, especially for KSI. Thus, it is recommended that the lanes at

signalized intersections be designed wide enough to avoid KSI.

General remarks. The reciprocal of the turning radius is positively related to the crash

rate of slight injury, implying that a small turning radius is risky for the crash rate of slight

injury severity. Moreover, the reciprocal of the turning radius is related to a higher likelihood

of slight injury severity, in agreement with findings from Xu et al. (2014) [9]. The findings

from this study reveal the importance of designing a larger turning radius to reduce the crash

rates at signalized intersections.

Traffic characteristics

Slight injury model. Higher traffic speeds usually cause more severe injury and less slight

injury. Traffic speed is negatively significant for slight injury, indicating that higher speeds

lead to less slight injury, which supports this general point.

KSI model. In contrast, travel speed is positive for the KSI severity, which implies that

higher travel speed leads to more KSI severity. Higher travel speed makes it difficult for the

driver to maneuver the vehicle, thus the probability of running into KSI severity is larger than

that associated with lower speeds.

The KSI severity at signalized intersections is positively sensitive to the proportion of com-

mercial vehicles, in agreement with Xu et al. (2014) [9]. As the collisions with or between com-

mercial vehicles usually have a greater force of impact and involve more people than those

with or between non-commercial vehicles, a higher proportion of commercial vehicles means

a higher proportion of heavy vehicles. Thus, in the event of a crash, the likelihood of a KSI is

higher.

General remarks. The result that higher travel speeds are negatively and positively related

to the probability of slight injury and KSI severity, respectively, is reasonable because higher

travel speed generally causes severe conflicts. The implication is that speed limits should be

posted at signalized intersections to remind the drivers to keep the travel speed steady.

The proportion of commercial vehicles is positively correlated with the probability of KSI

severity, in agreement with findings from the KSI model in Xu et al. (2014) [9], but in disagree-

ment with the findings from the slight injury model. The results suggest that the proportion of

commercial vehicles should be limited so that the conflict severity can be reduced at signalized

intersections. Moreover, safety education should be emphasized to reduce the aggressive

behavior of commercial vehicle drivers, which is a more effective means of reducing the KSI

severity for other road users than limiting the number of commercial vehicles allowed on the

road.

Signal-phasing scheme

Slight injury model. Cycle time is positively associated with the crash rate of slight injury.

A longer cycle time is usually accompanied by longer vehicle queues and delays, implying that

more vehicles arrive at the intersections during the signal cycle, and more chances conflict

with each other and run into slight injury. Plus, longer cycle times may arouse some drivers’

emotions, leading to aggressive driving that ends in injuries.

KSI model. Cycle time is positively correlated with crash rate of KSI at signalized intersec-

tions, such that a longer cycle time increases the crash risk of KSI. For those aggressive drivers,

if they know that they will have to wait for a long red light, red-light jumping may increase if
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they miss the last seconds of the amber light, which is a dangerous maneuver that leads to

more serious crashes.

General remarks. Cycle time is positively linked to higher crash rates for slight injury and

KSI, respectively, and this effect reflects that longer cycle times increase all types of crash rates.

The results are not exactly uniform with previous findings that longer cycle times only increase

the KSI crash risk [9]. The crash rate herein is investigated separately for slight injury and KSI,

which may reveal the potential effect of crash rate. Longer cycle times, especially the red lights,

would upset all drivers. Therefore, appropriate cycle times are not only beneficial for the sig-

nalized intersection control, but better from a safety perspective.

Geometrical characteristics

Slight injury model. The presence of tram stops is positively related to the crash rate and

slight injury. In Hong Kong, the tram stops are located in the center of the road, and next to

the signalized intersections. More tram stops may increase the conflicts between passengers

and automobiles, thus leading to more crashes. However, because the tram travels at lower

speeds, and the passengers get aboard and alight at lower speeds, protected by the signals, the

conflicts between passengers and the automobiles are more commonly attributed to slight

injury.

KSI model. The presence of tram stops is positively related to the KSI severity. Similar to

the Heckman model for slight injury, more tram stops may increase the conflicts between pas-

sengers and vehicles, leading to more crashes. Although the trams travel at lower speeds, some

of the conflicts between passengers and the vehicles may turn into KSI if more pedestrians

come across the signalized intersections.

General remarks. The presence of tram stops is positively related to the probability of

slight injury and KSI severity, and positively significant in the crash rate for slight injury at sig-

nalized intersections. The results indicate that the more tram stops there are, the higher the

likelihood of slight injury, KSI severity, and crash rate. Thus, in signalized intersections, the

site selection of tram stops should be evaluated and determined according to pedestrian and

traffic volume; that is, whether it is located upstream, downstream or the middle of the road-

way to reduce the crash rate and severity.

Road environment

Slight injury model. Compared to the traffic conditions in Hong Kong Island, the traffic

in Kowloon is more complicated and worse. Thus, the road environment in Kowloon is signif-

icantly and positively related to the crash rate and slight injury. Every day, there are thousands

of tourists, visitors and pedestrians in Kowloon visiting the hundreds of stores. This creates

more chances for crashes, but most of them tend to be slight injury because the travel speeds

are not very high due to the road environment.

KSI model. Similar to the Heckman model for slight injury, the traffic in Kowloon is sig-

nificant and positive to the crash rate of KSI. Thousands of people walk Kowloon’s streets

every day, increasing the probability of crashes, some of which may be attributed to KSI if

pedestrians and the drivers are aggressive.

General remarks. The road environment in Kowloon is positively associated with the

crash rate of slight injury and KSI, and positively related to the probability of KSI severity. The

findings suggest that the road environment should be improved every now and then due to the

increased probability of crashes. More attention should be paid to the sight distance of inter-

sections, cycle times, markings and labels for pedestrians and transit stops when designing and

controlling intersections.
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Generally speaking, crash rate can be a predictor in the Heckman selection model for slight

injury and KSI, and vice versa. In other words, the increase in the crash severity can be

reflected from the decrease in crash rate since crash severity is considered as one independent

variable in the crash rate function, while the increase of crash rate implies that the crash sever-

ity may be reduced, thus the endogeneity can be characterized and verified by the Heckman

selection model directly.

To demonstrate the effectiveness of the proposed model, Table 4 shows the results obtained

from the bivariate probit model, with which the proposed model shares some similar features.

The correlation between the two severity levels (Rho) is 0.517 at the 5% significance level, dif-

ferent from those in Tables 2 and 3, reflecting the correlation between crash rate and injury

severity. RMSE is larger in Table 4 (1.346) than in Table 2 (0.409) and 3 (0.635), and MAD

value in Table 4 (0.822) shows the same trend compared with those in Table 2 (0.257) and 3

(0.385). The results in Tables 2 and 3 are apparently more specific, revealing both the crash

rates for slight injury and slight injury severity and the crash rates for KSI and KSI severity

simultaneously and separately. The results in Table 4 show only the slight injury and KSI sever-

ity models. Therefore, the proposed modeling approach reveals a wider coverage of

performance.

Table 4. Estimated results of the bivariate probit model.

Variables Coefficient Std. Err. Z-statistic

Slight injury model

• AADT 0.277e-3* 0.342e-5 8.10

• Reciprad 7.242* 2.297 3.15

• Comveh 2.265* 0.622 3.64

• Tramstop 1.119* 0.253 4.43

• KLN 0.997* 0.135 7.38

• Cons -1.995* 0.275 -7.24

KSI model

• AADT 0.022e-3* 0.269e-5 8.19

• Reciprad 5.595* 2.178 2.73

• Comveh 3.444* 0.580 5.94

• Tramstop 0.884* 0.232 3.81

• KLN 0.497* 0.126 3.94

• Cons -2.389* 0.257 -9.27

Goodness-of-fit assessment

• Rho 0.517

• Number of observations 555

• Log likelihood at zero -333.34

• Log likelihood at convergence -533.13

• Chi-square 40.62

• Wald Chi-square 224.37

• MAD 0.822

• RMSE 1.346

Note:

* Significant at the 5% level.

https://doi.org/10.1371/journal.pone.0181544.t004
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Discussion

This study uses a Heckman selection model to provide evidence about the crash rate estima-

tion for slight injury and KSI, simultaneously and respectively, while tackling the zero samples.

The two-step Heckman selection model accommodates the heterogeneity between signalized

intersections and deals with the endogeneity (between crash rate and crash severity) at signal-

ized intersections. The findings from this study reveal some directions and trends for further

study and design/policies/measures.

Compared with the bivariate probit model or two-stage bivariate logistic-Tobit model used

by Xu et al. (2014) [9], the Heckman selection model has the following advantages. First, its

two-step procedure accommodates endogenous and heterogeneous effects by incorporating

crash rate and severity into its forecast and evaluating crash rate individually according to

crash severity levels. Second, by incorporating crash rate and severity, the two-step procedure

reduces the effects of the overly complicated single-level modeling structure and the effects of

complex modeling estimation. Third, the two-step procedure retains all of the benefits of a sin-

gle-level model. Most impressive of all, the two-step procedure is easier to understand and

implement than the multivariate models (Dong et al. (2014), Chiou & Fu (2015) [14, 16].

A few points about Heckman selection model are particularly worth noting. First, in Eq 5,

υi is an error term or residuals of the variation in the selection model, which is a specification

error or, more precisely, a case of unobserved heterogeneity determining selection bias. This

specification error is considered as a true omitted-variable problem, and well taken into

account when estimating the parameters of Eq 4. In other words, the impact of selection bias is

neither thrown away nor assumed to be random, but is explicitly utlized and modeled in the

equation estimating the outcome regression. This treatment for selection bias connotes Heck-

man’s contribution and distinguishes the solution to the selection bias problem from that of

the traditional statisticals. Additionally, the consistent estimator of the individual parameter ρ
(i.e. the correlation of the two error terms) and σ (i.e. the variance of the error term of the

regression equation) were constructed to estimate the model parameters. Furthermore, the

results estimated by the maximum likelihood estimator are remarkably similar to those pro-

duced using the least squares estimator. Given that the maximum likelihood estimator requires

more computing time, and computing speed was considerably slower, Heckman’s least squares

solution is a remarkable alternative. More important, Heckman’s solution was devised within

a framework of structural equation modeling that is simple and succinct and that can be

applied in conjunction with the standard framework of OLS regression. Last, the Heckman

selection model depends strongly on the model being correct, much more so than ordinary

regression. Running a separate probit or logit for sample inclusion followed by a regression,

referred to the two-part model—not to be confused with Heckman’s two-step procedure—is

an especially attractive alternative if the regression part of the model arose because of taking a

logarithm of zero values. When the goal is to analyze an underlying regression model or to pre-

dict the value of the dependent variable that would be observed in the absence of selection, the

Heckman model is more appropriate However, when the goal is to predict an actual response,

the two-part model is usually the better choice.

Nevertheless, the dataset has its limitations. First, about 555 observations are included, and

sub-crashes (zero and non-zero crashes) are very limited, thus the estimation results may be

more accurate if more observations are involved. The second limitation concerns the explana-

tory variables. A broader range of explanatory variables could result in statistically significant

coefficient estimates, thus more variables should be collected. The third limitation is that the

temporal and spatial effects at signalized intersections are not addressed strongly, and the
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model performance may be improved by integrating the more comprehensive dataset infor-

mation available for typical signalized intersections.

Conclusions

In this paper, the crash rate and crash severity are modeled to evaluate the safety performance

at signalized intersections in Hong Kong, while taking into account the heterogeneity and

simultaneity of the two. The Heckman selection model, to the authors’ knowledge, is by far the

first attempt in the literature on the crash rate and crash severity to simultaneously model the

safety at signalized intersections. A two-step procedure is used to assess the crash rate and

crash severity simultaneously and address the slight injury and KSI separately, and the zero

sample issue is dealt with to accommodate the heterogeneity (i.e., shared unobserved factors)

between signalized intersections and tackle the endogeneity (between crash rate and crash

severity) at signalized intersections

The results of the Heckman selection model for slight injury indicate that the crash rate is

positively correlated with the reciprocal of the turning radius, cycle time, the presence of tram

stops and road environment in Kowloon, whereas the slight injury severity is significantly

influenced by the AADT, the reciprocal of the turning radius, the presence of tram stops, the

road environment in Kowloon and travel speeds. Regarding the results of the Heckman selec-

tion model for KSI, the lane width, cycle times and road environment in Kowloon increase the

likelihood of crash rate for KSI. The proportion of commercial vehicles, the presence of tram

stops and the travel speeds increase the likelihood of KSI severity, whereas the average lane

width reduces the likelihood. The Heckman selection model also addresses the correlation

between the crash rate for slight injury/KSI and slight injury/KSI severity respectively, which

implies that the unobserved variables are heterogeneous between the signalized intersections

in Hong Kong.

Compared with the model proposed by Xu et al. (2014) [9], the Heckman selection model

involves a less complex estimation procedure. Researchers with less mathematical expertise

should find it easier and more convenient to estimate the model using the associated statistical

package. This may benefit practitioners and facilitate the validation process.
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