
Novel method combining multiscale attention
entropy of overnight blood oxygen level and
machine learning for easy sleep apnea screening

Zilu Liang

Abstract

Objective: Sleep apnea is a common sleep disorder affecting a significant portion of the population, but many apnea patients
remain undiagnosed because existing clinical tests are invasive and expensive. This study aimed to develop a method for
easy sleep apnea screening.

Methods: Three supervised machine learning algorithms, including logistic regression, support vector machine, and light
gradient boosting machine, were applied to develop apnea screening models at two apnea–hypopnea index cutoff thresh-
olds: ≥ 5 and ≥ 30 events/hours. The SpO2 recordings of the Sleep Heart Health Study database (N = 5786) were used for
model training, validation, and test. Multiscale entropy analysis was performed to derive a set of multiscale attention entropy
features from the SpO2 recordings. Demographic features including age, sex, body mass index, and blood pressure were
also used. The dependency among the multiscale attention entropy features were handled with the independent component
analysis.

Results: For cutoff ≥ 5/hours, logistic regression model achieved the highest Matthew’s correlation coefficient (0.402) and
area under the curve (0.747), and reasonably good sensitivity (75.38%), specificity (74.02%), and positive predictive value
(92.94%). For cutoff ≥ 30/hours, support vector machine model achieved the highest Matthew’s correlation coefficient
(0.545) and area under the curve (0.823), and good sensitivity (82.00%), specificity (82.69%), and negative predictive
value (95.53%).

Conclusions: Our models achieved better performance than existing methods and have the potential to be integrated with
home-use pulse oximeters.
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Introduction
Sleep apnea is a common sleep disorder characterized by
frequent episodes of partial or full blockage of the respira-
tory tract during sleep. Sleep apnea is clinically diagnosed
using the apnea–hypopnea index (AHI), which is defined
as the number of apnea or hypopnea events per hour
during a night’s sleep. A person is considered as having
sleep apnea if the AHI is larger than or equal to 5.
Continuous positive airway pressure (CPAP) treatment is

often recommended for people with an AHI larger than
30 in Japan.1 The symptoms of sleep apnea include loud
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snoring and excessive daytime sleepiness. In the long-term,
sleep apnea is associated with increased risk of diabetes,
hypertension, depression, and memory loss.2,3 It is, there-
fore, important for sleep apnea patients to seek timely diag-
nosis and treatment.

Clinical diagnosis of sleep apnea requires a patient to
undergo an overnight polysomnography (PSG) test in a
hospital or sleep clinic. A PSG test monitors many physio-
logical signals during sleep to gain a holistic view of a
patient’s physical states during sleep. The set of signals is
then manually scored by a registered sleep technician.
PSG test is expensive and time-consuming, which limits
its accessibility and affordability as a method for sleep
apnea screening. To address the problem, many studies
have attempted to develop more affordable sleep apnea
screening systems. These systems aim to achieve reason-
able accuracy in detecting sleep apnea episodes using
only a subset of the signals measured in a PSG test such
as electroencephalogram (EEG)4 and electrocardiogram
(ECG).5 In a related vein, some studies developed sleep
apnea screening methods that rely on the information stored
in electronic health records (EHRs) such as demographic
characteristics, laboratory blood test results, comorbidities,
medication, questionnaire scores, etc.6–10,12,11,13 Although
EHR-based methods are promising, they are not applicable
to at-home sleep apnea screens because not all the required
data are readily available to individuals.

As consumer sleep tracking technologies burgeon,
research interest has started to shift towards developing
new sleep analysis models that are compatible with the
sensing modalities available in those devices.14–16 Most
of the consumer sleep trackers nowadays have embedded
photoplethysmography sensors that continuously measure
users’ peripheral oxygen saturation (SpO2), making it an
ideal sensing modality for sleep apnea detection in free-
living environments. Many studies in this line of research
formulated sleep apnea detection into an epoch-wise classi-
fication problem.17–21 A whole night’s SpO2 recording was
segmented into small intervals called epochs. The size of an
epoch was often set to 1 minute. The constructed classifica-
tion model was supposed to map each epoch to either a
positive or negative apnea event. This scheme for apnea
event classification suffers two major drawbacks. First,
the signal segmentation process introduces dependency
among training samples, violating the assumption of inde-
pendent and identical distribution that is central to many
machine learning techniques. Despite the seemingly large
number of segments, the degree of freedom is limited by
the cohort size, which is often too small in prior studies.26

For example, the widely used Apnea-ECG dataset only con-
tains eight recordings of SpO2 signals, while the
St. Vincent’s University Hospital/University College
Dublin Sleep Apnea Database contains SpO2 recordings
of only 25 subjects. The models thus may suffer from over-
fitting and may not generalize well to new data. Second, the

performance evaluation of the existing model often centers
on the detection of individual apnea events rather than an
overall evaluation of whether a user is likely to have
sleep apnea. While one may argue that the accurate detec-
tion of respiratory events allows for the calculation of
AHI (and thus sleep apnea screening), the evaluation of
the latter is mostly missing in prior studies and thus
leaving it unknown in terms of the models’ performance
in apnea screening. A few recent studies developed
SpO2-based apnea screening models and validated them
on larger datasets. Trained with 18 features and validated
on the São Paulo Epidemiologic Sleep Study dataset (N =
887), the OxyDOSA model achieved an area under the
receiver operating characteristic curve (AUC) of 0.94 and
an accuracy of 86%.22 In another study, a least-squares
boosting (LSBoost) model was trained on 32 features and
validated on the Sleep Heart Health Study (SHHS) dataset
as well as the Rio Hortega University Hospital (RHUH)
dataset.23 The LSBoost model achieved an accuracy
between 87.23% and 96.58% for a binary classification.
In a recent study, a convolutional neural network-based
deep learning model was developed by Sharma et al.24 to
achieve segment-wise classification of sleep apnea events.
This model was validated on the SHHS dataset and
achieved an AUC of 90.4 and an accuracy 82.2%.
Another deep learning model OxiNet was recently developed
by Levy et al.25 to predict subject-wise AHI values. This
model was validated on six large datasets (N = 369–
5778) and yielded an average F1-score between 0.75 and
0.84.

In this article, we developed a new method for sleep
apnea screening based on analyzing overnight SpO2
recordings. Our method combines multiscale entropy
(MSE) analysis and machine learning. The problem of
interest was formulated into a binary classification
problem. We were interested in distinguishing the positive
class and the negative class at two AHI cutoffs: ≥ 5 and ≥
30/hours. The first cutoff is the clinical diagnostic criteria of
sleep apnea, and it allows the detection of sleep apnea
patients from healthy population. The second cutoff
allows the identification of people with severe apnea, and
it is often used to decide whether a patient needs CPAP
treatment in Japan.1

The key innovation of our method is the multiscale
attention entropy (MSAE)—a novel way to construct fea-
tures that characterize the complexity of the SpO2 signals
for various temporal scales. MSE analysis generates
insights into the temporal fluctuation of the information
encoded in the SpO2 signals. We used a new entropy
measure—attention entropy—as the base entropy in the
MSE analysis. Attention entropy has advantages over
other conventional entropy measures such as sample
entropy and approximate entropy because it is robust to
the length of the signal and is parameter-free. The attention
entropy of the SpO2 signals computed for various scale
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factors formed the raw feature set, which was scaled and
then processed using the independent component analysis
(ICA) to generate independent features for model construc-
tion. We considered both short, medium, and long-term
time scales of up to 30 minutes in the MSAE analysis.

The contribution of this article is as follows. First, we
proposed a new method that combines the MSAE and
ICA to derive independent features that characterize the
complexity of the overnight SpO2 signals at short-,
medium-, and long-term temporal scales. Second, we exam-
ined the discriminating power of the attention entropy for a
wide range of time scale from 1 second to 30 minutes. To
the best of our knowledge, this is the first study that inves-
tigates the multiscale entropy for time scales longer than 1
minute. Our analysis found that the attention entropy of the
overnight SpO2 signals at time scale longer than 1 minute
could be useful features for distinguishing apnea positive
and negative. This is a new finding that no prior study
had discovered. Third, we developed and validated classifi-
cation models for sleep apnea screening that will have
greater compatibility with home use sleep tracking tech-
nologies, because the models only rely on one input
signal—overnight SpO2—that is nowadays readily measur-
able with off-the-shelf digital sleep health gadgets.

The rest of the article is organized as follows. The
“Method” section explains the database, feature construc-
tion and transformation, model training and test, and per-
formance evaluation measures. The “Result” section
shows the visualization of the MSAE for the positive and
negative groups for various scale factors and the perform-
ance of the apnea screening models. In the “Discussion”
section, we provide interpretations of the principal findings,
compare our work with prior work, and highlight the limita-
tions of the current work. The article is concluded in the last
section.

Method

Database

In this study, we used the SHHS database. The SHHS is a
multi-center cohort study that aims to investigate the asso-
ciations between sleep apnea and other diseases including
stroke, hypertension, coronary heart disease, and all-cause
mortality. Subjects who met the inclusion criteria were
those 40 years or older with no history of treatment of
sleep apnea and tracheostomy, and were not under home
oxygen therapy at the time of the experiment. Subjects
underwent two PSG tests with the second test conducted
at least 3 years after the first one. PSG tests were performed
at subjects’ homes for better ecological validity. The SpO2
signals were recorded using a Nonin XPOD 3011 with an
8000J sensor attached to a finger. Recordings shorter than
4 hours were removed. The sampling rate was 1Hz. All
subjects provided written informed consent before

experiments started. Access to the SHHS database was
granted by the National Sleep Research Resource
(NSRR), and the handling of the data in this study was com-
pliant with the Data Access and Use Agreement (DAUA).

We used 5786 SpO2 recordings of subjects’ first visits to
build the sleep apnea screening models in this study. The
recordings of the second visits were discarded to avoid
introducing within-subject dependency. The demographics
and sleep-related characteristics of the subjects are shown in
Table 1. The mean age was 63.1 years and 47.7% were
men. The apnea prevalence was high (82.6%) due to the
intentional oversampling of snorers in SHHS. The preva-
lence of severe apnea as defined by AHI≥ 30/hours was
17.4% in the whole cohort and 20.6% among apnea
patients. Compared to subjects without apnea, those with
apnea as defined by cutoff ≥ 5/hours were older, more
obese, had a higher percentage of men, had higher systolic
blood pressure, slept shorter, had longer wakefulness after
sleep onset, and had lower sleep efficiency. Similar ten-
dency was observed for cutoff ≥ 30/hours. The positive
and negative classes are imbalanced, with a ratio of
4.77:1 (for AHI ≥ 5/hours) and 1:4.87 (for AHI ≥ 30/
hours). Further details of the SHHS can be obtained by
Quan et al.27

Data were retrieved from the NSRR repositories upon
approval.28 The PSG recordings were downloaded as
European Data Format (EDF) files from which the SpO2
signals were extracted to derive MSAE features. In line
with prior studies,17,29,30,23 we considered the followings
as artifacts and removed them from the SpO2 signals: (1)
readings of zeros, (2) readings below 50% or above
100%, and (3) sudden changes of more than 4% between
consecutive readings. In addition to extracting the SpO2
signals from the PSG recordings in the SHHS database,
we also used several demographic variables that individuals
can easily obtain at home. Those variables include age, sex,
body mass index (BMI), systolic blood pressure (BPS), and
diastolic blood pressure (BPD).

It is worth noting that the database contains several har-
monized AHI variables. This is because several major revi-
sions were made to the guideline of sleep scoring rules
along the years, leading to slight changes in the calculation
of AHI. Based on the latest version of the guideline,31 some
of the AHI variables are considered as “recommended,”
while others are considered as “alternative” or “acceptable.”
We used the nsrr_ahi_ph3r_aasm15 variable as the ground
truth because the annotation rules are consistent with the
recommended rules in the latest guideline.31 In detail, the
AHI was calculated as the number of apnea and hypopnea
events with more than 30% nasal airflow reduction and
more than 3% oxygen desaturation with or without
arousal per hour of sleep. The calculation of AHI took
into account both obstructive sleep apnea and central
sleep apnea events. For apnea and non-apnea classification,
nsrr_ahi_ph3r_aasm15 ≥ 5 was mapped to the positive
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class corresponding to apnea, and nsrr_ahi_ph3r_aasm15
< 5 was mapped to the negative class corresponding to
non-apnea. For the classification of severe apnea and all
other cases, nsrr_ahi_ph3r_aasm15 ≥ 30 was mapped
to the positive class corresponding to severe apnea, and
nsrr_ahi_ph3r_aasm15 < 30 was mapped to the negative
class corresponding to all other cases. Figure 1 shows
the examples of the SpO2 waveform for subjects with
no apnea, mild to moderate apnea, and severe apnea,
respectively.

Feature construction based on multiscale
attention entropy analysis

In our proposed method, features were derived based on
the MSE analysis of the overnight SpO2 recordings. The
MSE analysis is a technique to evaluate the complexity
and regularity of a signal at multiple time scales.32 It gener-
ates insights into the dynamic temporal fluctuations of the
information encoded in a signal and provides additional
useful information that conventional single-value entropy
measure fails to capture. The MSE analysis iterates over
two steps for each specified scale factor τ: signal graining
and entropy calculation. The originality of our method man-
ifests in both steps. We applied attention entropy in place of

the conventional sample entropy or approximate entropy
to eliminate the need for phase space reconstruction and
expensive parameter tuning. Furthermore, we considered
large-scale factors representing much longer temporal
scales than those used in prior studies. The process for cal-
culating MSAE is illustrated in Figure 2. In what follows,
we explain the MSAE analysis and feature construction in
detail.

The first step of the MSAE analysis is to segment a
cleaned SpO2 signal into non-overlapping coarse-grained
sequences for different temporal scales. Given a digital SpO2
signal x(i) = {x(1), x(2), . . . , x(N)} (i = 1, 2, . . . , N),
the coarse-grained signal for scale factor τ (τ ∈ N+ ),
denoted as xτg(j) = {xτg(1), xτg(2), . . . , x

τ
g(N/τ)} (j = 1, 2,

. . . , N/τ), can be calculated by averaging all the data
points within the j-th graining window, as shown in equa-
tion (1). For τ = 1, xτg(j) is equivalent to the original signal.
For τ > 1, the length of the grained signal reduces progres-
sively as the scale factor τ increases. The upper bound of
the scale factor was often heuristically set to a value
between 10 and 50.33–35 Given the high sampling rate of
signals, the scale factors applied in previous studies corres-
pond to very short temporal scales that are often less than 1
minute. In the present study, we set the maximum scale
factor to 1800, which corresponds to a temporal scale of

Table 1. Demographics and sleep characteristics of subjects.

All Positive ( ≥ 5/hours) Negative (< 5/hours)
Positive (≥
30/hours) Negative (< 30/hours)

No. of subjects 5786 4784 1002 986 4800

No. of males (%) 2758 (47.7) 2512 (52.5) 246 (24.6) 682 (69.2) 2076 (43.3)

Agea 63.1±11.2 64.0±11.0 58.7±11.3 65.7±10.6 62.6±11.3

BMIa (kg/m2) 28.2±5.1 28.6±5.1 25.9±4.2 30.7±5.6 27.6±4.8

BPSb 127.4±19.3 128.2±19.2 123.4±19.5 130.9±18.9 126.6±19.3

BPDc 73.7±11.6 73.8±11.8 73.0±10.6 75.3±12.7 73.4±11.4

TSTd (minutes) 359.9±64.5 356.9±64.8 374.2±61.0 345.3±67.2 362.9±63.5

WASOe (minutes) 61.5±44.0 64.0±45.1 49.5±36.0 74.7±50.4 58.7±42.1

SEf (%) 82.8±10.5 82.2±10.8 85.6±8.9 79.8±11.9 83.4±10.1

AHIg (events/hours) 17.9±16.1 21.1±16.0 2.9±1.3 46.6±15.8 12.1±7.6

aBody mass index.
bSystolic blood pressure.
cDiastolic blood pressure.
dTotal sleep time.
eWake after sleep onset.
fSleep efficiency.
gApnea-hypopnea index.

4 DIGITAL HEALTH



Figure 1. Examples of SpO2 signals of (upper) a subject without sleep apnea, (middle) a subject with mild to moderate apnea, and (lower)
a subject with severe apnea.

Figure 2. Process for multiscale attention entropy (MSAE) calculation.
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30 minutes, to extract useful information about the signal
complexity at short, medium, and long time scales.

xτg(j) = 1
τ

∑jτ

i=(j−1)τ+1

x(i), 1 ≤ j ≤ N

τ
(1)

The second step of the MSAE analysis is to calculate the
entropy of the coarse-grained signal xτg(j) for each scale
factor τ (τ ∈ N+). Different types of entropy measures
can be used in this step. Sample entropy and approximate
entropy are the most used so far. However, those entropy
measures have several limitations including lacking robust-
ness to short time series and requiring intensive parameter
tuning. In this study, we used a new parameter-free entropy
measure called attention entropy (denoted as attnEn). The

attention entropy characterizes the frequency distribution
of the intervals between successive peak points in a time
series.36 It is robust to both short and long time series
as it does not focus on the frequency distribution of all
observations, and it saves the trouble of parameter tuning
that is often required in the computation of conventional
entropy measures. The calculation of attention entropy for
a coarse-grained SpO2 signal xτg(j) takes three steps. First,
the peak points in xτg(j) will be detected, which represent
local maxima and local minima. Second, the intervals
between two successive peak points for each pattern ω in
Ω, denoted as Iτω(k), will be calculated. There are four key
patterns in Ω: local maxima to local maxima, local
minima to local maxima, local maxima to local minima,
and local minima to local minima. The Shannon entropy

Figure 3. Process for feature and label construction. BMI: body mass index; BPS: systolic blood pressure; BPD: diastolic blood pressure.

Figure 4. Process for model construction. SS: standard scaling; RS: robust scaling; MS: min–max scaling; XS refers to either SS, RS, or MS.
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of the intervals for each pattern will be calculated separ-
ately, and then averaged to generate the attention
entropy of the time series for scale factor τ, as shown
in equation (2). Eventually, the feature set S = {attEnτ}
consists of the attention entropy of an SpO2 recording
for different time scales. The values of τ for short-time
scale were between 1 and 60 with an increment of 1, cor-
responding to a time range of 1–60 seconds. The values
for medium-time scale were between 90 and 600 with
an increment of 30, corresponding to a time range of
1.5–10 minutes. The values for long-time scale were
between 660 and 1800, with an increment of 60
between 660 and 1200 and an increment of 300
between 1200 and 1800. The long-term scales corres-
pond to 11–30 minutes.

attnEnτ = − 1
4

∑

ω∈Ω

∑

k

P(Iτω(k)) logP(I
τ
ω(k)) (2)

In addition to the MSAE features, we also used demo-
graphic features including age, sex, BMI, BPS, and
BPD. These features were shown to be associated to
sleep apnea38,39 and are easily attainable. Figure 3 illus-
trates the overall process for feature and label

construction.

Feature transformation using independent
component analysis

A potential issue with the MSAE-based feature construction
is that the derived features are correlated. As feature
dependency may compromise the performance of classifi-
cation models, we applied the ICA to transform the raw fea-
tures into a new set of features so that the statistical
dependency among the transformed features is minimized.
The ICA technique was originally used in the field of com-
putational neural science for de-noising EEG signals40 and
was later applied to a variety of problems.41 In this study,
the input to the ICA is the original set of the MSAE fea-
tures, and the output of the ICA is a set of maximally inde-
pendent features which are linear combinations of the
original MSAE features. The number of components was
set to the dimension of the original feature set, as the object-
ive of the ICA was to remove the dependencies among the
original features instead of dimension reduction.

We firstly normalized the original MSAE features
because the ICA is sensitive to the scale of the input.

Figure 5. Multiscale attention entropy (MSAE) for short-term scale factor (cutoff ≥ 5/hours).
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Feature scaling is also an important preprocessing step for
many machine learning algorithms, especially for distance-
based learning algorithms such as support vector machine
(SVM).42 We normalized the range of the features using
one of the following three methods.

(i) Standard scaling (SS) normalizes features to have zero
mean and unit variance.

(ii) Robust scaling (RS) removes the median and scales
features to the range between the first and the third
quartiles. This scaling method is robust to outliers.

(iii) Min–max scaling (MS) normalizes features to
between zero and one.

Model training, validation, and test

We applied three supervised machine learning algorithms
that are most suited for binary classification with medium
data size: logistic regression (LR), SVM, and light gradient
boosting machine (LGBM). LR and SVM have previously
shown promise in sleep apnea classification with demo-
graphic features,9,43 whereas no prior study has used LGMB.
Following the common practice in machine learning, we

used 80% of the datasets for training and the rest for test.
Hyper-parameterswere tuned through grid search over a par-
ameter grid and with 5-fold cross-validation to avoid over-
fitting. The area under the receiver operating characteristic
curve (AUC) was used as a model performance measure
during the grid search. At the end of the grid search, a
model was fitted on the entire training set with the best com-
bination of hyperparameter values. The process of model
construction is illustrated in Figure 4. Tree-based machine
learning algorithms such as LGMB are not sensitive to
feature scale nor the dependency among features. Hence,
we constructed seven LGBM models with or without
feature scaling and ICA. In contrast, LRmodels are sensitive
to both feature scaling and multicollinearity. Hence, we con-
structed three RFmodels with feature scaling and ICA. SVM
models are sensitive to feature scaling but less sensitive to
multicollinearity. Hence, we constructed six SVM models
with feature scaling and with or without ICA. The models
were denoted using the following naming rule: [machine
learning technique]_[scaling method]_[ICA or none]. For
example, rSVM_SS and rSVM_SS_ICA both refer to RBF
kernel-based SVM classifiers trained with features that

Figure 6. Multiscale attention entropy (MSAE) for medium-term scale factor (cutoff ≥ 5/hours).
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were normalized using standard scaling, but in the former
case, the features were not transformed using ICA while in
the latter case, the features were transformed.

As shown in Table 1, there are more samples of the posi-
tive class than the negative class, implying an imbalanced
dataset. To address this problem, the models (for LR and
SVM) altered the loss function by weighting the loss of
each sample of its class weight, or (for LGBM) re-weighted
the splitting criterion, which is inversely proportional to the
class frequency in the input data.

Performance evaluation

After hyperparameters tuning the models were evaluated
using multiple performance measures. To account for the
imbalanced frequencies of each class, we used Matthew’s
correlation coefficient (MCC) to evaluate the overall per-
formance of the models. MCC measures the performance
of a classification model by summarizing the confusion
matrix using equation (3), where TP, TN, FP, and FN
denotes true positive, true negative, false positive, and
false negative, respectively. The range of the MCC is
between −1 (worst) and 1 (best), and 0 corresponds to a
prediction made by random guess. It is considered a

better performance measure than accuracy (ACC), area
under the curve (AUC), and the F1-score for imbalanced
classification.47,46,45 Nonetheless, we still calculated
ACC, AUC, and F1-score to facilitate comparison with
prior studies. Sensitivity (SEN) and specificity (SPE)
were calculated to quantify the percentage of successfully
classified positive cases or negative cases. Positive predict-
ive value (PPV) and negative predictive value (NPV) were
also calculated due to their clinical relevance.

MCC = TP × TN− FP × FN����������������������������������������������
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

√
(3)

Python 3.10.5 was used for data analysis and for creating the
plots. Several Python modules were used, including NumPy,
SciPy, scikit-learn, Matplotlib, MNE-Python, and pandas.

Results

Visualization of MSAE

The temporal patterns of attention entropy for different time
scales are shown in Figures 5 to 7 for cutoff ≥ 5/hours and

Figure 7. Multiscale attention entropy (MSAE) for long-term scale factor (cutoff ≥ 5/hours).
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in Figures 8 to 10 for cutoff ≥ 30/hours. The shaded areas
represent the 95% confidence interval for the MSAE curves.
Similar trends were observed for both cutoff thresholds.
Irrelevant to the scaling method and the cutoff threshold,
the MSAE curves of the positive and negative groups
exhibit significant differences for short-term and medium-
term scale factors. It is shown that the attention entropy
of the negative group was consistently higher than that of
the positive group when the scale factor was below 600
(i.e. 10 minutes). The difference peaked between scale
factors 15 and 20 for both cutoff thresholds. The MSAE
curves of the two groups started to converge as the scale
factor reached 840 (i.e. 15 minutes) and eventually
became inseparable when the scale factor reached 1800
(i.e. 30 minutes). Standard scaling and robust scaling both
magnified the between-group differences.

Model performance

As shown in Table 2, for cutoff ≥ 5/hours, the highest MCC
(0.402) and AUC (0.747) were achieved by the
LR_SS_ICA model. Most of the SVM models and other
LR models had similar performance in terms of MCC and

AUC, while LGMB models had the poorest performance.
Different scaling methods and the ICA process did not sig-
nificantly affect model performance on the test set. LGMB
models were more sensitive but less specific than SVM and
LR models, and they also achieved a better trade-off
between PPV and NPV. In contrast, SVM and LR models
achieved a better tradeoff between SEN and SPE, but at
the cost of deteriorated NPV, which implies a decrease in
false positive but an increased in false negative.

For cutoff ≥ 30/hours, the highest MCC (0.545) and
second highest AUC (0.823) was achieved by the
RBF-kernel based SVM models with ICA irrelevant to
which scaling method was applied (i.e. rSVM_SS_ICA,
rSVM_RS_ICA, and rSVM_MS_ICA). Other SVM
models had similar performance, as shown in Table 3.
LR models had slightly worse MCC compared to the SVM
models, while LGMB models were the weakest in terms
of AUC. The ICA process improved the SPE and PPV of
the SVM models as well as the AUC, ACC, F1, and SEN
of the LGMB models. Different scaling methods did not
significantly affect model performance. Compared to the
SVM and RL models, the LGMB models were less effect-
ive in detecting the positive cases but more effective in

Figure 8. Multiscale attention entropy (MSAE) for short-term scale factor (cutoff ≥ 30/hours).
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detecting the negative cases. The SVM and LR models
achieved a good tradeoff between SEN and SPE but at
the cost of significantly deteriorated PPV, which implies
an increase in false positive rate. In contrast, the LGMB
models achieved better tradeoff between PPV and NPV
but at the cost of deteriorated SEN, which implies an
increase in false negative.

Discussion

Principal results

We have proposed a novel method for easy sleep apnea
screening and have presented the evaluated results. In
what follows, we discuss the principal findings and their
interpretations within the current landscape of the related
research field.

To the best of our knowledge, this is the first study that
examines multiscale entropy for a wide range of time scales.
While prior studies have used single-scale entropy for a
scale factor of 1 as a feature to develop apnea screening
models,23,37 our results suggest that single-scale entropy
may not have strong distinguishing power between apnea

positive and negative groups. As shown in Figures 5 and
8, the attention entropy at a scale factor of 1 of the positive
and negative groups are statistically indistinguishable and
thus the single-scale entropy measure would have failed
in screening the positive cases. As the scale factor increases,
however, the between-group difference started to manifest,
thus justifying the advantage of using multiscale entropy
over single-scale entropy. We found that the MSAE was
useful in distinguishing the positive and negative groups
at both cutoff thresholds for short- and medium-term time
scales. Standard scaling and robust scaling further magnified
the differences between groups. The MSAE of the positive
group was consistently lower than that of the negative
group over a range of time scales for both cutoff thresholds,
indicating a loss of complexity in the overnight SpO2 record-
ings for the positive group. This echoes findings in previous
studies that reduced entropy was often observed in the
physiological signals recorded from disease populations,32,44

indicating a loss of complexity with disease. Significant dif-
ferences were observed between the curves of the two groups
when the time scale was below 10 minutes. Notably, the dif-
ference between groups peaked around scale factors 15–20
for both cutoffs. As the time scale increases above 15

Figure 9. Multiscale attention entropy (MSAE) for medium-term scale factor (cutoff ≥ 30/hours).
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minutes, the two curves started to overlap and eventually
converged when the time scale reached 30 minutes.

Regarding the apnea screeningmodels, the best MCCwas
0.402 for cutoff ≥ 5/hours and 0.545 for ≥ 30/hours, respect-
ively, indicating strong positive relationship between the pre-
diction and the ground truth. In addition, the best AUC was
0.747 and 0.823, and the best F1-score was 0.905 and 0.625.
Most of the LR and SVM models had similar performances.
While many previous studies on apnea detection relied on
AUC and F1-score for overall model performance evalu-
ation, we favored MCC over the two as it is more suited
for imbalanced classification.46,47 Moreover, the F1-score
is not a useful measure for ≥ 5/hours because, in this case,
the negative group is the rare class, whereas in conventional
clinical applications, the positive group is usually treated as
the rare class. Judged byMCC, our models achieved satisfac-
tory performance, especially for cutoff ≥ 30/hours. We
noticed the models had better performance for cutoff ≥ 30/
hours than for ≥ 5/hours. One possible explanation could
be the distribution of the true AHI at the classification
border. As shown in Figure 11, the AHI for both groups
near the classification border has similar frequency for
cutoff ≥ 5/hours, making it harder to differentiate the two

groups. In comparison, the frequency of the two groups at
the classification border was more distinguishable for
cutoff ≥ 30/hours, as shown in Figure 12.

We also observed that the LGMB models had distinct
characteristics compared to the SVM and LR models. They
were more effective in detecting the majority class, as indi-
cated by the high SEN for cutoff ≥ 5/hours and high SPE
for cutoff ≥ 30/hours. However, their superior performance
on the majority class was achieved at the sacrifice of the per-
formance on the minority class. In comparison, the SVM and
LR models achieved a better tradeoff between SEN and SPE.

In addition to SEN and SPE, we evaluated the models
using PPV and NPV—two relevant measures in clinical set-
tings.48,49 In this evaluation dimension, the LGMB models
achieved a better balance between PPV and NPV, espe-
cially for cutoff ≥ 30/hours. The SVM and LR models pro-
vided high PPV but low NPV for ≥ 5/hours and the
opposite for ≥ 30/hours. The tradeoff between SEN and
SPE, and that between PPV and NPV, boils down to the
tradeoff between false positive and false negative, where
the increase of one is often accompanied by the decrease
of the other. Previous studies posit that a high PPV is desir-
able when the treatment cost is high in relative to its

Figure 10. Multiscale attention entropy (MSAE) for long-term scale factor (cutoff ≥ 30/hours).
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potential benefits, and a high NPV is desirable when the
disease condition is serious, contagious, or likely to pro-
gress quickly.49 Using those rules of thumb, the models
that provided a high PPV and a moderate NPV are desirable
for our problem of interest, as sleep apnea is not an urgent
or contagious condition and the treatment cost (e.g. CPAP
and surgery) may outweigh its benefit. To this end, the

LR_SS_ICA model and the LGMB_MS_ICA model may
be the most suited model for each cutoff threshold if eval-
uated along this dimension.

Limitations

The present study has several limitations that are amenable
to future investigations. First, the dataset used for model

Table 2. Model performance for cutoff ≥ 5/hours.

MCC AUC ACC (%) F1-score SEN (%) SPE (%) PPV (%) NPV (%)

lSVM_SSa 0.380 0.734 73.98 0.824 74.30 72.55 92.47 38.34

lSVM_RS 0.379 0.734 73.89 0.823 74.19 72.55 92.46 38.24

lSVM_MS 0.363 0.724 73.27 0.819 73.76 71.08 92.05 37.37

lSVM_SS_ICA 0.369 0.727 73.72 0.822 74.30 71.08 92.10 37.86

lSVM_RS_ICA 0.365 0.725 73.45 0.820 73.97 71.08 92.07 37.56

lSVM_MS_ICA 0.370 0.727 73.81 0.823 74.41 71.08 92.11 37.96

rSVM_SS 0.401 0.746 75.04 0.832 75.27 74.02 92.93 39.74

rSVM_RS 0.383 0.746 75.84 0.840 77.43 68.63 91.81 40.11

rSVM_MS 0.327 0.697 73.54 0.824 75.70 63.73 90.45 36.62

rSVM_SS_ICA 0.374 0.730 74.16 0.826 74.84 71.08 92.15 38.36

rSVM_RS_ICA 0.382 0.734 74.34 0.827 74.84 72.06 92.40 38.68

rSVM_MS_ICA 0.373 0.729 74.07 0.825 74.73 71.08 92.14 38.26

LR_SS_ICA 0.402 0.747 75.13 0.832 75.38 74.02 92.94 39.84

LR_RS_ICA 0.393 0.741 74.78 0.830 75.16 73.04 92.68 39.31

LR_MS_ICA 0.395 0.743 74.78 0.830 75.05 73.53 92.79 39.37

LGMB 0.291 0.594 83.27 0.905 96.76 22.06 84.93 60.00

LGMB_SS 0.270 0.586 82.92 0.903 96.65 20.59 84.67 57.53

LGMB_RS 0.316 0.632 82.30 0.896 93.09 33.33 86.37 51.52

LGMB_MS 0.254 0.575 82.92 0.903 97.30 17.65 84.28 59.02

LGMB_SS_ICA 0.204 0.564 81.77 0.896 96.11 16.67 83.96 48.57

LGMB_RS_ICA 0.284 0.602 82.65 0.900 95.36 25.00 85.23 54.26

LGMB_MS_ICA 0.310 0.614 83.10 0.902 95.36 27.45 85.65 56.57

aModel naming rule: [machine learning technique]_[scaling method]_[ICA or none].
lSVM: support vector machine with linear kernel; rSVM: support vector machine with radial basis function kernel; LR: linear regression; LGMB: light gradient
boosting machine; SS: standard scaling; RS: robust scaling; MS: min–max scaling; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV:
negative predictive value.
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construction has a high prevalence of sleep apnea. Themodel
performance, especially the measures that are heavily
affected by disease prevalence including PPV and NPV,
should be interpreted with caution and may not be general-
ized to other datasets. Second, we did not consider subtypes
of sleep apnea and comorbidities in this study. Third, we did
not use conventional time-domain and frequency-domain
features that are commonly used in machine learning-based

sleep apnea detection. Further studies may leverage those
features to improve model performance.

Comparison with prior work

Many systems and algorithms have been developed for
home sleep apnea screening, but most prior studies have
only been validated on small samples (N = 3–481),50

Table 3. Model performance for cutoff ≥ 30/hours.

MCC AUC ACC (%) F1-score SEN (%) SPE (%) PPV (%) NPV (%)

lSVM_SSa 0.518 0.814 80.44 0.600 83.00 79.89 47.03 95.62

lSVM_RS 0.524 0.819 80.53 0.604 84.00 79.78 47.19 95.87

lSVM_MS 0.524 0.819 80.53 0.604 84.00 79.78 47.19 95.87

lSVM_SS_ICA 0.526 0.818 80.97 0.607 83.00 80.54 47.84 95.66

lSVM_RS_ICA 0.526 0.818 80.97 0.607 83.00 80.54 47.84 95.66

lSVM_MS_ICA 0.522 0.815 80.88 0.604 82.50 80.54 47.69 95.54

rSVM_SS 0.533 0.824 80.80 0.610 85.00 79.89 47.62 96.12

rSVM_RS 0.518 0.817 79.91 0.598 84.50 78.92 46.30 95.95

rSVM_MS 0.477 0.787 79.47 0.572 77.50 79.89 45.32 94.29

rSVM_SS_ICA 0.545 0.823 82.57 0.625 82.00 82.69 50.46 95.53

rSVM_RS_ICA 0.545 0.823 82.57 0.625 82.00 82.69 50.46 95.53

rSVM_MS_ICA 0.545 0.823 82.57 0.625 82.00 82.69 50.46 95.53

LR_SS_ICA 0.511 0.808 80.62 0.597 81.00 80.54 47.23 95.17

LR_RS_ICA 0.511 0.808 80.62 0.597 81.00 80.54 47.23 95.17

LR_MS_ICA 0.511 0.808 80.62 0.597 81.00 80.54 47.23 95.17

LGMB 0.529 0.714 87.88 0.573 46.00 96.88 76.03 89.30

LGMB_SS 0.509 0.699 87.52 0.547 42.50 97.20 76.58 88.71

LGMB_RS 0.466 0.686 86.46 0.517 41.00 96.24 70.09 88.35

LGMB_MS 0.525 0.717 87.70 0.575 47.00 96.45 74.02 89.43

LGMB_SS_ICA 0.518 0.714 87.52 0.569 46.50 96.34 73.23 89.33

LGMB_RS_ICA 0.506 0.712 87.17 0.562 46.50 95.91 70.99 89.29

LGMB_MS_ICA 0.539 0.716 88.14 0.579 46.00 97.20 77.97 89.33

aModel naming rule: [machine learning technique]_[scaling method]_[ICA or none].
lSVM: support vector machine with linear kernel; rSVM: support vector machine with radial basis function kernel; LR: linear regression; LGMB: light gradient
boosting machine; SS: standard scaling; RS: robust scaling; MS: min–max scaling; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV:
negative predictive value.
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which threats the rigidity and generalizability of the devel-
oped models. To the best of our knowledge, there are only
few studies that have validated their methods on a suffi-
ciently large sample (N > 1000) and have used cutoff
thresholds that permit direct comparisons with our
models.9,12,8,51 The study that has validated their models
on the largest sample so far (N = 17,448) used a different
cutoff threshold of ≥ 15/hours51 and thus forbids a direct
comparison to our study. That model only relies on four
simple demographic features: age, sex, BMI, race, and
achieved an AUC between 0.61 and 0.72, a high sensitivity
between 0.65 and 0.91 but a low specificity between 0.36
and 0.53. The deep learning-based sleep apnea screening
model OxiNet was also validated on a large sample (N =
12,923) and achieved an average F1-score between 0.75

and 0.84.25 Similar to the present study, the OxiNet model
only relies on single channel overnight SpO2 signals.
However, it was intended for four-class classification rather
than binary classification and thus also forbids a direct com-
parison to our study.

Table 4 presents the comparison between our models
and existing models for cutoff ≥ 5/hours and ≥ 30/hours,
respectively. Our models achieved comparable perform-
ance to the best existing model (i.e. the SVM model by
Huang et al.9 for ≥ 5/hours), and better performance for
≥ 30/hours. Among the three studies that allow direct com-
parison with our study, only one study Huang et al.9 has
used a sample larger than our study. Furthermore, models
developed in those studies rely on self-reported symp-
toms8,12 and/or complicated laboratory blood reports.8

Figure 11. Distribution of apnea–hypopnea index (AHI) for the positive and negative groups (cutoff ≥ 5/hours).

Figure 12. Distribution of apnea–hypopnea index (AHI) for the positive and negative class at cutoff ≥ 30/hours.
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Those models are thus not useful for patients who have no
self-aware symptoms or for cases where the required
medical information is not available. Another pitfall of
the prior studies is that the models often yield a high sensi-
tivity at the cost of a low specificity, whereas our models,
especially the SVM and LR based ones, achieved a good
tradeoff between sensitivity and specificity. Similar to the
dataset used in this study, those used by Huang et al.9

and Ustun et al.12 also had the problem of class imbalance
with the positive class significantly outnumbering the nega-
tive class. However, neither of the two studies explicitly

addressed the class imbalance issue in model training and
evaluation. In comparison, our model training explicitly
accounted for class imbalance, and thus could potentially
outperform existing models even if more appropriate mea-
sures such as MCC was used. In addition, our models do not
rely on self-reported symptoms and thus can be useful even
for asymptomatic patients.

Our method has several fundamental advantages over
existing models. Compared to models that use traditional
features, the MSAE features of overnight SpO2 are easier
to obtain. EHR features such as medication records and

Table 4. Comparison to prior studies.

Model ACC (%) AUC F1-score SEN (%) SPE (%) PPV (%) NPV (%)

Cutoff ≥ 5/hours

SVM8 68.06 0.65 0.76 88.76 40.74 66.36 73.33

SVM9 74.24 0.82 0.83 74.14 74.71 93.23 38.15

LR9 73.77 0.84 – 94.41 37.87 72.55 79.56

BQ9 67.58 0.54 – 74.95 32.91 84.01 21.89

NoSAS Score9 57.25 0.70 – 50.62 88.39 95.31 27.58

SLIM (10 size)9 54.68 0.69 0.63 47.10 90.30 95.80 26.64

SLIM (10 size)12 – 0.79 – 64.20 77.00 – –

STOP-Bang12 – – – 83.60 56.40 – –

Our model (rSVM_SS_ICA) blue74.16 blue0.73 blue0.83 blue74.84 blue71.08 blue92.15 blue38.36

Our model (LR_SS_ICA) blue75.13 blue0.75 blue0.83 blue75.38 blue74.02 blue92.94 blue39.84

Our model (LGMB_RS) blue82.30 blue0.63 blue0.90 blue93.09 blue33.33 blue86.37 blue51.52

Cutoff ≥ 30/hours

SVM9 70.28 0.78 0.66 70.26 70.30 61.93 77.86

LR9 72.83 0.79 – 65.01 78.77 69.94 74.77

BQ9 48.09 0.53 – 76.68 28.55 42.31 64.17

NoSAS Score9 68.30 0.68 – 64.88 70.64 60.16 74.64

SLIM (10 size)9 69.40 0.68 0.62 62.24 74.29 62.33 74.22

Our model (rSVM_SS_ICA) 82.57 0.82 0.63 82.00 82.69 50.46 95.53

Our model (LR_SS_ICA) 80.62 0.81 0.60 81.00 80.54 47.23 95.17

Our model (LGMB_MS_ICA) 88.14 0.72 0.58 46.00 97.20 77.97 89.33

SVM: support vector machine; LR: logistic regression; NoSAS: Neck circumference, Obesity, Snoring, Age, Sex; SLIM: supersparse linear integer model; SEN:
sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value.
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blood test results are not always available, and question-
naire scores cannot be calculated from asymptomatic
patients. Conventional time-domain, frequency-domain,
and single-scale nonlinear features do not have satisfying
discriminating power as indicated by the sub-optimal per-
formance of prior shallow learning models. As shown in
Figures 5 to 10, the fluctuation of the scaled attention
entropy demonstrates the significant difference in the posi-
tive and negative groups at various time scales, which
implies that the MSAE features are potentially powerful
features for classification. In addition, this is the first
study that investigates the MSE of the overnight SpO2
signals at a wide range of time scales. While prior studies
on the MSE of physiological signals only used time
scales lower than 1 minute, our study investigated a wide
range of time scales between 1 seconds and 30 minutes.
Our analysis found that the entropy at a longer time scale
(1–15 minutes) could still be useful features for distinguish-
ing apnea positive and negative. This is a new finding that
no prior study had discovered. The advantage of our
approach over deep learning models lies in its simplicity
and better explainability. For one thing, shallow learning
models such as ours do not require heavy computational
and storage resources and can be easily applied to struc-
tured data. For another, our models have better explainabil-
ity because the features used to develop the models have a
physical meaning. In particular, the MSAE provides
insights into how the complexity of the SpO2 signals
changes at different time scales. Figures 5 to 10 show a
loss of complexity for sleep apnea indicated by lower atten-
tion entropy values over a range of time scales.

Conclusions
In this study, we proposed a novel method for sleep apnea
screening using only overnight SpO2 signals and simple
demographic information. The method computes the atten-
tion entropy of the SpO2 signals for different time scale and
uses these MSAE, together with age, sex, BMI, and blood
pressure, as features to construct classification models that
automatically detect positive cases for cutoff thresholds ≥
5/hours and ≥ 30/hours. Depending on the machine learn-
ing algorithm adopted, feature scaling and/or ICA were
applied to the original feature set so that the transformed
feature set met the assumptions of the algorithms. The
best models achieved an MCC of 0.402 for cutoff ≥ 5/
hours and 0.545 for ≥ 30/hours, respectively, indicating a
strong positive relationship between the prediction and
the ground truth. Compared to prior studies, our models
achieved comparable or better performance and have the
merit of not relying on self-reported symptoms and thus
can be useful even for asymptomatic patients.
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