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Abstract

Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes.
In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates
different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4
distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP
reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-
4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a
subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin
(emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the
intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may
facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is
prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited
by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated
step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin
architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut
development.
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Introduction

Selector genes govern the fates of groups of cells related to each

other by virtue of their cell type, position or affiliation to an organ

[1]. Genomic methods have revealed that selector genes directly

control hundreds, even thousands, of target genes, which define

the characteristics of a particular cell type [2–6]. For example, the

mesodermal factor Twist regulates genes that control mesodermal

behaviors including gastrulation, migration and proliferation [7].

The myogenic regulatory factor MyoD directly activates skeletal

muscle genes during both early cell-fate specification and later

differentiation [4,8]. The global regulatory strategy of selector

genes raises the question of how targets of broadly active selector

genes are expressed selectively at the appropriate times and places.

The selector gene pha-4/FoxA plays a broad role in the

development and physiology of the C. elegans digestive tract.

PHA-4 establishes the diverse cell types of the C. elegans pharynx

during early embryogenesis, and drives differentiation and

morphogenesis at later stages [9–12]. After birth, PHA-4 is

required for growth and gonadogenesis in larvae [2,13–15] and

promotes longevity in adults [16,17]. The targets of PHA-4 are

likely distinct in different tissues and at different developmental

stages. For example, numerous PHA-4 target genes have been

identified within the pharynx, but most of these are not active in

the intestine or gonad [2,11,18]. Recent chromatin immunopre-

cipitation data with tagged PHA-4 suggest different genes are

bound by PHA-4 at different developmental stages [19]. How is

appropriate regulation of PHA-4 target genes achieved? One

mechanism is combinatorial control by PHA-4 with other

transcription factors. A single PHA-4 binding site is not sufficient

for transcriptional activation, and most foregut promoters carry

four or more cis-regulatory elements that contribute towards

appropriate spatial and temporal expression [13,18,20–25]. In

addition, DNA binding affinity of PHA-4 for target genes

modulates the timing of activation [2,18]. High affinity sites

promote earlier transcriptional onset compared to lower affinity

sites, within the context of the intact cis regulatory region [2].

These studies suggest that binding affinity, feed-forward loops,

positive feedback and combinatorial control, are necessary to

achieve accurate temporal gene expression. However, it is still

largely unknown how spatial regulation is accomplished. For

example, why are pharyngeal genes active in the pharynx but not
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in the intestine, despite the widespread expression of PHA-4 in

both organs?

Studies have implicated the nuclear periphery for modulation of

gene transcription. Active and inducible genes are recruited to

nuclear pores [26–30]. Conversely, nuclear lamins and their

associated proteins have been associated with transcriptional

repression and chromatin organization [31–36]. Inactive genes are

often positioned at the nuclear lamina [37], and tethering of genes

to the nuclear lamina can reduce expression levels [38,39]. This

effect is not comprehensive, however, as some peripherally-located

genes are active [38–41]. These results indicate that the nuclear

lamina is transcriptionally competent, and raise the question of the

nature and degree of lamina-mediated repression.

The nuclear lamina of C. elegans is composed of a single B-family

lamin (lmn-1; [34,42], three associated LEM proteins [43] and

additional factors [44]. Loss of LMN-1 leads to embryonic arrest

by the 300-cell stage, with chromosome bridges between sister cells

[34]. Inactivation of the LEM protein emr-1/Ce-emerin has no

obvious phenotype on its own and produces viable animals, but

inactivation of both emr-1 and a second LEM protein man-1/Ce-

MAN1, causes lethality at around the 100 cell stage with

phenotypes similar to those of lmn-1 [43,45]. Barrier to

autointegration factor BAF-1 is a fourth lamina protein required

for chromosome segregation and integrity of the lamina [46,47].

BAF-1 associates with cis-regulatory sites within the promoters of

eff-1 and aff-1, and is required to repress eff-1 expression in

epidermal seam cells [31]. These data implicate the C. elegans

nuclear lamina for transcriptional repression, but the mechanism is

unknown.

In this study, we probe the role of PHA-4 for pharyngeal gene

activation, using artificial chromosomes to monitor PHA-4

binding and activity in living embryos [48–52]. We find that

PHA-4 associates with its targets long before their activation. This

association is restricted to a subset of pharyngeal cells, despite the

ubiquitous expression of PHA-4 throughout the digestive tract,

and is modulated by the nuclear lamina protein EMR-1/Emerin.

Binding of PHA-4 leads to extensive chromatin decompaction and

repositioning, in a process that precedes transcription. Previous

studies implicated mammalian FoxA factors for local opening of

chromatin and inhibition of linker histones [53]. Our data suggest

that, in addition to local alterations, FoxA factors can induce large-

scale changes in chromatin architecture, which may contribute to

the long-range effects of FoxA proteins on transcription and

recombination [54,55]. These studies provide a framework for

understanding the cell-type biases of selector genes for their

targets.

Results

pax-1 is expressed in a subset of pharyngeal cells, and its
expression is regulated by cis-regulatory elements that
cooperate with PHA-4/FoxA

Our goal was to explore PHA-4 association with its target genes

in living embryos. We chose to analyze myo-2, which is a well-

characterized gene expressed exclusively in pharyngeal muscles

[56,57], and pax-1, which we show below is a PHA-4 target

expressed in the pharyngeal marginal cells and some other

pharyngeal cell types. To initiate the study, we characterized pax-1

cis-regulatory sites for pharyngeal expression.

To analyze pax-1, we constructed two GFP reporters: a

translational fusion within the second exon of pax-1 (PAX-

1::GFP; Table S1A) and a transcriptional fusion between GFP

and the pax-1 translation initiation site (pax-1::GFP). These

constructs revealed that pax-1 was expressed in 14 pharyngeal

cells, which included nine marginal cells, the e2 epithelial cells and

the pm8 muscle, based on morphology, position and co-staining

for marginal cell filaments (Figure 1B, Figure S1). We focus on the

marginal cells here. Expression of pax-1::GFP in marginal cells was

first detectable in two rows of pharyngeal nuclei shortly after

embryonic cell division ceased, at the late-bean to early-comma

stages of development (Table S1A). Expression gradually faded

during later embryogenesis and was undetectable in larvae or

adult worms.

Examination of the pax-1 promoter revealed a consensus PHA-4

binding site between 292 and 298 base pairs (bp) upstream of the

transcriptional start site (Figure 1C). Gaudet et al. previously

showed that three copies of this site were sufficient to activate

expression of a heterologous promoter within pharyngeal cells

[18]. Conversely, we found that deletion (Figure S2) or mutation

(MutP Figure 1C) of the predicted PHA-4-binding site eliminated

pax-1::GFP expression in 17/19 transgenic lines (Figure 1C). We

speculate that the 2/19 lines with residual pax-1::GFP expression

in pharyngeal cells may be activated by cryptic enhancers

originating from nearby sequences in the array. Interestingly, in

addition to loss of pharyngeal expression, the mutant reporters

exhibited significant ectopic GFP in the epidermis (Figure 1C and

Figure S3). Together, these results suggest the PHA-4 binding site

is required to activate expression in the pharynx and repress

expression in epidermal cells.

To identify additional cis-regulatory sites within the pax-1

promoter, we performed linker-scanning mutational analysis

beginning 2115 bp upstream of the pax-1 transcriptional start

site (Figure 1C). This survey revealed a second activation site

within Delta16, which we will refer to as mutA: replacement of

10 bp from mutA abolished all GFP reporter expression (TTGA-

GATTAA; Figure 1D). Scanning mutagenesis also uncovered two

negative regulatory regions. First, mutations in either Delta14 or

Delta18 generated a high proportion of transgenic lines that

expressed pax-1::GFP in additional pharyngeal cells, to approxi-

mately 20 cells (Figure S4A). Second, mutations in Delta20, and to

Author Summary

Central regulators of cell fate establish the identity of cells
by direct regulation of large cohorts of genes. In
Caenorhabditis elegans, foregut (or pharynx) identity relies
on the FoxA transcription factor PHA-4, which activates
different target genes in different cellular environments.
An outstanding question is how PHA-4 distinguishes
between target genes for appropriate transcriptional
control. Here we examine PHA-4 interactions with target
promoters in living embryos and with single-cell resolu-
tion. While PHA-4 was found throughout the digestive
tract, binding and activation of pharyngeally expressed
promoters was restricted to a subset of pharyngeal cells
and excluded from the intestine. An RNAi screen identified
emerin (emr-1) as a negative regulator of PHA-4 binding
within the pharynx. Upon promoter association, PHA-4
induced large-scale chromatin de-compaction, which, we
hypothesize, facilitates promoter access. Our results reveal
two tiers of PHA-4 regulation. PHA-4 binding is prohibited
in intestinal cells and is limited in the pharynx by the
nuclear lamina component EMR-1/emerin. The data
suggest that association of PHA-4 with its targets is a
regulated step that contributes to promoter selectivity
during organ formation. We speculate that global re-
organization of chromatin architecture upon PHA-4
binding promotes competence of pharyngeal gene
transcription and, by extension, foregut development.
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a lesser degree Delta22, lead to GFP+ cells outside of the pharynx

(Figure S4B). In sum, mutational analysis revealed both positive

and negative cis-regulatory sites that cooperated with PHA-4 to

activate pax-1 within pharyngeal marginal cells. A direct repeat

(TTGAGA) lies within Delta14 and Delta16, and an inverted

repeat (AAGCTCT) lies within Delta14 and Delta18, suggesting

one or both of these may be recognition sites for transcription

factors (Figure 1D). These cis-regulatory sites provided a means to

examine the role of PHA-4 for pharyngeal gene activation,

described below.

PHA-4 binds to its pharyngeal targets hours before the
onset of gene expression

The mutational analysis suggested that both myo-2 and pax-1

were direct PHA-4 target genes. To test this idea further, we used

the Nuclear Spot Assay (NSA) to examine association of PHA-4

with pharyngeal promoters in vivo. The NSA allowed us to track

PHA-4 binding to promoters in living embryos, with precise

spatial and temporal resolution. For this assay, we constructed a

transgene array or ‘‘pseudo-chromosome’’ that carried multiple

copies of a target promoter and the Lac operator [48–52,58]. A

co-selectable marker (to identify transgenic animals) and herring

sperm genomic DNA (to provide sequence complexity without

added C. elegans’ sequences [59]) were also included. The pseudo-

chromosome arrays carried fusions of CFP::LacI and PHA-

4::YFP; CFP::LacI bound to LacO sequences on the arrays and

revealed their position and morphology in the nucleus. PHA-

4::YFP bound to its promoter appeared as a dense magenta ‘‘dot’’

that colocalized with CFP::LacI. Diffuse PHA-4::YFP in the

background indicated binding of PHA-4::YFP to genomic loci. It

was previously shown that the NSA method accurately reflected

transcriptional regulation, as detected by other methods such as

chromatin immunoprecipitation [50,52]. C. elegans arrays are

relatively stable through mitosis and meiosis, and are incorporated

into chromatin [59,60]. However, we recognize that pseudo-

chromosomes are not replicas of C. elegans chromosomes, and they

likely differ from endogenous chromosomes in some regards.

We observed multiple pharyngeal cells with PHA-4::YFP

enriched on pseudo-chromosome arrays, supporting the notion

that myo-2 and pax-1 are direct PHA-4 targets (Figure 2 and an

additional third target C44H4.1: Figure S5A). The association was

detected by the 8E (endodermal) stage, which was the earliest stage

we could visualize PHA-4::YFP (,100 cells). The proportion of

embryos with associated PHA-4::YFP remained relatively constant

until the two-fold (pax-1) or three-fold (myo-2) stages. The robust

association of PHA-4 to its target promoters required a consensus

PHA-4 binding site since pseudo-chromosome arrays that carried

a promoter with mutated PHA-4 binding sites [2] failed to recruit

PHA-4::YFP (Figure 2). These data reveal that PHA-4 bound

target promoters long before they were transcriptionally active,

indicating that PHA-4 occupancy did not correlate with

transcriptional activity per se, but rather with transcriptional

potential. Similarly, vertebrate FoxA2, which is orthologous to

PHA-4, binds the albumin promoter in mouse endodermal cells

long before the gene is active [61].

Figure 1. Scanning mutagenesis of the pax-1 promoter. (A) A cartoon depicting the pattern of PHA-4 expression during different stages of
embryogenesis. Embryonic events that occur at specific developmental stages are annotated. PHA-4 expression from [9][10], myo-2 expression from
[99] and pax-1 expression from this study. (B) pax-1::GFP expression in 14 pharyngeal cells in a comma stage embryo (left) and GFP (green; anti-GFP
Molecular Probes) co-stained with anti-intermediate filament antibody (magenta, right, [95]). Marginal cells and pm8 are visible, but e2 cells are faint
in this image. GFP alone shown in the inset. (C) Linker scanning mutagenesis reveals two positive cis-regulatory sites: mutP (green) and mutA
(magenta).% pharyngeal expression: number of independent lines with pharyngeal expression/total number of independent lines analyzed. Neg:
negative. WT: wild type. (D) The architecture of the pax-1 promoter 70 bp upstream to the TSS revealing direct repeats (DR in grey) and inverted
repeats (IR in blue).
doi:10.1371/journal.pgen.1001060.g001
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PHA-4 binding leads to large-scale chromatin
decompaction that is largely independent of
transcription

What are the repercussions of PHA-4 association to target

genes? Previous genetic studies suggested that PHA-4 and its

orthologues influence the chromatin environment [11,53,62–64].

For example, PHA-4 recruits the histone variant HTA.Z/HTZ-1

to a subset of pharyngeal promoters, including that of myo-2 [63],

and it interacts genetically with predicted chromatin regulators

[11,63]. Vertebrate orthologues of PHA-4 associate with chroma-

tin and can block compaction by H1 histones [53,54,65]. These

observations prompted us to examine the chromatin morphology

of the pseudo-chromosome arrays.

We observed progressive decompaction of pseudo-chromo-

somes bearing wild-type myo-2 or pax-1 promoters, detectable as a

large, diffuse dot (Figure 3A). We quantified the changes by

measuring the areas of individual pseudo-chromosomes and

analyzing the areas with Cox regression models (Materials and

Methods). This analysis revealed that both the number of

decompacted pseudo-chromosomes and the degree of decompac-

tion increased over time (Figure 3B, Table S2, Table S3). This

effect was observed within pharyngeal cells, the eventual site of

myo-2 and pax-1 expression, but not in non-pharyngeal cells

(Figure 3). Cumulative areas were larger in the pharynx compared

to ‘‘outside’’ the pharynx as early as the pre-bean stage for myo-2

(p = 7610211) and the bean stage for pax-1 (p = 0.007). For myo-2,

many pseudo-chromosomes became decompacted prior to

transcription at the 2-fold stage and remained decompacted. For

pax-1, decompaction began at the comma stage and was maximal

at the 1.5 and 2-fold stages, when pax-1 is transcribed (Figure 3B).

In sum, pax-1 and myo-2 pseudo-chromosomes underwent

decompaction preceding and during transcription within the

pharynx. In contrast, pseudo-chromosomes in which PHA-4

binding sites had been mutated behaved similarly in pharyngeal

and non-pharyngeal cells, with little increase in size over time

(Figure 4). These observations indicate that PHA-4 is required for

large-scale decompaction of chromatin in extragenic arrays.

We considered three spurious reasons for changing pseudo-

chromosome areas, independent of PHA-4. First, we examined

whether array sizes were a consequence of expanding nuclear size.

However, nuclear size remained relatively constant at the stages

assayed in this study, and no normalization to nuclear size was

necessary (Figure S5D). Second, we tested whether decompaction

reflected an artificial interaction between LacI and PHA-4.

Figure 2. PHA-4 associates with pharyngeal target promoters by the 8E (,100 cell) stage. CFP::LacI (depicted in green) and PHA-4::YFP
(depicted in magenta) co-localization on pseudo-chromosomes bearing (A) myo-2 or (C) pax-1 promoters. Merge is white. Binding to pseudo-
chromosomes is abolished by mutating the PHA-4 binding sites in myo-2 mutP or pax-1 mutP but is not affected when an unrelated activation site is
mutated (pax-1 mutA). The cartoon illustrates the interpretation of the data. (B, D) Quantitation of embryos with co-localized CFP::LacI and PHA-4::YFP
in transgenic lines bearing (B) a wild-type myo-2 promoter (solid and hatched black, WT) or one with mutated PHA-4 sites (solid and hatched green,
mutP) and (D) a wild-type pax-1 promoter, a mutant promoter lacking PHA-4 binding sites (pax-1 mutP) or a mutant promoter inactivated for an
unrelated activation site (pax-1 mutA) (white and dotted, mutA1). Numbers of embryos scored per stage shown in Figure S5C. Scale bar, 3 microns.
Arrowheads indicate PHA-4 bound (co-localized) pseudo-chromosomes. Asterisks indicate arrays that lack associated PHA-4::YFP.
doi:10.1371/journal.pgen.1001060.g002
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However, PHA-4 binding and consequent decompaction of

pseudo-chromosomes was observed in transgenic lines lacking

LacI protein (Figure S5B). Third, we wondered if 3D volumetric

measurements would be more accurate than the 2D area

measurements used here. 3D analysis was subject to photobleach-

ing of the YFP signal while collecting Z-stacks, which hindered 3D

reconstruction. A comparison of area versus volume measure-

ments in embryos with minimal photobleaching revealed a similar

trend in array expansion (Figure S7). These controls suggest that

array decompaction reflects PHA-4 interactions with target

chromatin.

PHA-4 is a critical regulator of pharyngeal gene transcription,

and transcription is often associated with chromatin decondensa-

tion [66–69]. We therefore tested whether decompaction of

pseudo-chromosome arrays in pharyngeal cells reflected PHA-4

binding or transcriptional activity. When the PHA-4 binding site is

mutated in the myo-2 promoter, myo-2 is still transcribed, but at a

later developmental time [2]. We observed little pseudo-chromo-

some decompaction for arrays bearing this mutant promoter

(Figure 4). Residual decompaction was observed at the 3-fold

stage, which may reflect transcriptional activity. This result

suggests that PHA-4 is a critical contributor to large-scale

decompaction of myo-2, especially at early developmental stages.

Conversely, we examined pseudo-chromosome arrays bearing

mutant pax-1 mutA promoters, which were no longer transcribed

but which bound PHA-4. These arrays became decompacted

despite the absence of productive transcription (inside versus

outside the pharynx (p,0.0001)), whereas pax-1 mutP arrays

bearing a mutated PHA-4 binding site did not (Figure 4B) (smaller

inside vs. outside the pharynx p = 2610214). This result suggests

that productive transcription is not essential for decompaction,

and that PHA-4 association is sufficient. To test this idea more

stringently, we created arrays bearing three repeats (3X) of a PHA-

4 binding site derived from pax-1, but lacking additional promoter

sequences. The 3X repeats were sufficient for PHA-4::YFP

recruitment to the pseudo-chromosome and caused large-scale

decompaction (Figure 4C). These data reveal that PHA-4 binding,

more than ongoing transcription, induces large-scale reorganiza-

tion of chromatin in developing C. elegans embryos.

PHA-4 binding is spatially regulated
PHA-4 is expressed broadly, including the pharynx, intestine,

rectum, somatic gonad and some neurons [9,10,14,16,70], yet

PHA-4 targets are activated in discrete cell-types. For example,

pax-1 is expressed in marginal cells but not in the intestine

(Figure 1). We wondered if the discriminate activation of

downstream targets could be explained by regulated binding of

PHA-4. PHA-4 binding was surveyed in a transgenic line carrying

the pax-1 mutA promoter at three developmental stages (bean,

comma and 1.5-fold) in one mid-section focal plane. Pharyngeal

binding was detected in ,67% of embryos at the bean stage (10/

15), ,58% at the comma stage (7/12), and ,76% at the 1.5-fold

stage (13/17; average 68%). By contrast, binding was almost never

detected in the intestine at any stage (,1%; 0/44 embryos

counted; additional embryos surveyed but not counted; Figure 5A).

Similar results were observed with arrays bearing myo-2 (data not

shown). An optical section through a 1.5-fold embryo sampled

approximately 10 pharyngeal nuclei and 10 intestinal nuclei,

indicating that the differential association of PHA-4 did not reflect

different numbers of nuclei in each organ.

Does regulated binding lead to differential PHA-4 activity in

disparate tissues? To answer this question we induced ectopic

PHA-4 using a heat-shock promoter in transgenic lines bearing

pax-1::GFP. HS::PHA-4 induced widespread expression of pax-

1::GFP in many cells. However, we did not observe pax-1::GFP in

the developing intestine (0/50) (Figure 5B). This absence did not

Figure 3. Decompaction of pseudo-chromosomes during pharyngeal differentiation. (A) Pseudo-chromosomes bearing wild-type myo-2
promoters within the pharynx (P region) or outside, at the indicated stages. Decompacted (arrow) and compacted (asterisk) pseudo-chromosomes
are noted. PHA-4::YFP was used to identify pharyngeal cells (not shown). Scale bar, 3 microns. (B) Cumulative distributions of areas for pseudo-
chromosomes bearing wild-type myo-2 or pax-1 promoters at the indicated developmental stages. The horizontal axis represents the area of
individual pseudo-chromosomes multiplied by 10. The vertical axis represents the cumulative proportion of pseudo-chromosomes with an equal or
smaller area. Curves shifted to the right, indicate a greater proportion of pseudo-chromosomes with large areas, for pharyngeal cells (magenta)
relative to cells outside of the pharynx (green). Areas of pseudo-chromosomes increased as embryos developed (p = 0.00003 for myo-2, p = 0.0002 for
pax-1). For myo-2, n = 2 lines, 10 embryos per stage per line. For pax-1, n = 1 line, 5 embryos per stage.
doi:10.1371/journal.pgen.1001060.g003
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reflect variable PHA-4 expression, since antibody staining

demonstrated that PHA-4 was expressed in intestinal cells

equivalently to other tissues after heat shock (Figure 5C). We

detected no ectopic expression of the GFP reporter in non-heat

shocked embryos (Figure 5B), nor did we observe ectopic

expression when we tested HS::pha-4DeltaDBD [9], which lacked

the DNA binding domain (data not shown). These findings

indicate that PHA-4 binding to pseudo-chromosome arrays limits

PHA-4 activity, and that both binding and activity are sensitive to

the cellular environment. This conclusion agrees with previous

observations that HS::PHA-4 can induce embryonic cells to

convert to a pharyngeal fate, but that the intestine is immune to

ectopic PHA-4 [9].

The integral nuclear membrane protein emr-1 regulates
PHA-4 binding to targets in the pharynx

To begin to understand the selective binding of PHA-4 in

different cell types, we conducted a small RNAi screen for nuclear

factors that modulate PHA-4 binding to target promoters. We

used SM1634 carrying a mutant pax-1 promoter because pax-1-

containing arrays typically bound PHA-4::YFP in fewer pharyn-

geal cells than myo-2-containing arrays (data not shown). We

Figure 4. PHA-4 is required for chromatin decompaction. (A) Pseudo-chromosomes bearing mutated PHA-4 binding sites within myo-2 either
within the pharynx (P region) or outside, at the indicated stages. PHA-4::YFP was used to identify pharyngeal cells (not shown). Scale bar, 3 microns.
Cumulative distributions of pseudo-chromosome areas for (A) mutant myo-2 or (B) mutant pax-1 pseudo-chromosomes. Lines analyzed were mutated
for PHA-4 binding sites within myo-2 (MutP), the PHA-4 binding site within pax-1 (MutP) or an alternative activation site within pax-1 (mutA). The
horizontal axis represents the area of individual pseudo-chromosomes multiplied by 10. The vertical axis represents the cumulative proportion of
pseudo-chromosomes with an equal or smaller area. Note the overlap of pseudo-chromosome areas for PHA-4-binding mutations within the pharynx
(magenta) and outside of the pharynx (green), indicating no induced decompaction. For myo-2, n = 2 lines, 10 embryos per stage, per line. For pax-1,
n = 1 line each mutant, 5 embryos per stage. (C) Pseudo-chromosomes bearing 3X PHA-4 binding site repeats within the pharynx (P region) or
outside, at the bean stage (upper) and 2-Fold stage (lower). PHA-4::YFP was used to identify pharyngeal cells (not shown). Scale bar, 3 mm. Note the
decompaction with pharyngeal cells (arrowheads) relative to non-pharyngeal cells (asterisk). (D) Quantitation of embryos with co-localized CFP::LacI
and PHA-4::YFP in transgenic lines bearing 3X repeats.
doi:10.1371/journal.pgen.1001060.g004

Transcriptional Selectivity during Organogenesis
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surveyed genes involved in chromatin modification such as histone

demethylation, methylation, acetylation and RNA interference.

Given the proximity of the pseudo-chromosomes to the nuclear

lamina, we also tested genes involved in nuclear envelope structure

and function. We counted the number of nuclei with bound PHA-

4::YFP in a section that passed through the pharynx and intestine

of comma to 1.5 fold embryos.

Of 28 genes surveyed, emr-1/Emerin had the most dramatic

effect on PHA-4 binding (Figure 6). In the control, almost half of

embryos had at least one nucleus with PHA-4::YFP bound to the

pax-1 promoter, with an average of 17% pharyngeal nuclei bound

within an embryo (Figure 6B and 6C). Inactivation of emerin lead

to a large increase in the number of pharyngeal nuclei with bound

PHA-4::YFP, to ,60% (Figure 6A and 6B). Although EMR-1 is

widely expressed in all embryonic tissues [36], we observed

binding only in the pharynx and not in the intestine of emr-1(RNAi)

embryos (1 of 88 embryos (1.25%) in three experiments). These

results reveal that the nuclear lamina interferes with binding of

PHA-4::YFP to its targets within pharyngeal cells, but that

additional processes function in the intestine.

emr-1(RNAi) strongly lowered expression of EMR-1 protein

(Figure S6), and promoted pseudo-chromosome decompaction

compared to wild-type embryos, raising the possibility that

increased binding of PHA-4 in emr-1(RNAi) embryos could be a

consequence of increased accessibility. 32% (28/88) of emr-1(RNAi)

embryos had decondensed arrays compared to 17% (9/52) for

wild-type (Figure 6A and 6D). To explore the role of decompac-

tion, we examined other genes for effects on pseudo-chromosome

morphology and PHA-4::YFP binding. RNAi against 6 additional

genes caused a global de-condensation of pseudo-chromosomal

arrays at the comma to 1.5-fold stages of embryogenesis (lem-3, zyg-

12, lin-59, set-1, met-2, ergo-1 Figure 6A and 6D). The arrays in

these embryos appeared more distended and were brighter than

wild-type embryos suggesting increased CFP::LacI expression.

The de-condensation of the pseudo-chromosomes was not

restricted to a specific tissue, but was observed in most nuclei in

an optical section across the embryo. RNAi against set-1, a gene

encoding a potential SET-domain methyltransferase [71], caused

global decompaction in 19 of 45 embryos (40%, Figure 6D). The

decompaction observed in set-1(RNAi) embryos was not surprising

given that set-1 has been implicated in transgene silencing [72].

However, set-1(RNAi) embryos did not lead to increased PHA-

4::YFP association (Figure 6B and 6C). The most dramatic effect

was observed for met-2, a histone H3 lysine 9 dimethyltransferase

that is homologous to human SETDB1 [73][74]. Arrays appeared

more decompacted in met-2(RNAi) nuclei, and a greater proportion

of arrays were decondensed compared to those in wild-type

embryos (77%, 28/36, Figure 6A, 6D, and 6E). Decompaction by

reduced met-2 had some effect on PHA-4 binding since a greater

proportion of met-2(RNAi) embryos had PHA-4::YFP localized to

pseudo-chromosomes (Figure 6C). However, within those embry-

os, only 29% of pharyngeal nuclei had PHA-4::YFP bound to

pseudo-chromosomes, and this difference was not statistically

significant from control. (Figure 6A and 6C). These data indicate

Figure 5. PHA-4 binding and activity is limited in the intestine. (A) PHA-4::YFP (depicted in magenta) does not associate with pseudo-
chromosomes (marked with CFP::LacI, green) bearing the pax-1 mutA promoter in the intestine. The cartoon illustrates the interpretation of the data.
(B) Over-expression of PHA-4 under a heat-shock promoter leads to widespread expression of PAX-1::GFP (green) in multiple tissues but not in the
intestine (magenta; J126 (lower panel). Control embryos that did not receive heat-shock express PAX-1::GFP only in marginal cells (upper panel). (C)
PHA-4 is expressed in all tissues after heat shock, including the intestine (magenta; J126). Scale bar, 10 microns.
doi:10.1371/journal.pgen.1001060.g005
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that general decompaction may influence PHA-4::YFP associa-

tion, but that Emerin likely modulates PHA-4::YFP binding by

additional mechanisms as well.

Discussion

This study provides three insights towards understanding the

regulatory strategies that drive foregut organogenesis by a selector

gene. First, we have probed the association and activity of PHA-4

with its target genes in living embryos. PHA-4 binds foregut genes

selectively, within the pharynx but not within a neighboring organ.

This association promotes large-scale chromatin decompaction of

target genes and surrounding sequences, prior to the onset of

transcription. We hypothesize that opening of chromatin may

facilitate productive transcription at later stages. Second, binding

of PHA-4 to pseudo-chromosomes in the pharynx is restricted by

Figure 6. Emerin inhibits PHA-4 binding in the pharynx. (A) CFP::LacI (depicted in green) and PHA-4::YFP (depicted in magenta) co-localization
on pseudo-chromosomes bearing pax-1MutA after No RNAi, emr-1(RNAi) or met-2(RNAi). (B) Percentage of embryos with at least one co-localized dot
(No RNAi 9/19, emr-1(RNAi) 13/23, set-1(RNAi) 14/29, and met-2(RNAi) 16/22) (C) Percentage of pharyngeal nuclei with bound PHA-4::YFP among
embryos with co-localization. After emr-1 reduction (V, n = 13), embryos had a ,3 fold increase in PHA-4::YFP binding compared to No RNAi controls
(n = 9). For met-2 and set-1 n = 16 and 14, respectively D) The proportion of embryos bearing de-condensed arrays for each RNAi treatment is
graphed. See Table S2 for the number of embryos assayed. (E). Example of pseudo-chromosomes after emr-1(RNAi) or met-2(RNAi). Decompaction
within the pharynx (arrowhead) presumably reflects PHA-4 association. Scale bar, 3 microns.
doi:10.1371/journal.pgen.1001060.g006
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the lamina-associated protein EMR-1/Emerin. The nuclear

lamina induces transcriptional silencing in many organisms, but

the mechanism is unclear [75]. Our study reveals that EMR-1-

mediated silencing can occur by blocking transcription factor

association. Third, we have defined the promoter architecture that

establishes expression of the pax-1 gene within a subset of

pharyngeal cells. Expression is promoted by broadly-acting

enhancer regions, which include a PHA-4 site, and limited to

fourteen pharyngeal cells by repressive elements.

PHA-4 binding leads to large-scale chromatin
decompaction in living embryos

The transparency of C. elegans enables analysis of selector gene

behavior in living embryos. Our characterization of PHA-4 and its

target genes revealed regulated association with target promoters,

which induced extensive chromatin decompaction in selected cells.

We note that these events were visualized by single-cell analysis

and would not have been detected by biochemical approaches

such as chromatin immunoprecipitation. Importantly, the expres-

sion of pharyngeal reporter constructs embedded within complex

DNA sequences, with few exceptions, mimics expression of the

endogenous cognates, as detected by in situ stains [66,76]. Thus,

the bulk of gene regulatory processes are preserved in the arrays.

Large-scale decompaction of chromatin by a selector gene,

which, to our knowledge, has not been observed previously, is

consistent with observations regarding pha-4/Fox orthologues in

other organisms. In breast cancer cells, global location analysis

previously revealed that FoxA1 bound many regions located

.50 Kb from a transcription start site [77]. FoxA1 induced both

local effects, such as chromatin remodeling and transcription

factor recruitment [54], but also long-range effects, such as

physical interactions between enhancers and promoters [77]. In S.

cerevisiae, Fkh1/Fox controls donor preference during mating-type

switching [55]. Fkh1 promotes recombination for loci separated by

50 Kb and does so without altering transcription or local

chromatin [78]. These observations suggest Fox factors in diverse

organisms contribute to long-range interactions between distant

loci. In our system, we estimate roughly one PHA-4 target

promoter per 25 Kb of DNA within the pseudo-chromosomes.

This number derives from ,200 copies of target promoter (qPCR,

data not shown) embedded in arrays of ,5–7 Mb [79]. At

endogenous loci, PHA-4::GFP associates with 4350 sites in the

embryonic genome, a surprisingly high density of binding sites

[19]. The distance observed in C. elegans is comparable to those in

the yeast and mammalian studies, suggesting that large-scale, Fox-

mediated chromatin re-organization might operate in all three

organisms.

The association of PHA-4::YFP with pseudo-chromosomes was

not constitutive, but responded to the cellular milieu in two ways.

First, within the pharynx, PHA-4::YFP binding was restricted by

EMR-1/emerin. EMR-1/emerin resides at the nuclear lamina,

which suggests that tethering of pharyngeal genes or trans-acting

factors at the nuclear periphery may modulate PHA-4 binding.

We note that the nuclear lamina appears normal after emr-

1(RNAi), and affected embryos are healthy and viable (This study

and [43]). We speculate that the loss of emerin may have subtle

effects on tethering or formation of heterochromatin, signaling

pathways or lamina-associated proteins that alter gene activity

[80]. Second, in the intestine, PHA-4 binding to pax-1 and myo-2

was inhibited completely, and inhibition was not relieved by emr-

1(RNAi). HS::pha-4 cannot activate pax-1::GFP within intestinal

cells (this study) or convert nascent intestinal cells to a pharyngeal

fate [9], indicating PHA-4 functions poorly in this embryonic

tissue. By contrast, ubiquitous expression of the C. elegans MyoD

homolog hlh-1 induces the body-wall muscle program throughout

the embryo, including developing intestinal cells [48,81]. We

suggest that the limited activity of PHA-4 within the intestine may

reflect the inability of PHA-4 to associate with its pharyngeal

target genes. This lack of association in the intestine may reflect

the presence of gut-specific repressive systems that block

pharyngeal gene activation in the intestine, or the absence of

appropriate cofactors and coactivators.

What is the nature of PHA-4-induced chromatin restructuring?

The global decompaction we observe is consistent with a

disordered structure, such as decondensation by loss of nucleo-

somes and/or reconfiguring of chromatin into loops or coils [82].

Although nucleosome loss can be associated with transcription

[83], our data suggest that the effect of PHA-4 is independent of

productive transcription. Arrays bearing the mutA promoter or 3X

PHA-4 binding site repeats recruit PHA-4::YFP and undergo

decompaction, in the absence of GFP production. In Drosophila,

nucleosomes are lost rapidly at heat-shock loci prior to

transcription, and this loss extends across several kilobases

upstream and downstream of the activated gene [84]. Transcrip-

tion-independent decondensation of chromatin might be required

to ‘‘clear the way’’ for RNA Pol II, enabling cells to activate gene

expression rapidly and respond promptly to developmental and

environmental cues.

Cis-regulatory architecture of the pax-1 gene
An interesting feature of pax-1 expressing cells is that they share

a lineage relationship. We identified 11 of the 14 pax-1::GFP+ cells

unambiguously, and found that each of these cells derived from

the posterior daughter of the penultimate cell division (‘‘px’’ cells;

Figure S1). For example, ABaraaapapa generates a marginal cell

that expresses pax-1. Previous studies have shown that C. elegans

embryos are patterned according to antero-posterior (A-P) cell

divisions in which pairs of A-P siblings are distinguished by high

(anterior) or low (posterior) levels of nuclear POP-1, a TCF

transcription factor ([85,86] reviewed in [66]). Loss of POP-1

asymmetry alters cell fate decisions, suggesting transcriptional

regulation by POP-1 confers anterior or posterior identity after

each cell division [85,86]. However, few transcriptional targets of

POP-1 are known. We considered an appealing model that POP-1

might regulate pax-1 transcription directly during the penultimate

cell division and thereby contribute to A–P fate distinctions.

However, none of the cis-regulatory sites we identified are a good

fit with the canonical TCF binding site G(A/T)(A/T)CAAAG

[87]. Thus, the relationship between pax-1 and A-P specification

remains a mystery.

Our promoter analysis identified four regulatory elements that

establish pax-1 expression in fourteen pharyngeal cells. The first

was an enhancer element likely recognized by PHA-4 and defined

by D6. PHA-4 can bind this sequence in vitro [2] and in vivo (this

study). Moreover, this site is required for pharyngeal expression

(this study), and multimers of this sequence respond to PHA-4 in

vivo [18]. This result supports the notion that many genes

expressed within the pharynx are direct targets of PHA-4 [2].

Surprisingly, while mutation of the predicted PHA-4 binding site

eliminated pax-1 expression within the pharynx, it also led to

ectopic expression in non-pharyngeal cells such as epidermis.

M05B5.2 and T05E11.3 are two additional PHA-4 target genes

[2], and these also exhibited epidermal expression when the PHA-

4 site was mutated to random sequences (J. Gaudet, pers. comm.).

A likely possibility is that this site functions as a repression element

in non-pharyngeal epithelia. PHA-4 is not expressed in the

epidermis, leaving open the identity of the factor that represses

epidermal expression. RNAi of the other C. elegans Fox genes did
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not result in ectopic expression in lines carrying the wildtype

M05B5.2 reporter (J. Gaudet, unpublished). This result suggests

that multiple Fox proteins function redundantly to repress

epidermal expression, or alternatively, that an unrelated protein

acts through the predicted PHA-4 binding site.

A second enhancer element defined by Delta16 contributes to

pax-1 activation. The Delta16 region contains a match to a

GATA-2,3 binding site (AGATTA; [88,89]. However, mutation of

AGATTA to CTGCAG does not inactivate pax-1 expression,

suggesting this site is not recognized by a GATA factor (J.S., data

not shown). We note that the sequence TTGAGA lost in Delta16

is half of a direct repeat, with a second copy located within

Delta14 (Figure 1). Abutting Delta16 sequences, mutations

Delta14 and Delta18 each lead to pax-1 expression in extra

pharyngeal cells. These sequences carry an inverted repeat

AGAGCT that is lost in Delta14 or Delta18 (Figure 1). Two

additional elements, defined by Delta20 and Delta22/Delta24,

functioned negatively to restrict pax-1 expression. A direct repeat

(ACGGACCA) lies within these sequences, with one copy entirely

within Delta20 and a second spanning Delta22 and Delta24. An

appealing model is that PHA-4 promotes expression within the

pharynx in combination with Delta16 sequences. The broad

activation is refined by the repression elements embedded in

Delta14/Delta18 and Delta20/Delta22/Delta24. The combina-

tion of four cis-regulatory sites explains why pan-pharyngeal PHA-

4::YFP can bind its target promoters, yet those targets become

transcriptionally active in only a subset of pharyngeal cells and

after PHA-4 is first expressed.

We have demonstrated that the master regulator PHA-4 binds

to its pharyngeal targets hours before the onset of gene expression.

PHA-4 binding and activity is restricted in the intestine and

negatively regulated by EMR-1/emerin in the pharynx. The

association of PHA-4 with target promoters led to large-scale

chromatin decompaction, which may facilitate chromatin-associ-

ated processes such as transcription. These in vivo results expand

our understanding of PHA-4/FoxA function in driving pharyngeal

transcriptional programs. Moving beyond the Nuclear Spot Assay,

it will be interesting to investigate the binding and down-stream

consequences of PHA-4 in its native environment, at endogenous

loci.

Materials and Methods

Strains and growth conditions
Strains were maintained as described in [90], at 20uC, and were

provided by Caenorhabditis Genetics Center, which is funded by the

NIH National Center for Research Resources (NCRR), unless

stated otherwise. Bristol N2 was used as the wild-type strain. The

following mutation was used LGIV: cha-1(p1182). For pax-1::GFP

analysis the following transgenic strains were used: SM202

pxls2(pax-1::GFP + pRF4), SM699 N2(pax-1::GFP + pRF4),

SM707 N2(pax-1 mutP-pro::GFP + pRF4), SM658 N2(pax-1 mutA-

pro::GFP + pRF4), SM660 N2(pax-1 Delta14-pro::GFP), SM700

N2(pax-1Delta18-pro::GFP). For Heat Shock: SM259 pxEx(H-

S::PHA-4 + pax-1::GFP + UL8::lacZ + pRF4 + 1 KB ladder + Herring

Sperm DNA)[9]. For the Nuclear Spot Assay (NSA), the following

strains were used: SM1560 cha-1(p1182); pxEx(cha-1 + his-

24pro::CFP::LacI + pha-4::yfp+ lacO + Herring Sperm DNA), SM1476

cha-1(p1182); pxEx(cha-1 + htz-1pro::CFP::LacI + PHA-4::YFP +myo-

2proWT + lacO + Herring Sperm DNA), SM1429 cha-1(p1182);

pxEx(cha-1 + htz-1pro::CFP::LacI + PHA-4::YFP +myo-2proWT + lacO

+ Herring Sperm DNA), SM1443 cha-1(p1182); pxEx(cha-1 + htz-

1pro::CFP::LacI + PHA-4::YFP +myo-2 mutP + lacO + Herring Sperm

DNA), SM1444 cha-1(p1182); pxEx(cha-1 + htz-1pro::CFP::LacI +

PHA-4::YFP +myo-2 mutP + lacO + Herring Sperm DNA), SM1432 cha-

1(p1182); pxEx(cha-1 + htz-1pro::CFP::LacI + PHA-4::YFP + pax-

1proWT + lacO + Herring Sperm DNA), SM1434 cha-1(p1182);

pxEx(cha-1 + htz-1pro::CFP::LacI + PHA-4::YFP + pax-1proWT + lacO

+ Herring Sperm DNA), SM1463 cha-1(p1182); pxEx(cha-1 + htz-

1pro::CFP::LacI + PHA-4::YFP + pax-1 mutP + lacO + Herring Sperm

DNA), SM1628 cha-1(p1182); pxEx(cha-1 + his-24pro::CFP::LacI +
PHA-4::citrineYFP + pax-1Delta6proMut + lacO + Herring Sperm DNA),

SM1564 cha-1(p1182); pxEx(cha-1 + his-24pro::CFP::LacI + PHA-

4::citrineYFP + pax-1 mutA + lacO + Herring Sperm DNA), SM1634 cha-

1(p1182); pxEx(cha-1 + his-24pro::CFP::LacI + PHA-4::citrineYFP +
pax-1 mutA + lacO + Herring Sperm DNA), SM1523 cha-1(p1182);

pxEx(cha-1 + his-24pro::CFP::LacI + PHA-4::citrineYFP + 3X low

affinity pha-4 site + lacO + Herring Sperm DNA). SM1876 cha-1(p1182);

stIs10389 (pha-4::gfp::3xFLAG); pxEx(cha-1 + htz-1pro::mCherry::LacI

+ M05B5.2 + lacO + Salmon testes DNA). Transgenic worms used for

the Nuclear Spot Assay (NSA) were grown at 24uC on an E. coli

OP50 lawn or on RNAi plates (see below).

DNA constructs
For the pax-1::GFP cytoplasmic translational fusion construct

(BSEM74): a 4.6 kb genomic SacI DNA fragment was cloned

from K07C11.1 into pBluescriptIISK+. The resulting plasmid was

digested with NsiI, which is located within the pax-1 locus, and

XbaI from the polylinker, to generate a 3 kb pax-1 fragment that

was inserted into PstI/XbaI-digested pPD95.77 (A gift from Dr.

Andrew Fire). The resulting pax-1::GFP reporter contained

approximately 2.4 KB upstream sequences, with GFP fused to

pax-1 within the second predicted exon of pax-1. The transcrip-

tional pax-1 nuclear construct (BSEM274) was made starting with

the cytoplasmically-expressed pax-1::GFP translational construct,

we created a transcriptional fusion by removing all coding

sequence. We performed inverse PCR using primers containing

BglII tails that flanked the region to be deleted. The linear PCR

product was then digested with BglII and re-ligated, placing the

GFP translational start site at the same position as the one

removed for pax-1. PCR products for injection were generated

using pax-1 59 as the forward primer and pax-1 39 as the reverse

primer.

The transcriptional fusion construct was modified for use in the

scanning mutagenesis. A 1.2 kB Bst1071I fragment was removed

from BSEM274, and replaced with a 1.9 kb Bst1107I/ApaI

fragment from pAP.10 that extends from within the GFP coding

region through the unc-54 poly A addition site was removed. This

generates a pax-1::GFP transcriptional fusion with the coding

sequence for histone H2B fused to the 39 end of GFP. 276,

277,279,280.

pha-4::citrineYFP for the nuclear spot assay was created using

QuickChange site directed mutagenesis (Stratagene, #200519).

Two mutations, V68L and Q69M (59-GTT-CAA-39 mutated to

59-CTT-ATG-39), were introduced into the YFP sequence of the

pha-4::YFP (SEM962) [11] to convert YFP into citrineYFP [91]. The

following primers were used: YFP FW Citrine 59-GT-

CAC TACTTTCGGTTATGGTCTTATGTGCTTCGCCAG-

ATACCCAGATC-39 and YFP RV Citrine 59GATC-

TGGGTATCTGGCGAAGCACATAAGACCATAACCGAAA-

GT AGTGAC-39.

3X low affinity PHA-4 binding site oligos were designed as in

[18] but without restriction sites flanking the 3 tandem binding

sites and were created to have an overhang to facilitate repeat

formation in the array. The oligos are: Top 59-CTA-

CTATTTGTCCCTACTATTTGTCCCTACTATTTGTCC-39

Bottom 59 GGGACAAATAGTAGGGACAAATAGTAGGGA-

CAAATAGTA-39 (underlined are the PHA-4 binding sites).
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Oligos were diluted to a concentration of 2 mg/ml and heated to

95uC for 3 minutes. The temperature was dropped 0.10/sec until

20uC was reached to hybridize the oligos.

Injections for pax-1 promoter analysis
Reporter constructs were injected into the germ line of

hermaphrodites and stable F2 transgenic roller lines examined.

All reporter constructs were injected at 0.5 ng/ml as PCR

fragments. Low concentrations of PCR products circumvented

artificial expression in pharyngeal cells that has been observed

with plasmid constructs [92]. We used pRF4 (rol-6(su1006)) as a

co-injection marker [93]. The injection mix also included complex

DNA (salmon sperm DNA, 1 kb ladder) up to 100 ng/ml, to

prevent silencing [59].

Antibody stains
Antibody staining was performed as described previously [11].

The primary antibodies used were anti-GFP rabbit IgG fraction at

1:1000 (Molecular Probes), anti-PHA-4 PAb at 1:1000 [94], the

anti-intermediate filament (a-IF) at 1:3 that recognizes pharyngeal

marginal cells [95], and the monoclonal antibody J126, from Dr.

Susan Strome, was used at 1:30 to detect intestinal cells.

Scanning mutagenesis
All constructs for the scanning mutagenesis were constructed

using an inverse PCR strategy. For each mutant, we used a specific

pair of primers that flank the 10 bp region to be altered. These

primers each carry 59 tails that contain a restriction site (PstI or

ClaI). Following inverse PCR (BSEM279 as template), the linear

PCR product was digested with the appropriate restriction enzyme

(PstI or ClaI) and re-ligated. Each resulting reporter plasmid

contains the restriction site plus a variable number of base pairs in

place of the 10 bp of wild-type sequence. For injection, PCR

products were generated from each mutant plasmid. All constructs

were sequenced to confirm the predicted sequence.

Nuclear spot assay
Transgenic lines for the Nuclear Spot Assay were as follows: no

target control (SM1560), 3X low affinity pha-4 binding sites

(SM1523), myo-2 wild-type promoter (SM1476, SM1429) bearing

two high affinity PHA-4 binding sites [2], myo-2 promoter bearing

mutagenized FoxA sites (SM1443, SM1444) [2], pax-1 wild-type

promoter (SM1432, SM1434), pax-1 promoter with a mutagenized

FoxA site (SM1463, SM1628) and pax-1 promoter with a

mutagenized positive regulator site (SM1564, SM1634) (see

below). SM1560 was created by injecting cha-1(p1182) worms

with Xho1-linearized pha-4::citrineyfp plasmid (bSEM1045) (1 ng/

ml), his24promoter::CFP::LacI PCR product [63] (2.5 ng/ml), a 10 kb

Sph1/Kpn1 fragment from lacO multimeric plasmid pSV2-dhfr-

8.23 (3 ng/ml) [96], cha-1 plasmid (RM527P, a gift from J. Rand)

linearized with Apa1 (2 ng/ml) for rescue, and sheared herring

sperm DNA to make 100 ng/ml total DNA. For SM1476 and

SM1429, 499 bp of the endogenous myo-2 promoter upstream of

the start codon was used in addition to the components listed for

SM1560 with one difference, CFP::lacI expression was driven by

the htz-1 promoter (BSEM995) [63]. SM1443 and SM1444 were

created similar to SM1476 and SM1429 but with a myo-2

promoter bearing two mutated PHA-4 binding sites [2]. For

SM1434 a 240 (bp) fragment of the pax-1 promoter upstream of

the start codon was used (the fragment contains one PHA-4

binding site (TGTTTGC)). SM1463 carried an altered version of

the 240 (bp) pax-1 promoter in which the PHA-4 binding site was

mutated from TGTTTGC to ATCGATT (MutP). Both SM1463

and SM1434 were injected with htz-1pro::CFP::LacI. For SM1564

and SM1634 a positive regulator site 240 to 250 upstream of the

TSS was mutated from TTGAGATTAA to CAATCGATTG.

SM1876 was created by injecting SM1754 cha-1(p1182); stIs10389

(pha-4::gfp::3xFLAG) worms with cha-1, a 440 (bp) M05B5.2

promoter fragment [2], and htz-1pro::mCherry::LacI that has a

premature stop codon at the end of the mCherry sequence, thus

failing to make any mCherry::LacI. SM1876 was used to examine

whether decompaction reflected an artificial interaction between

LacI and PHA-4. Nuclear spot assays were performed as described

previously [11,50,51,63], with the following modifications: se-

quential scan images were acquired using the Andor Revolution

XD microscopy system (#16E stages). For later stages, images

were acquired using an Olympus FluoView FV1000 confocal

microscope (for pax-1 mutA) or a Leica DM RXE confocal (for

everything else).

To determine copy number, worms were grown at restrictive

temperature for cha-1(p1182) (25u), and treated with bleach to

synchronize embryos. Four 10 cm OP50 plates of moving,

nonCha-1 L3 animals were harvested for DNA isolation by

phenol chloroform extraction and ethanol precipitation. qPCR

was performed for promoter regions and normalized to act-1 using

a LightCycler PCR machine with LightCycler FastStart DNA

MasterPlus SYBR Green 1 kit (Roche) for quantitation. qPCR

indicated a copy number of #200 for each promoter.

Heat shock
Gravid mothers were dissected and embryos collected in a PCR

tube. Heat-shock was administered in a PCR machine. Embryos

were initially incubated at 20uC for 75 min. After the initial

incubation, the temperature was raised gradually to 33uC at a rate

of 0.1uC/second. Embryos were then incubated at 33uC for 30

minutes. Following heat shock, the temperature was gradually

lowered to 20uC at a rate of 0.1uC/second, and embryos

incubated at 20uC for 5 hours.

Image analysis
Perkin Elmer Volocity was used to calibrate images for true X

and Y pixel dimensions to ensure accurate spatial measurements.

Classifiers were designed to select CFP::LacI areas and PHA-

4::YFP+ cells using an intensity threshold. The CFP::LacI classifier

included separation of touching objects, removal of noise and

exclusion of objects smaller than 0.25 micron2. The PHA-4::YFP

classifier was modified to remove noise. CFP::LacI areas within

PHA-4::YFP+ cells were considered ‘‘inside the pharynx’’ and the

remainder as ‘‘outside the pharynx.’’ Proofreading of selections

was performed blind by comparing measurements with images.

Area measurements (INT Area (micron2)*10) were analyzed using

Cox regression models to evaluate differences in chromosome area

with location (inside the pharynx versus outside), developmental

stage, or transgenic line. While Cox regression models were

originally developed for analyzing survival data, their semi-

parametric nature made them suitable for analyzing data following

a non-standard distribution that was difficult to capture paramet-

rically.

RNA interference screen and analysis of general
decompaction and PHA-4 binding

RNAi by bacterial feeding was performed similarly to [15].

HT115 bacteria [97] expressing dsRNA for gfp, spr-5, rbr-2, npp-11,

emr-1, nhr-60, ima-3, lem-3, zyg-12, lmn-1, lin-49, lin-59, set-17, set-16,

set-2, set-1, met-2, hda-3, hda-4, tsn-1, prg-1, sago-2, prg-2, csr-1, top-1,

ergo-1, chd-3, tam-1, lin-35, or hil-7 were grown in liquid cultures for
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8 hours and seeded onto plates containing 8 mM IPTG (Sigma)

and 50 g/ml Carbenicillin (Sigma). All RNAi clones were derived

from the Ahringer library [98]. The emr-1 clone was validated by

sequencing using pPD129_for 59-GAGTGAGCTGA-

TACCGCTCG-39 and pPD-

129_rev 59-CACGACGGTGTATTTCGACGGC-39 primers at

the Dana-Farber/Harvard Cancer Center DNA Resource Core.

Adult SM1634 worms were bleached and ,50 embryos were

placed on RNAi plates (Po). For every experiment, F1 progeny

embryos from 5 6 cm plates were collected by bleaching and

analyzed, and each experiment was repeated at least twice. Images

were acquired from live embryos using an Olympus FluoView

FV1000 confocal microscope and DeltaVision RT Deconvolution

System and SoftWoRx software (Applied Precision). A multitrack

setting was used to acquire separate CFP and YFP images from

slices through the pharynges of comma to 1.5fold-stage embryos.

Embryos were scored for general non-tissue specific extrachro-

mosomal array decompaction and for the number of nuclei

containing PHA-4-::YFP colocalized with CFP::LacI.

Supporting Information

Figure S1 Lineage of pax-1::GFP+ pharyngeal cells. (A) Cell

nuclei positions in the pharynx (Adapted from [100]). Highlighted

are the twelve nuclei that express pax-1::GFP. (B) the Lineage of

pax-1::GFP+ pharyngeal cells. Eleven of these express pax-1::GFP,

and the 12th (e1VR) may as well, although this has not been

confirmed unambiguously.

Found at: doi:10.1371/journal.pgen.1001060.s001 (10.21 MB

TIF)

Figure S2 Deletion analysis of the pax-1 promoter. The PAX-

1::GFP cytoplasmic expression construct (translational construct)

was used for this analysis. Expression is pharyngeal, but

identification of individual cells was difficult. Magenta box

indicates the PHA-4 binding site (TGTTTGC). Progressively

larger deletions from the original 2.5 kb upstream sequence

resulted in a gradual loss of GFP intensity, with eventually a

complete loss of expression when the predicted PHA-4 site was

removed. Images representative of strong, weak and no GFP

expression are shown below the schematic.

Found at: doi:10.1371/journal.pgen.1001060.s002 (5.10 MB

TIF)

Figure S3 Ectopic expression of pax-1MutP::GFP reporter in

epidermal cells (A) and seam cells (B).

Found at: doi:10.1371/journal.pgen.1001060.s003 (2.30 MB

TIF)

Figure S4 Characterization of negative regulatory elements in

the pax-1 promoter. (A) D18 resulted in an increased number of

pharyngeal cells expressing the GFP reporter (20 cells), but with no

significant non-pharyngeal expression. (B) D20 displayed increased

numbers of GFP-expressing cell in the pharynx, as well as non-

pharyngeal expression, epidermal expression is shown here.

Found at: doi:10.1371/journal.pgen.1001060.s004 (1.78 MB

TIF)

Figure S5 PHA-4 binding to an additional pharyngeal target.

(A) Quantitation of embryos with co-localized CFP::LacI and

PHA-4::YFP in two transgenic lines bearing a WT C44H4.1 (1 kb)

promoter. (B) Numbers of embryos scored for binding for all

transgenic lines in this study. (C) PHA-4::GFP binding to a

Nuclear Spot Assay array bearing the promoter of M05B5.2 in a

transgenic line that lacks mCherry::LacI. Binding to the array and

decompaction is observed as an intense PHA-4::GFP signal

(Arrows; Left image) compared to a transgenic line expressing

PHA-4::GFP without any target promoter (Right image). (D)

PHA-4 binding is maintained on mitotic chromosomes (Arrows)

(E) The diameter of pharyngeal nuclei at different developmental

stages.

Found at: doi:10.1371/journal.pgen.1001060.s005 (8.08 MB

TIF)

Figure S6 emr-1 RNAi reduces the expression of EMR-1 in all

cells. (A) EMR-1 antibody stain reveals its position at the nuclear

periphery in a nuclear spot assay transgenic line (B) EMR-1 signal

is lost after RNAi. A secondary antibody against LacI was used as

a positive control for antibody staining (LacI alone shown in the

inset).

Found at: doi:10.1371/journal.pgen.1001060.s006 (5.57 MB

TIF)

Figure S7 Comparison of area measurements versus volume

measurements for array size. (A) Area or (B) Volume of pseudo-

chromosomes in the pharynx were measured at the comma and

1.5Fold stage in transgenic lines carrying either a WT pax-1

promoter or a MutP pax-1 promoter. Three embryos per stage

were analyzed. Each dot on the plot represents a pseudo-

chromosome.

Found at: doi:10.1371/journal.pgen.1001060.s007 (7.06 MB

TIF)

Table S1 pax-1 reporters are activated at the bean stage. (A)

GFP expression assayed in two transgenic lines. (A) is a line

carrying a transcriptional fusion of pax-1WTpro::GFP. Onset of

expression was detected at the bean stage. This expression pattern

was recapitulated using an integrated PAX-1::GFP translational

fusion. (B) Mutations in a predicted PHA-4 binding site (mutP) or a

second activation site (mutA) interfere with activation at any stage.

n = number of embryos.

Found at: doi:10.1371/journal.pgen.1001060.s008 (2.64 MB

TIF)

Table S2 Number of nuclei assayed for pseudo-chromosome

size. The numbers are broken down per promoter, developmental

stage and for the location of pseudo-chromosomes inside the

pharynx versus outside the pharynx.

Found at: doi:10.1371/journal.pgen.1001060.s009 (6.97 MB

TIF)

Table S3 Number of embryos assayed for de-compaction for

each RNAi treatment. (A) Colors indicate different categories. (B)

the number of embryos assayed for the proportion of bound

arrays.

Found at: doi:10.1371/journal.pgen.1001060.s010 (9.28 MB

TIF)
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