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Abstract: The reaction of PtCl2 with s-triazine-type ligand (HTriaz) (1:1) in acetone under heating
afforded a new [Pt(Triaz)Cl] complex. Single-crystal X-ray diffraction analysis showed that the
ligand (HTriaz) is an NNO tridentate chelate via two N-atoms from the s-triazine and hydrazone
moieties and one oxygen from the deprotonated phenolic OH. The coordination environment of the
Pt(II) is completed by one Cl−1 ion trans to the Pt-N(hydrazone). Hirshfeld surface analysis showed
that the most dominant interactions are the H···H, H···C and O···H intermolecular contacts. These
interactions contributed by 60.9, 11.2 and 8.3% from the whole fingerprint area, respectively. Other
minor contributions from the Cl···H, C···N, N···H and C···C contacts were also detected. Among these
interactions, the most significant contacts are the O···H, H···C and H···H interactions. The amounts
of the electron transfer from the ligand groups to Pt(II) metal center were predicted using NBO
calculations. Additionally, the electronic spectra were assigned based on the TD-DFT calculations.

Keywords: Pt(II) complex; s-triazine; Hirshfeld; NBO; TD-DFT; X-ray

1. Introduction

s-triazine and their metal complexes have gained much attention for their properties
and potential applications in many fields [1]. In the last decade, s-triazine and their com-
plexes have been explored in the pharmaceutical field, catalytic process including Heck
and Suzuki-Miyaura cross-coupling reactions, olefin polymerization, hydrogen transfer
reactions, decarbonylation of ketones, asymmetric allylic alkylation, and some derivatives
have been designed to develop photoelectronic materials [1]. Several ligands have been
synthesized based on the s-triazine as a core structure and have been explored in coordina-
tion chemistry [1]. Mukherjee et al. constructed a complicated coordinated molecule by
coordination-driven self-assembly of homometallic Pd/Pt-based s-triazine ligand as inter-
locked molecular cages [2]. Motloch et al. reported the synthesis of the Pt(II)/Pd(II) complex
with s-triazine-type ligands for the purpose of hydrogen bonded/metal-coordination hy-
brid [3]. Another representative example was designed, synthesized and characterized by
He et al. via self-assembly of supramolecular coordination complexes using platinum salt
with two different types of pyridyl-derivatized ligands [4]. The photophysical properties
of these supramolecular coordination complexes showed potential metal ion-responsive
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materials [4]. In the same field of photophysical study, a host–guest coordination cage
has been assembled, and demonstrated a primary ultrafast excited dynamic process in-
cluding excited-state energy and charge transfer. This tailored architecture was designed
by the Han research group [5]. This fascinating s-triazine ligand has attracted great at-
tention due to its several applications [6–13]. Mao et al. designed and synthesized two
trigeminal star-like platinum complexes which stabilized hTel G4 with high selectivity
and affinity, targeting telomerase inhibitors [14]. Additionally, some Pd(II)-s-triazine com-
plexes have been constructed and assessed against breast cancer cell lines (MCF7 and
MDA-MB-231) and have exhibited good potentials [15,16]. The design of new s-triazine-
based ligands and their coordination modes with different metal centers is still a chal-
lenge [17–19]. Recently, Barakat et al. designed, synthesized and characterized a new
hydrazono-s-triazine-based ligand and later explored the coordination chemistry of this
ligand with a palladium(II) center. This study revealed that palladium coordinated via
the s-triazine-type ligand as an NNO-donor [20]. Additionally, reaction of PdCl2 with
4,4′-(6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diyl)dimorpholine (MPT) and N-
methyl-N-phenyl-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-amine (BPT) ligands afforded the
corresponding [Pd(MPT)Cl2] and [Pd(BPT)Cl]ClO4 tetracoordinated Pd(II) complexes. In
these Pd(II) complexes, the s-triazine ligands worked as bidentate and tridentate chelates,
respectively [16]. Both complexes were found to have improved anticancer activities
against MDA-MB-231 and MCF-7 cell lines compared to the corresponding free ligands.
On the other hand, the reaction of PdCl2 with 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-
methoxy-1,3,5-triazine proceeded with partial hydrolysis of the ligand to 6-(3,5-dimethyl-
1H-pyrazol-1-yl)-1,3,5-triazine-2,4(1H,3H)-dione (HPT) and the square planar complex
[Pd(PT)Cl(H2O)]*H2O was obtained [15]. In addition, the Pd(II) complex was found to
have almost equal activities against MDA-MB-231 and MCF-7 cell lines. Interestingly, the
reaction of the same ligand with PtCl2 proceeded with complete hydrolysis of the ligand as
indicated by the formation of [Pt(3,5-dimethyl-1H-pyrazole)2Cl2] [15].

During our study, we have explored the utility of the hydrazono-s-triazine-based
ligand towards metalation with the divalent platinum ion to synthesize a new Pt(II) complex
based on s-triazine hydrazone ligand (Figure 1). Its 3D molecular and supramolecular
structures were elucidated by single-crystal X-ray diffraction and Hirshfeld analyses. The
chemical insights of the Pt(II) complex have also been demonstrated.
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Figure 1. Structure of s-triazine hydrazone ligand (HTriaz).

2. Results and Discussion
2.1. [Pt(Triaz)Cl] Complex Synthesis and Chracterization

The Pt(II) complex [Pt(Triaz)Cl] was synthesized by reaction of (HTriaz) ligand with
platinum (II) chloride (1:1) in acetone under heating (Scheme 1). The new Pt(II) complex was
characterized by FT-IR, UV–Vis, single-crystal X-ray diffraction and CHNPt analyses. The
reported structure by single-crystal X-ray diffraction agreed very well with the elemental
analysis results. Additionally, the FT-IR spectra of [Pt(Triaz)Cl] exhibited vibrational
characteristics of the functional groups, e.g., NH (3428 cm−1), aromatic C–H (3120 cm−1),
aliphatic C–H (2957 and 2866 cm−1), C=N/C=C (1630 cm−1).
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2.2. Crystal Structure Description

The X-ray structure of [Pt(Triaz)Cl] including atom numbering and thermal ellipsoids
drawn at 50% probability level is shown in Figure 2 (upper part). The [Pt(Triaz)Cl] complex
crystallized in I2/a space group (Table S1; Supplementary data). The asymmetric unit
comprised one [Pt(Triaz)Cl] complex unit and one acetone as a crystal solvent. The ligand
(Triaz−1) is a NNO tridentate ligand. The donor atoms of this ligand are two nitrogen
atoms from the s-triazine and the hydrazone fragments in addition to the phenolic oxygen
atom. The coordination environment of the Pt(II) is completed by one Cl−1 trans to the
Pt-N(hydrazone). The Pt to donor atoms (N4, N7, O2 and Cl1) distances are 2.055(4), 1.945(4),
1.991(4) and 2.331(1) Å, respectively. The angle between the trans-bonds O2-Pt1-N4 and
N7-Pt1-Cl1 are 173.35(16) and 177.01(13) Å, respectively (Table 1). The results are in good
agreement with the X-ray structure of the structurally related [Pd(Triaz)Cl] complex [20].

Table 1. [Pt(Triaz)Cl] complex bond lengths [Å] and angles [◦].

Atoms Distance Atoms Distance

Pt1-N7 1.945(4) Pt1-N4 2.055(4)
Pt1-O2 1.991(4) Pt1-Cl1 2.3308(13)
Atoms Angle Atoms Angle

N7-Pt1-O2 93.09(16) N7-Pt1-Cl1 177.01(13)
N7-Pt1-N4 80.42(18) O2-Pt1-Cl1 83.91(11)
O2-Pt1-N4 173.35(16) N4-Pt1-Cl1 102.58(13)

On the other hand, the angles between the cis-bonds are in the range of 83.91(11)–
102.58(13)◦, indicating a distorted square planar coordination environment around the
Pt(II). The structure of this complex showed one intramolecular N-H···O H-bond between
the N–H group from the organic ligand as a H-bond donor and the carbonyl oxygen atom
from the acetone molecule as H-bond acceptor. The hydrogen-acceptor and donor-acceptor
distances are 2.028 and 2.777(7) Å, respectively, while the N6-H6···O3 angle is 141.6◦. A
view of packing along ac-plane is shown in the lower part of Figure 2.
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Figure 2. X-ray structure (upper) and packing view along ac-plane (lower) for [Pt(Triaz)Cl] complex.

2.3. Analysis of Molecular Packing

Hirshfeld surfaces mapped over dnorm, shape index (SI) and curvedness for the stud-
ied complex are shown in Figure 3, while the different contacts and their contribution
percentages in the molecular packing are present in Figure 4.

As can be seen from Figure 4, the most dominant interactions are the H···H, H···C
and O···H intermolecular contacts. These interactions contributed 60.9, 11.2, and 8.3% of
the whole fingerprint area while the corresponding values for the Pd(II) complex are 60.6,
11.6, and 8.1, respectively. Other minor contributions from the Cl···H, C···N, N···H and
C···C contacts were also detected. Generally, the most significant contacts are the O···H
and H···C interactions. The latter belongs to the C-H···π interactions. In the corresponding
Pd(II) complex, the O···H, H···H and H···C interactions are the most important. These
intermolecular contacts appeared as red spots in dnorm and characterized by spikes in the
fingerprint plots as shown in Figure 5. The O···H interactions appeared as one spike in the
upper left part of the fingerprint plot due to the N–H···O (1.934 Å) and C–H···O (2.416 Å)
interactions between the carbonyl group as hydrogen bond acceptor and the surface as
hydrogen bond donor. On the other hand, the C–H···π interactions are characterized by two
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spikes with interaction distances ranges from 2.630 Å (H4A···C15) to 2.785 Å (H19B ···C16).
In the corresponding Pd(II) complex, the O···H and H···C interactions are 1.839 and 2.608 Å,
respectively which are slightly shorter than the corresponding values of the [Pt(Triaz)Cl]
complex. In the former, all H···H interactions have long interaction distances while in
the latter, most H···H interactions also have long interaction distances, except for the
H11···H2B contact, which appeared as a red spot in the dnorm. The H11···H2B contact
distance is 2.003 Å. A summary of all contacts with shorter distances than the vdW radii
sum of the interacting elements is listed in Table 2.
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Table 2. Short interactions and their contact distances in [Pt(Triaz)Cl].

Contact Distance Contact Distance

O3···H1 2.416 H4A···C15 2.630
O3···H6 1.934 H4A ···C28 2.777

H19B ···C16 2.785 H11···C2 2.689
H20B ···C14 2.656 H11···H2B 2.003

2.4. DFT Studies

The optimized structures of [Pt(Triaz)Cl] and two possible geometrical isomers (F1 (E)
and F2 (Z); Figure 1) of the free ligand are shown in Figure 6. The total energies of the ligand
isomers are −1622.4327 and −1622.4126 a.u. for F1 and F2, respectively. Hence, F1 is the
more stable than F2 by 12.6019 kcal/mol. This result agreed with our previous studies [21].
The extra stability of F1 could be attributed to the presence of intramolecular O–H···N
hydrogen bond between the hydrazone nitrogen atom and the OH proton with hydrogen-
acceptor and donor-acceptor distances of 1.729 and 2.608 Å, respectively. Another possible
isomer in which the labile proton is bonded to the Schiff base nitrogen atom leading to
a zwitterion species is abbreviated in Figure 1 as F3. The structure of F3 was optimized
using the same level of theory. Interestingly, the geometry optimization ended to the same
optimized structure of F1 indicating that the form F1 is more favored than the NH zwitter
ionic form F3. Additionally, the proton affinity of Triaz¯ was calculated based on the
enthalpy change (∆H) of the reaction Triaz−+H+→HTriaz to be 353.06 kcal/mol. On the
other hand, the Pt(II) affinity Triaz− was calculated to be 589.111 kcal/mol. In this regard,
one could conclude that the higher affinity of Triaz− to the Pt(II) could be attributed to
the chelate effect where the coordination between the Pt(II) ion and the tridentate Triaz−

ligand lead to the formation of two chelate rings which could be the driving force for the
deprotonation of the HTriaz and breaking the intramolecular O–H···N hydrogen bonding
interaction of F1.

On the other hand, the optimized structure of the [Pt(Triaz)Cl] complex agreed very
well with the experimental X-ray structure (Table S2, Supplementary data). In addition,
good correlations were obtained between the calculated and experimental geometric pa-
rameters. The correlation coefficients for bond distances and angles are 0.9979 and 0.9758,
respectively (Figure 7). The ligand and its Pt(II) complex are polar compounds where
the calculated dipole moments are 7.933 and 2.289 Debye, respectively. It is clear that
complexation of the ligand with Pt(II) decreased the polarity of the system.
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(right).

The interaction between Pt(II) as a Lewis acid and ligand as a Lewis base affect the
net charge at both fragments. The calculated charges at Pt, Cl, and the anionic ligand are
depicted in Table 3. The charge at the Pt(II) is changed to +0.5 instead of +2.0 due to the
large electron density transferred from the ligand groups. The amount of negative electron
density transferred from the ligand groups are 0.56 and 0.95 e for the Cl−1 and Triaz−1,
respectively.

Table 3. The calculated charge at Pt, Cl and the anionic ligand.

Atom/Group Optimized X-ray

Pt 0.4998 0.4857
Cl −0.4410 −0.4402

Triaz −0.0588 −0.0455

2.5. UV–Vis Spectra

The experimental and calculated UV–Vis spectra of the studied Pt(II) complex in
ethanol as solvent are presented in Figure 8. The longest wavelength band was observed
experimentally at 427 nm. The TD-DFT calculations predicted this band at 409 nm with
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oscillator strength of 0.1646. This electronic transition was assigned to HOMO→LUMO
(93%) excitation. In addition, the TD-DFT calculations predicted intense absorptions at
322 nm (exp. 338 nm) and 305 nm (exp. 320 nm) with oscillator strengths of 0.2102 and
0.2196, respectively. These electronic transition bands were assigned to H−1→LUMO (83%)
and HOMO→L+2 (84%), respectively. Experimentally, the region below 300 nm showed
an intense absorption at 261 nm, which is calculated at 266 nm (f = 0.3628). This band was
assigned to H−1→L+2 (89%) excitation. Presentation of molecular orbitals (MOs) included
in these electronic transitions are shown in Figure 9. Theoretically, an absorption band and
a shoulder were predicted at 247 nm (f = 0.1883) and 226 nm (f = 0.1040), respectively. The
former was assigned to the mixed H−3→L+2 (56%) and HOMO→L+5 (11%) transitions
while the latter was assigned for H−3→L+3(26%) and HOMO→L+6 (17%)/L+7 (35%)
transitions.
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3. Materials and Methods
3.1. Materials and Methods

Chemicals were purchased from Sigma–Aldrich (Chemie GmbH, 82024 Taufkirchen,
Germany). The CHN analyses were determined using Perkin–Elmer 2400 instrument
(PerkinElmer, Inc.940 Winter Street, Waltham, MA, USA). Pt content was determined using
a Shimadzu atomic absorption spectrophotometer (AA-7000 series, Shimadzu, Ltd., Japan).
FT-IR spectrum was assessed on a Perkin–Elmer 1000 FT-IR spectrometer, Waltham, MA,
USA (Figure S1). The UV–Vis electronic spectrum of the Pt(II) complex at 3.0× 10−4 mol L−1

in absolute ethanol as solvent was carried out using a UV–Vis spectrophotometer (Perkin–
Elmer Lambda 35, Waltham, MA, USA) in 1 cm cell in the spectral range of 200–500 nm.
Mass spectrum was recorded on JMS-600 H JEOL spectrometer (JEOL Ltd., Tokyo, Japan).
1H and 13C NMR spectra of [Pt(Triaz)Cl] were recorded on DMSO-d6 using a JEOL 500 MHz
spectrometer (JEOL Ltd., Tokyo, Japan) at room temperature.

3.2. Synthesis of the Ligand (HTriaz)

The ligand (HTriaz) has been prepared using our published method [20,22] and the
NMR spectral data agreed with the reported data [20].

3.3. Synthesis of [Pt(Triaz)Cl] Complex

The (HTriaz) ligand (60.0 mg, 0.119 mmol) was dissolved in 30 mL of acetone then
PtCl2 (31.6 mg, 0.119 mmol) was added. The reaction mixture was heated at 50 ◦C for
4 days. Then, the resulting solution mixture was filtered, and the filtrate was left for slow
evaporation at room temperature to afford the final product [Pt(Triaz)Cl] as reddish-brown
block crystals. Yield; C31H42ClN7O3Pt 79%; Anal. Calcd. for: C, 47.06; H, 5.35; N, 12.39;
Pt, 24.65. Found: C, 47.24; H, 5.29; N, 12.20; Pt, 24.46. FT-IR (KBr) cm−1: 3428 (NH), 3263,
3120, 2957, 2866 (C-H), 1540 and 1630 (C=N and C=C) (Figure S1; Supplementary data);
1H NMR (500 MHz, DMSO-d6, ppm): δ 1.24 (s, 9H, 3CH3), 1.37 (s, 9H, 3CH3), 3.64 (t,
4H, J = 4.0 Hz, 2CH2 (morpholine ring), 3.71 (t, 4H, J = 3.6 Hz, 2CH2 (morpholine ring),
7.14 (t, 1H, J = 6.8 Hz, C6H5), 7.30 (d, 1H, J = 2.0 Hz, C6H5), 7.30–7.35 (m, 3H, C6H5 and
C6H2), 7.63-7.57 (m, 3H, C6H5 and C6H2 and CH=N), 8.46 (s, 1H, NH), 10.91 (s, 1H, NH)
(Figure S2; Supplementary data). 13C NMR (126 MHz, DMSO-d6) δ 194.92, 178.15, 166.74,
164.72, 143.14, 141.50, 140.00, 138.81, 133.36, 131.26, 130.51, 128.42, 125.73, 125.09, 124.80,
123.88, 123.08, 122.93, 116.34, 116.17, 111.63, 74.32, 74.26, 62.38, 54.28, 49.14, 47.13, 36.54
(Figure S3; Supplementary data).

3.4. X-ray Structure Determinations

The details of the crystal structure determination are found in Table S1 and all technical
experiments are provided in the supplementary materials [23–27].

3.5. Hirshfeld and DFT Calculations

Crystal Explorer 17.5 [28] was used to perform the analysis of molecular packing.
Details of DFT and TD-DFT calculations [29–34] as well as proton affinity [35] are given in
supplementary data.

4. Conclusions

A novel Pt(II) complex [Pt(Triaz)Cl] with tridentate NNO-donor ligand-based s-
triazine scaffold was achieved. The chemical structure of [Pt(Triaz)Cl] was confirmed
by CHNPt analyses and single-crystal X-ray diffraction. The Pt(II) coordination environ-
ment is distorted square planar. The structure of this complex showed one intramolecular
N-H···O hydrogen bond between the N–H group from the organic ligand as a hydrogen
bond donor and the carbonyl oxygen atom from the acetone molecule as a hydrogen bond
acceptor. The supramolecular structure of the studied Pt(II) complex is analyzed using
Hirshfeld calculations. Additionally, the calculated UV–Vis spectra were assigned based on
the results of the TD-DFT calculations. The natural charges were calculated, and the results
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indicated that the amount of the electron transfer from the Cl−1 and Triaz−1 is 0.56 and
0.95 e, respectively.

Supplementary Materials: The following supporting information can be downloaded online. Ta-
ble S1: Crystal data and structure refinement for [Pt(Triaz)Cl]; Table S2. The calculated geometric
parameters of [Pt(Triaz)Cl]; Figure S1: FT-IR spectra of the studied Pt(II) complex; Figure S2: 1H
NMR spectra of the studied Pt(II) complex; Figure S3: 13C NMR spectra of the studied Pt(II) complex.

Author Contributions: Conceptualization, J.L., A.B. and A.E.-F.; methodology, M.S.A., J.L., N.E.E.
and A.B.; software, S.M.S., M.H.; M.S.A., J.L., N.E.E. and A.B.; formal analysis, J.L., N.E.E. and
M.H.; investigation, M.S.A., J.L. and N.E.E.; resources, J.L. and A.B.; writing—original draft prepara-
tion, S.M.S. and A.B.; writing—review and editing, J.L., and A.E.-F.; supervision, A.E.-F.; funding
acquisition, M.S.A. All authors have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R86), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R86), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compound [Pt(Triaz)Cl] is available from the authors.

References
1. Barakat, A.; El-Faham, A.; Haukka, M.; Al-Majid, A.M.; Soliman, S.M. s-Triazine pincer ligands: Synthesis of their metal

complexes, coordination behavior, and applications. Appl. Organomet. Chem. 2021, 35, e6317. [CrossRef]
2. Kumar, A.; Mukherjee, P.S. Multicomponent Self-Assembly of PdII/PtII Interlocked Molecular Cages: Cage-to-Cage Conversion

and Self-Sorting in Aqueous Medium. Chem. Eur. J. 2020, 26, 4842–4849. [CrossRef] [PubMed]
3. Motloch, P.; Hunter, C.A. Stimuli-Responsive Self-Sorting Hybrid Hydrogen-Bonded/Metal-Coordinated Cage. Chem. Eur. J.

2021, 27, 3302–3305. [CrossRef] [PubMed]
4. He, Z.; Li, M.; Que, W.; Stang, P.J. Self-assembly of metal-ion-responsive supramolecular coordination complexes and their

photophysical properties. Dalton Trans. 2017, 46, 3120–3124. [CrossRef] [PubMed]
5. Zhang, R.L.; Yang, Y.; Yang, S.Q.; Han, K.L. Unveiling excited state energy transfer and charge transfer in a host/guest coordination

cage. Phys. Chem. Chem. Phys. 2018, 20, 2205–2210. [CrossRef] [PubMed]
6. Fu, H.L.K.; Leung, S.Y.L.; Yam, V.W.W. A rational molecular design of triazine-containing alkynylplatinum (II) terpyridine

complexes and the formation of helical ribbons via Pt· · · Pt, π–π stacking and hydrophobic–hydrophobic interactions. Chem.
Commun. 2017, 53, 11349–11352. [CrossRef]

7. Liu, N.; Lin, T.; Wu, M.; Luo, H.K.; Huang, S.L.; Hor, T.A. Suite of Organoplatinum (II) triangular metallaprism: Aggregation-
induced emission and coordination sequence induced emission tuning. J. Am. Chem. Soc. 2019, 141, 9448–9452. [CrossRef]

8. Marzo, T.; Cirri, D.; Ciofi, L.; Gabbiani, C.; Feis, A.; Di Pasquale, N.; Stefanini, M.; Biver, T.; Messori, L. Synthesis, characterization
and DNA interactions of [Pt3(TPymT)Cl3], the trinuclear platinum (II) complex of the TPymT ligand. J. Inorg. Biochem. 2018, 183,
101–106. [CrossRef]

9. Ismail, A.M.; El Sayed, S.A.; Butler, I.S.; Mostafa, S.I. New Palladium (II), Platinum (II) and Silver (I) complexes of 2-amino-4,
6-dithio-1,3,5-triazine; synthesis, characterization and DNA binding properties. J. Mol. Struct. 2020, 1200, 127088. [CrossRef]

10. Yetim, N.K.; Sarı, N. Novel dendrimers containing redox mediator: Enzyme immobilization and applications. J. Mol. Struct. 2019,
1191, 158–164. [CrossRef]

11. Paul, L.E.; Therrien, B.; Furrer, J. The complex-in-a-complex cation [Pt (acac) 2-(p-cym)6Ru6(tpt)2(dhnq)3] 6+: Its stability towards
biological ligands. Inorg. Chim. Acta 2018, 469, 1–10. [CrossRef]

12. Asman, P.W. Kinetics and mechanistic study of polynuclear platinum (II) polypyridyl complexes; A paradigm shift in search of
new anticancer agents. Inorg. Chim. Acta 2018, 469, 341–352. [CrossRef]

13. Zhang, W.; Wang, J.; Xu, Y.; Li, W.; Shen, W. Fine tuning phosphorescent properties of platinum complexes via different
N-heterocyclic-based C-N-N ligands. J. Organomet. Chem. 2017, 836, 26–33. [CrossRef]

14. Zheng, X.H.; Mu, G.; Zhong, Y.F.; Zhang, T.P.; Cao, Q.; Ji, L.N.; Zhao, Y.; Mao, Z.W. Trigeminal star-like platinum complexes induce
cancer cell senescence through quadruplex-mediated telomere dysfunction. Chem. Comm. 2016, 52, 14101–14104. [CrossRef]

http://doi.org/10.1002/aoc.6317
http://doi.org/10.1002/chem.202000122
http://www.ncbi.nlm.nih.gov/pubmed/32039526
http://doi.org/10.1002/chem.202005283
http://www.ncbi.nlm.nih.gov/pubmed/33316112
http://doi.org/10.1039/C7DT00174F
http://www.ncbi.nlm.nih.gov/pubmed/28203666
http://doi.org/10.1039/C7CP06577A
http://www.ncbi.nlm.nih.gov/pubmed/29264601
http://doi.org/10.1039/C7CC06293A
http://doi.org/10.1021/jacs.9b01283
http://doi.org/10.1016/j.jinorgbio.2018.03.009
http://doi.org/10.1016/j.molstruc.2019.127088
http://doi.org/10.1016/j.molstruc.2019.04.090
http://doi.org/10.1016/j.ica.2017.08.045
http://doi.org/10.1016/j.ica.2017.08.065
http://doi.org/10.1016/j.jorganchem.2017.02.029
http://doi.org/10.1039/C6CC08254H


Molecules 2022, 27, 1628 12 of 12

15. Lasri, J.; Haukka, M.; Al-Rasheed, H.H.; Abutaha, N.; El-Faham, A.; Soliman, S.M. Synthesis, structure and in vitro anticancer
activity of Pd (II) complex of pyrazolyl-s-triazine ligand; A new example of metal-mediated hydrolysis of s-triazine pincer ligand.
Crystals 2021, 11, 119. [CrossRef]

16. Lasri, J.; Al-Rasheed, H.H.; El-Faham, A.; Haukka, M.; Abutaha, N.; Soliman, S.M. Synthesis, structure and in vitro anticancer
activity of Pd (II) complexes of mono-and bis-pyrazolyl-s-triazine ligands. Polyhedron 2020, 187, 114665. [CrossRef]

17. Soliman, S.M.; Albering, J.H.; Sholkamy, E.N.; El-Faham, A. Mono-and penta-nuclear self-assembled silver (I) complexes of
pyrazolyl s-triazine ligand; synthesis, structure and antimicrobial studies. Appl. Organomet. Chem. 2020, 34, e5603. [CrossRef]

18. Soliman, S.M.; El-Faham, A. Synthesis and structure diversity of high coordination number Cd (II) complexes of large s-triazine
bis-Schiff base pincer chelate. Inorg. Chim. Acta 2019, 488, 131–140. [CrossRef]

19. Soliman, S.M.; El-Faham, A.; Elsilk, S.E.; Farooq, M. Two heptacoordinated manganese (II) complexes of giant pentadentate
s-triazine bis-Schiff base ligand: Synthesis, crystal structure, biological and DFT studies. Inorg. Chim. Acta 2018, 479, 275–285.
[CrossRef]

20. Soliman, S.M.; Lasri, J.; Haukka, M.; Elmarghany, A.; Al-Majid, A.M.; El-Faham, A.; Barakat, A. Synthesis, X-ray structure,
Hirshfeld analysis, and DFT studies of a new Pd (II) complex with an anionic s-triazine NNO donor ligand. J. Mol. Struct. 2020,
1217, 128463. [CrossRef]

21. Barakat, A.; El-Senduny, F.F.; Almarhoon, Z.; Al-Rasheed, H.H.; Badria, F.A.; Al-Majid, A.M.; Ghabbour, H.A.; El-Faham, A.
Synthesis, X-ray crystal structures, and preliminary antiproliferative activities of new s-triazine-hydroxybenzylidene hydrazone
derivatives. J. Chem. 2019, 2019, 1–10. [CrossRef]

22. Al-Rasheed, H.H.; Al Alshaikh, M.; Khaled, J.M.; Alharbi, N.S.; El-Faham, A. Ultrasonic irradiation: Synthesis, characterization,
and preliminary antimicrobial activity of novel series of 4,6-disubstituted-1,3,5-triazine containing hydrazone derivatives. J.
Chem. 2016, 2016, 3464758. [CrossRef]

23. Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. In Methods in Enzymology, Volume
276, Macromolecular Crystallography, Part A; Carter, C.W., Sweet, J., Eds.; Academic Press: New York, NY, USA, 1997; pp. 307–326.

24. Sheldrick, G.M. SADABS—Bruker Nonius Scaling and Absorption Correction; Bruker AXS, Inc.: Madison, WI, USA, 2012.
25. Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, C71, 3–8. [CrossRef] [PubMed]
26. Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284.

[CrossRef] [PubMed]
27. Rikagu Oxford Diffraction. CrysAlisPro; Agilent Technologies Inc.: Oxford, UK, 2020.
28. Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer17

(2017) University of Western Australia. Available online: https://crystalexplorer.scb.uwa.edu.au/ (accessed on 20 May 2021).
29. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;

Petersson, G.A.; et al. GAUSSIAN 09; Revision A02; Gaussian Inc.: Wallingford, CT, USA, 2009.
30. Dennington, R., II; Keith, T.; Millam, J. GaussView; Version 4.1; Semichem Inc.: Shawnee Mission, KS, USA, 2007.
31. Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem.

Rev. 1988, 88, 899–926. [CrossRef]
32. Marten, B.; Kim, K.; Cortis, C.; Friesner, R.A.; Murphy, R.B.; Ringnalda, M.N.; Sitkoff, D.; Honig, B. New model for calculation of

solvation free energies: Correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding
effects. J. Phys. Chem. 1996, 100, 11775–11788. [CrossRef]

33. Tannor, D.J.; Marten, B.; Murphy, R.; Friesner, R.A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.; Goddard, W.A.; Honig, B. Accurate
first principles calculation of molecular charge distributions and solvation energies from ab initio quantum mechanics and
continuum dielectric theory. J. Am. Chem. Soc. 1994, 116, 11875–11882. [CrossRef]

34. Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas
phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J.
Chem. Phys. 2006, 124, 1–15. [CrossRef]

35. Moser, A.; Range, K.; York, D.M. Accurate proton affinity and gas-phase basicity values for molecules important in biocatalysis. J.
Phys. Chem. B 2010, 114, 13911–13921. [CrossRef]

http://doi.org/10.3390/cryst11020119
http://doi.org/10.1016/j.poly.2020.114665
http://doi.org/10.1002/aoc.5603
http://doi.org/10.1016/j.ica.2019.01.018
http://doi.org/10.1016/j.ica.2018.04.043
http://doi.org/10.1016/j.molstruc.2020.128463
http://doi.org/10.1155/2019/9403908
http://doi.org/10.1155/2016/3464758
http://doi.org/10.1107/S2053229614024218
http://www.ncbi.nlm.nih.gov/pubmed/25567568
http://doi.org/10.1107/S0021889811043202
http://www.ncbi.nlm.nih.gov/pubmed/22477785
https://crystalexplorer.scb.uwa.edu.au/
http://doi.org/10.1021/cr00088a005
http://doi.org/10.1021/jp953087x
http://doi.org/10.1021/ja00105a030
http://doi.org/10.1063/1.2173258
http://doi.org/10.1021/jp107450n

	Introduction 
	Results and Discussion 
	[Pt(Triaz)Cl] Complex Synthesis and Chracterization 
	Crystal Structure Description 
	Analysis of Molecular Packing 
	DFT Studies 
	UV–Vis Spectra 

	Materials and Methods 
	Materials and Methods 
	Synthesis of the Ligand (HTriaz) 
	Synthesis of [Pt(Triaz)Cl] Complex 
	X-ray Structure Determinations 
	Hirshfeld and DFT Calculations 

	Conclusions 
	References

