MICROBIAL GENOMICS RESEARCH ARTICLE
Abudahab et al., Microbial Genomics 2019;5

DOI' 10.1099/mgen.0.000220

g “ MICROBIOLOGY
' SOCIETY

+,% OPEN q OPEN
DATA G MICROBIOLOGY

PANINI: Pangenome Neighbour ldentification for Bacterial
Populations

Khalil Abudahab,' Joaguin M. Prada,? Zhirong Yang,3 Stephen D. Bentley,” Nicholas J. Croucher,® Jukka Corander®®*+
and David M. Aanensen’”*t

Abstract

The standard workhorse for genomic analysis of the evolution of bacterial populations is phylogenetic modelling of
mutations in the core genome. However, a notable amount of information about evolutionary and transmission processes in
diverse populations can be lost unless the accessory genome is also taken into consideration. Here, we introduce PANINI
(Pangenome Neighbour Identification for Bacterial Populations), a computationally scalable method for identifying the
neighbours for each isolate in a data set using unsupervised machine learning with stochastic neighbour embedding based
on the t-SNE (t-distributed stochastic neighbour embedding) algorithm. PaNINI is browser-based and integrates with the
Microreact platform for rapid online visualization and exploration of both core and accessory genome evolutionary signals,
together with relevant epidemiological, geographical, temporal and other metadata. Several case studies with single- and
multi-clone pneumococcal populations are presented to demonstrate the ability to identify biologically important signals
from gene content data. PANINI is available at http://panini.pathogen.watch and code at http://gitlab.com/cgps/panini.

DATA SUMMARY

1. PANINI is accessible at http://panini.pathogen.watch.

2. All example data utilized within the manuscript are avail-
able at https://gitlab.com/cgps/panini/datasets.

3. Code for the PANINT web application is available at http://
gitlab.com/cgps/panini.

4. A video walkthrough is available at https://vimeo.com/
230416235.

INTRODUCTION

In less than a decade, bacterial population genomics has
progressed from the sequencing of dozens to thousands of
strains [1-4]. The biological insights enabled by population
genomics are particularly important in evolutionary epide-
miology, as the genome sequences provide high-resolution
data for the estimation of transmission and evolutionary
dynamics, including the horizontal transfer of virulence and

resistance elements. Phylogenetic trees are the main tool uti-
lized for visualization and exploration of population geno-
mic data, both in terms of the level of relatedness of strains
and for mapping relevant metadata such as geographical
locations and host characteristics [5]. While trees are very
useful, they are in general estimated using only core-genome
variation (i.e. those regions of the genome common to all
members of a sample), which may represent only a fraction
of the relevant differences present in genomes across the
study population. Several recent studies highlight the
importance of considering variation in gene content when
investigating the ecological and evolutionary processes lead-
ing to the observed data [6, 7].

The rapidly increasing size of population genomic datasets
calls for efficient visualization methods to explore patterns
of relatedness based on core-genomic polymorphisms,
accessory gene content, epidemiological, geographical and
other metadata. Here, we introduce a framework that inte-
grates within the web application Microreact [5], by
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utilizing a popular unsupervised machine-learning tech-
nique for big data to infer neighbours of bacterial strains
from accessory gene content data and to efficiently visualize
the resulting relationships. The machine-learning method,
called t-SNE (t-distributed stochastic neighbour embed-
ding), has already gained widespread popularity for explor-
ing image, video and textual data [8, 9], but has to our
knowledge not yet been widely utilized for bacterial popula-
tion genomics.

Since gene content may in general be rapidly altered in bac-
teria, it provides a high-resolution evolutionary marker of
relatedness that can extend far beyond core-genome muta-
tions [7]. Different processes driving horizontal movement
of DNA, such as homologous recombination, conjugative
transfer of plasmids and phage infections, all affect the gene
content within and outside of a chromosome. By contrast-
ing core and non-core gene content, one can investigate and
draw conclusions about genome dynamics across a sample
collection. Here, we demonstrate the biological utility of
such an approach by application to multiple population
data sets.

METHODS AND RESULTS

t-SNE is a machine-learning algorithm that is widely used
for data visualization [8]. It is suitable for embedding a set
of high-dimensional data items in a two-dimensional (2D)
or three-dimensional space. The embedding approximately
preserves the pairwise similarities between the data items.

The t-SNE algorithm consists of two main steps. First, it cal-
culates the similarities between the data items in the high-
dimensional space, which is typically based on normal
distribution around each data item. The similarities are then
normalized to be probabilities (i.e. they sum to one). Simi-
larities in the low-dimensional space are analogously
defined and normalized except that Student’s t-distribution
replaces the Gaussians. Second, t-SNE minimizes Kullback-
Leibler divergence between the two probability matrices
over the embedding coordinates. Finally, the 2D t-SNE
result can be visualized as a scatter plot where each dot indi-
cates a data item.

t-SNE as an unsupervised method is particularly useful for
exploratory data analysis. It has a wide range of applications
in music analysis, cancer research, computer security
research, bioinformatics and biomedical signal processing.
In many cases, t-SNE is able to identify meaningful data
structures such as clusters even without feature engineering
or structural assumptions, e.g. about number of clusters
underlying the data, even in cases where Principal Compo-
nent Analysis (PCA) has been demonstrated to fail. Here,
we use the latest version of the t-SNE projection method,
adopting the Barnes-Hut algorithm for accelerating the
divergence minimization [9]. To demonstrate utility within
population genomics, firstly, we explore how the method
performs in a simulated setting, where the relationship
between all sequences is known; and then we extend our
analysis to published bacterial population data sets, allowing

IMPACT STATEMENT

The assessment of similarity in both the core and non-
core regions of genomic datasets can shed light on the
evolutionary, population and epidemiological dynamics of
microbial populations. Common workflows tend to focus
on clustering core variation and representing this as a
tree, to which other parameters are added to make
sense of the data and system under investigation, poten-
tially missing additional information about evolutionary
and transmission processes in the pangenome. Increas-
ingly, with ever-growing population scale datasets, the
importance and dynamics of the non-core (e.g. move-
ment of phage, plasmids and other mobile elements)
needs to be assessed as a matter of routine. We demon-
strate the utility of a novel machine-learning method and
its ease of use via a web application for visualization.
Such methods, enabling the rapid and easy identification
of similarity in the non-core, and the subsequent relation
of this information to core phylogenies and other epide-
miological and relevant system-level metadata, will aid
our understanding of the dynamics within the pange-
nome, and shed further light on, for example, host, niche
and pathogenic adaptation.

us to uncover previously unseen relationships between data
and to address important biological questions.

Simulated data

To validate the methodology, we assessed how well it identi-
fied neighbours and clusters for simulated genetic sequen-
ces. Firstly, we randomly generated multiple synthetic
datasets of related isolates, with each defined as a sequence
of present/absent genes. Each dataset was generated using
the following parameters. (1) There were 20 clusters as
underlying subpopulations. (2) The number of isolates
belonging to a cluster was drawn from a Poisson distribu-
tion with mean 15. (3) Each cluster was defined by a num-
ber of core genes, which ranged uniformly from 1 to 100.
(4) Each isolate had a probability between 80 and 99 % of
independently carrying each of the core genes of the cluster
it belonged to. (5) Conversely, each isolate had a probability
(PN) to independently carry each of the non-core genes of
its cluster. Non-core genes were composed of core genes of
other clusters and ‘noise’ genes that were not defining char-
acteristics of any cluster (in total 300 genes).

Each generated dataset had on average 300 isolates with a
gene content of 1300 genes present/absent on average. For
each dataset, we estimated the genetic pairwise Hamming
distance (dy) and the distance using the t-SNE algorithm
(dy). The Hamming distance here was simply the number of
differences between two binary sequences, where each ele-
ment was an indicator for whether a particular gene was
present in an isolate or not. The implementation of the t-
SNE algorithm that we used yields a coordinate in a 2D
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plane for each isolate, and we calculated the distance d; sim-
ply as the Euclidean distance for each pair of isolates.

If a cluster is sufficiently differentiable in terms of its gene
content, we expect the Hamming distance within the cluster
to be smaller than to any other isolate not belonging to it.
For the t-SNE algorithm to be considered valid, it should be
able to project the isolates from the same cluster on the 2D
plane sufficiently close together so that the Euclidean dis-
tance within the cluster is smaller than to any other isolate.
Given the conditions that were used to generate the syn-
thetic datasets, not all clusters were necessarily differentiable
in terms of their gene content; therefore, we classified the t-
SNE algorithm as performing erroneously only when a pair
of isolates belonging to a different cluster were not identified
as such by the algorithm but were correctly identified using
the Hamming distance. For high levels of noise, i.e. a large
value of probability (PN), differentiating the clusters using
their gene content becomes increasingly difficult as the iso-
lates may lack a sufficiently stable signal of relatedness.

We analysed the performance of the t-SNE algorithm for
three levels of noise PN, 0.001, 0.005 and 0.01, which mea-
sured the mean proportion of non-core genes in each iso-
late. We performed 100 repeats for each noise value, which
for each repeat involved generating on average 300 sequen-
ces and comparing almost 45000 pairs of isolates. The
mean error for the three noise values was 0.5, 1 and 4 %,
respectively, with a small error representing a particular iso-
late mis-allocated (i.e. very close to a different cluster) and a
large error representing two clusters that were not appropri-
ately differentiated by the t-SNE algorithm, illustrated in
Fig. 1. The error of the t-SNE algorithm increases with the
noise, as shown in Fig. 1(iii), and with the total number of
clusters (not shown).

Web application - https://panini.pathogen.watch/

The t-SNE algorithm implemented in C++ (https://github.
com/lvdmaaten/bhtsne) was wrapped as a Node.js native
module and embedded within a web application. The appli-
cation was written in JavaScript and utilizes React (https://
reactjs.org/) for front-end and the Vis.js library (http://visjs.
org) for network visualization. (1) Data are uploaded as a
gene presence/absence matrix —PANINI (Pangenome Neigh-
bour Identification for Bacterial Populations) expects data
in the RTab format (the output from Roary: the pan
genome pipeline [10]; https://sanger-pathogens.github.io/
Roary). However, this is simply a data file containing gene
rows and isolate columns with ‘1" or ‘0’ indicating presence/
absence of a particular gene for a particular isolate. (2)
Genes present in all isolates are ignored (i.e. core genome)
and non-core genes are clustered using t-SNE with default
parameters (auto perplexity and theta=0.5 — parameters can
be changed by users). (3) The results [x, y coordinates, a “.
dot’ format file containing graph layout, csv and jsoN (Java-
Script object notation)] are made available for download
and reuse. Results are also visualized directly within the
PANINI web application as a graph layout.

To interpret the data in an epidemiological, phylogeograph-
ical and geographical context, the estimated network can
also be uploaded directly to the Microreact platform allow-
ing a user to add other forms of data to relate to the result-
ing neighbour embedding, typically a phylogenetic tree,
geographical locations of the isolates and temporal data
(further information and instructions are available at
https://microreact.org).

Utility with existing published datasets

To demonstrate the utility of t-SNE clustering, we applied
the method to four published datasets that used whole-
genome sequencing to study the evolution of the bacterium
Streptococcus pneumoniae. The first, a population-level
dataset, detailed population-wide diversity of pneumococci
within Massachusetts, USA, pre- and post-vaccine introduc-
tion [2], while the second and third detailed international
collections of globally disseminated multidrug-resistant lin-
eages of Streptococcus pneumoniae [11, 12]. The fourth data
set comprised 115 Salmonella enterica serovar Weltevreden
isolates mostly from the tropics, representing an emerging
agent of diarrheal disease [13]. Additional biological
insights made possible with PANINI are described, and links
to the projects within Microreact for further exploration of
the associated metadata and download of raw data formats
are provided.

Analysis of a diverse pneumococcal population

Data visualization and download
Data are available at: https://microreact.org/project/panini-
sparc?ui=nt.

Source data and .RTab file
Source data and the .RTab file are available at: https://gitlab.
com/cgps/panini/datasets/tree/master/SPARC.

Video walkthrough for paNINI and Microreact creation/use
A walkthrough video for PANINI is available at: https://
vimeo.com/230416235.

Pneumococcal population analysis

PANINI was applied to a collection of 616 systematically sam-
pled pneumococcal isolates from a vaccine and antimicro-
bial-resistance surveillance project in Massachusetts, USA
[14]. The original analysis of the gene content in this collec-
tion identified 5442 ‘clusters of orthologous genes’ (COGs)
[2], the core set of which was used to define 15 ‘sequence
clusters’ with Baps (http://www.helsinki.fi/bsg/software/
BAPS) [15]. For most of the sequence clusters, the corre-
spondence between a group in the PANINI output and the
original sequence clusters was exact (Fig. 2a), reflecting their
similarity both in terms of the core and accessory genomes
[16]. These sets of isolates, therefore, represent well-defined
distinct lineages. However, SC1, SC6, SC10 and SC12 all
exhibited distinct substructuring in the PANINI output. This
corresponded well with the diverse core genome observed in
these clusters (Fig. 2b), and in each case, these groups were
consistent with clades within the sequence clusters. These
sequence clusters are, therefore, likely to represent
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Fig. 1. Illustration of a simulated dataset, with the isolates’ gene content (left), black dots indicate the presence of a gene, the x-axis
represents all the considered genes (a total of 1213 genes in this simulation). The right panels show the embedded locations in the 2D
plane as estimated by the t-SNE algorithm, with each colour representing a cluster in the underlying simulation model. Clusters are
named using the alphabet (A, B, C...). From top to bottom, plots indicate simulations generated with 0.1 % (i), 0.5% (ii) and 1 % (iii)

noise, respectively.

amalgams of genotypes that should be subdivided into mul-
tiple clusters. Conversely, PANINI revealed clear substructur-
ing within the previously unclustered SC16, which was also
consistent with the core-genome phylogeny. Hence, PANINI
can easily facilitate the division of a diverse population into
discrete genotypes that are coherent in their accessory- and
core-genome content.

Extensive prophage variation in a multidrug-
resistant lineage

Data visualization and download
Data are available at: https://microreact.org/project/panini-
pmen2?ui=nt.

Source data and .RTab file
Source data and the .RTab file are available at: https://gitlab.
com/cgps/panini/datasets/tree/master/PMEN2.

Prophage variation

PANINI was applied to an analysis of orthologous genes
across a global collection of 190 isolates from the multi-
drug-resistant  Streptococcus pneumoniae clone PMEN2
[11], which caused a large outbreak of disease in Iceland
starting in the late 1980s (Fig. 3a). Multiple distinct clusters
were again evident in the output (Fig. 3b). In some cases,
these were consistent with the phylogeny. The original anal-
ysis identified two independent entries of the lineage into
Iceland, clades IC1 and IC2, the latter of which contained
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Fig. 2. (a) Annotated output of the PanINI algorithm applied to 616
Streptococcus pneumoniae isolates from a diverse population in Mas-
sachusetts, USA. Each node represents an isolate, each of which is
coloured according to its sequence cluster, as defined using the core
genome. Clusters of isolates belonging to the same sequence cluster
are circled and annotated. Where sequence clusters are divided into
multiple groups in the PANINI network, the circles are joined by dashed
lines. (b) Core-genome phylogeny based on comparison of conserved
clusters of orthologous genes (COGs) adapted from [2] and displayed
within Microreact. Sequence clusters are annotated for comparison
with non-core clustering.

many fewer isolates and was clustered as IcA in the anno-
tated output. By contrast, IC1 was distributed across four
clusters IcB-IcE, which did not correspond with clear clades
in the phylogeny. The difference between IcB and IcC is
technical, rather than biological: all IcB isolates were
sequenced early in the project with 54 nt reads, whereas
most IcC isolates were sequenced with 75 nt reads. Unusu-
ally for pneumococci, the isolates in both these groups were
trilysogenic, carrying prophage similar to ¢670-6B.1 and
¢$670-6B.2, found in the Streptococcus pneumoniae 670-6B
genome inserted between dnaN and pth (atts;), and within
the comYC gene (att.omyc), respectively; and a prophage

isolated from 0211+13275, inserted at SPN23F15280 -
SPN23F15810 (attyn) [16]. The apparent rapid acquisi-
tion, and stable maintenance, of multiple viral loci may
relate to the abrogation of these bacteria’s competence sys-
tem by the insertion of prophage ¢IC1 into comYC [11, 17].
Group IcD, interspersed with IcB and IcC within clade IC1
in the phylogeny, differs in the absence of prophage similar
to ¢670-6B.2. IcE, also polyphyletic within clade ICI, dif-
fered in having lost the region of pneumococcal pathogenic-
ity island 1 (PPI-1) that encodes the pia iron-transport
operon, which plays a role in pneumococcal pathogenesis in
animal models [18]. Hence, it is not surprising to find these
isolates were only recovered from sputum, otitis media sam-
ples or nasopharyngeal swabs.

Multiple distinct clusters of non-Icelandic isolates were also
observed. These all represented cases where t-SNE grouped
isolates that were disparate in terms of their country and
year of isolation, as well as having a polyphyletic distribu-
tion across the whole genome phylogeny. These groupings
represented cases of convergent evolution through parallel
acquisition very similar prophage. Group IntA lacked any
prophage similar to those shown in Fig. 3(c); group IntB
had prophage with some similarity to both prophage in the
reference genome; group IntC only had a prophage with
similarity to ¢$0211+13275; whereas group IntD had pro-
phage similar to ¢0211+13275and ¢$670-6B.1 as well.
Hence, the rapid movement of prophage sequences within
lineages [16] clearly substantially contributes to the changes
in gene content observed over short timescales. PANINI
facilitates rapid analysis of these diverse elements, and their
complex relationship with bacterial population structure.

Mobile element and serotype variation in a vaccine-
escape lineage

Data visualization and download
Data are available at: https://microreact.org/project/panini-
pmenl4?ui=nt.

Source data and .RTab file
Source data and the .RTab file are available at: https://gitlab.
com/cgps/panini/datasets/tree/master/PMEN14.

Mobile element and serotype variation

PANINI was similarly applied to 176 isolates of the multi-
drug-resistant Streptococcus pneumoniae PMEN14 lineage
[11]. Although the sequences came from many countries,
the collection was strongly enriched for bacteria from the
Maela refugee camp in Thailand [11], which fell into five
clades (ML1-ML5), of which ML2 was the largest. The
groups identified by PANINI were again polyphyletic
(Fig. 4a), with ML2 split up in a similar manner to the
PMEN?2 clade IC1. This was again driven by the distribution
of prophage sequence: group 1 isolates were free of pro-
phage, whereas group 2 isolates were infected with a ‘group
2-type’ prophage, and group 3 isolates were infected with a
similar, but distinct, ‘group 3-type’ prophage (Fig. 4b).
Clade ML2 isolates in group 4 were distinguished by varia-
tion in another mobile genetic element, a phage-related
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(i)

Prophage 670-6B.1 Prophage 0211+13275 Prophage 670-6B.2 PPI-1 of 670-6B

Fig. 3. Analysis of the Streptococcus pneumoniae PMEN2 lineage. (a) (i) Core-genome phylogeny with tree leaves coloured by country
of origin and (i) geographical origin of isolates. (b) Annotated output of the PANINI algorithm applied to 189 isolates from an international
collection of representatives of the Streptococcus pneumoniae PMEN? lineage. Each point is coloured according to its region of origin.
Groups defined by the structure of the PAaNINI output are circled and annotated. Clusters containing primarily Icelandic isolates (coloured
orange) are labelled with ‘Ic’ prefixes, whereas those containing isolates from multiple countries are labelled with ‘Int’ prefixes. (c) Var-
jation in accessory loci associated with differential classification of isolates into groups. The orange and brown bands across the top of
the figure indicate the extent of the three prophage and pneumococcal pathogenicity island 1 (PPI-1) sequences, against which the
short-read data from the isolates were mapped. The heatmap below includes one row per isolate, which were ordered according to
their grouping in (a). The heatmap is coloured blue where mapping coverage was low, indicating a locus is absent, and red were map-
ping coverage was high, indicating a sequence was present. Horizontal dashed lines indicate the boundaries between the groups of
isolates, vertical dashed lines indicate the boundaries between loci.




Abudahab et al., Microbial Genomics 2019;5

chromosomal island (PRCI), shared by most of the isolates.
This PRCI was absent from these assemblies, either because
at least part of the element had been lost through deletion,
due to replacement with a related sequence (isolate 6259_1-
15) or due to the acquisition of a second, highly similar
PRCI that prevented effective assembly of either (isolates
6237_8-12, 6237_8-13 and 6237_8-18). In this latter case,
mapping to the element was still evident.

A fifth group, which did not include any Maela isolates, cor-
responded to the antibiotic-susceptible outgroup isolates.
These differed through the absence of a third type of mobile
element, the Tn916 integrative and conjugative element, an
antibiotic resistance-encoding genomic island that was
absent from these ‘outgroup’ isolates. Additionally, these
bacteria shared two smaller genomic islands, encoding puta-
tive lantibiotic biosynthesis and restriction-modification
operons, which were absent from the multidrug-resistant
isolates. Variation in other non-mobile element islands was
also detectable. The group 1-19A subcluster contained iso-
lates of serotype 19A, produced through two independent
serotype switching recombinations at the capsule polysac-
charide synthesis (cps) locus that resulted in genotypes ‘19A
ST320’ and ‘19A ST236’. These changes were responsible
for allowing isolates to evade the seven-valent polysaccha-
ride conjugate vaccine (PCV7), which targeted the lineage’s
ancestral serotype 19F, expressed by almost all the rest of
the collection [12]. A smaller serotype switching recombina-
tion, which did not replace the entire serotype-determining
cps locus, generated the ‘19A ST271° isolates [12]. The
smaller associated change in gene content meant this isolate
was not clearly distinguished from the rest of group 1
(Fig. 4a).

Phylogeographical structure of Salmonella enterica
serovar Weltevreden

Data visualization and download
Data are available at: https://microreact.org/project/panini-
salmonella.

Source data and .RTab file
Source data and the .RTab file are available at: https://gitlab.
com/cgps/panini/datasets/tree/master/Salmonella.

Phylogeographical structure

Makendi et al. [13] notified that the Salmonella enterica iso-
late collection harboured substantial variation in gene con-
tent, such that in total 7923 putative coding sequences
(CDSs) were detected in the accessory genomes of the 115
isolates. The authors noted that each isolate had numerous
prophage elements and that Salmonella enterica serovar
Weltevreden appeared to undergo rapid gains and losses of
genetic material. PANINI analysis shows that accessory clus-
ters follow largely the clade structure of the core-genome
tree (Fig. 5). However, there are some notable counter
examples where isolates clustering closely together in the
PANINI output are very distant from each other in the core-
genome tree (Fig. 5). Conversely, there are also examples of
isolates that are neighbours in the core-genome tree, but

cluster clearly separately in the PANINI network. The interac-
tive features of Microreact enable a rapid exploration of
such cases (for example timeline and interactive zoom/
select), which can then be followed by a more thorough
analysis of the gene content differences responsible for the
detected discrepancies between the two types of genetic
relatedness.

DISCUSSION

The rapid increase in sampling density of bacterial popula-
tions for epidemiological and evolutionary studies high-
lights the need of combining traditional genomic markers,
such as single nucleotide polymorphism (SNP) loci and
small insertions or deletions in coding regions, with meas-
ures of difference in terms of gene content. As many bacter-
ia have varied accessory genomes, changes in the gene
content can offer a way to identify epidemiologically or evo-
lutionarily important clues about the evolutionary processes
affecting a pathogen’s spread. As we have illustrated here,
such information is most useful when clustering is com-
bined within a phylogeographical approach, and visualized
jointly in a seamless fashion enabling the rapid interpreta-
tion of core and non-core clustering in the context of where
and when data were collected.

The t-SNE algorithm is a very efficient approach to cluster
isolates based on their gene content. In the simulated sce-
narios considering synthetic data, the errors in clustering
always remained small, either representing an isolate allo-
cated to a wrong cluster or two clusters that were merged.
However, this only occurred in simulations with the ‘noise’
level much higher than expected in nature. In general, what
we defined as ‘core’ genes in a cluster rarely appear in iso-
lates not belonging to the cluster, and if they do, it is typi-
cally at much lower frequencies than those we considered.
Furthermore, in our synthetic datasets, we formed clusters
defined by as few as a single core gene. These clusters with a
limited number of core genes, combined with relatively high
levels of ‘noise’, are in practice almost completely indistin-
guishable from others, as illustrated in Fig. 1 (iii - clusters
K, L, O and Q). Overall, our simulated datasets are conser-
vative, as the gene absence and presence variation is higher
than expected in natural populations, and therefore indicate
that the t-SNE is a promising approach for rapidly and
accurately clustering bacteria based on gene content. Never-
theless, it is important to be aware that issues with gene call-
ing may in some cases influence the accuracy of PANINI due
to for example different alleles of a gene being assigned as
separate genes in a Roary analysis. Consequently, unless
using expert-curated pangenomes, we advise a user to test
multiple Roary thresholds to see whether the PANINI results
with the corresponding different Roary outputs are robust
with respect to small changes in the threshold.

When applied to a population-wide genomic dataset, the
algorithm was clearly able to identify distinct lineages
within a diverse collection. This analysis could highlight
which clusters, defined using the core genome, could be
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Fig. 4. Analysis of the Streptococcus pneumoniae PMEN14 lineage. (a) Annotated output of the PANINI algorithm applied to 176 isolates
from an international collection of representatives of the Streptococcus pneumoniae PMEN14 lineage. The main groups 1-5 are circled
with solid lines and named; the subgroups within group 1 are circled by dashed lines. (b) Variation in accessory loci associated with
differential classification of isolates into groups. This heatmap is displayed as in Fig. 3. In this case, the sequence loci across the top
are more functionally diverse. The first is the neuB coding sequence with an ISSpn8 element inserted into it. The lack of mapping to
the middle of this column indicates the absence of this insertion sequence anywhere in the chromosome. The next loci are alternative
alleles of the capsule polysaccharide synthesis locus, one encoding for the biosynthesis of the PCV7 type 19F polysaccharide, the other
for the non-PCV7 type 19A polysaccharide. These are followed by two similar prophage, one associated with group 2 isolates, the other
with group 3 isolates; the similarity between these two viruses means there is extensive mapping to both, even when an isolate only
contains one of them. The PRCI absent from the assemblies of group 4 isolates is next; mapping suggests this is actually present in
some, but PANINI nevertheless included them in this group because the acquisition of a further, related PRCI prevented either assem-
bling accurately. This is followed by the Tn?76 conjugative element, absent from the group 5 isolates, which possess genomic islands
encoding for the biosynthesis of a lantibiotic and a restriction-modification system, included at the right-hand end of the panel.
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Fig. 5. Analysis of the Salmonella enterica serovar Weltevreden as displayed within Microreact (https://microreact.org/project/panini-
salmonella). (a) Core-genome tree of 115 Salmonella enterica serovar Weltevreden isolates, colour coded by the country of isolation. (b)
Output of the PanINI algorithm with isolates colour coded similar to (a). (c) Timeline indicating date of sampling to aid interpretation and

interactivity.

sensibly subdivided, and which small groups within a
diverse set of strains could be justifiably regarded as new
clusters. Within lineages, the same congruence between
core and accessory genomes across clades was not
observed. Instead, clusters were distinguished by rapidly
occurring, homoplasic alterations, such as phage infection.
In this context, PANINI provides an intuitive way in which
to understand the distribution of rapidly evolving aspects
of the genome, which are difficult to analyse in a conven-
tional phylogenetic framework. PANINI is, therefore, a
promising platform through which biologically important
changes in bacterial gene content can be uncovered at all
levels of evolutionary, ecological and epidemiological anal-
yses. To quantify properties of the inferred neighbourhood
structure as a function of different underlying biological
processes in closer detail by simulation will be an interest-
ing topic for future research.
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