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A convenient protocol was developed for the synthesis of 2,3-unsaturated C-, O-, N- and S-linked glycosides (enosides) using

20 mol % perflurophenylboronic acid catalyst via Ferrier rearrangement. Using this protocol, D-glucals and L-rhamnals reacted

with various C-, O-, N- and S-nucleophiles to give a wide range of glycosides in up to 98% yields with mainly a-anomeric selec-

tivity. The perflurophenylboronic acid successfully catalyzed a wide range of substrates (both glucals and nucleophiles) under very

mild reaction conditions.

Introduction

2,3-Unsaturated glycosides, also known as pseudo-glycosides or
enosides, are an important class of natural products with many
biological activities and capacity to serve as substrates for
further reactions [1-3]. They are involved in biochemical pro-
cesses such as molecular recognition, cell-cell interaction,
immunological recognition and transmission of biological infor-
mation [4-6]. They are easily transformed into important bioac-
tive compounds such as oligosaccharides, glycopeptides,
nucleosides, antibiotics, uronic acids and other natural products
[1-3].

The Ferrier rearrangement is one of the most useful processes to

synthesize pseudo-glycosides in a direct and stereoselective

fashion. Several classes of catalysts have been successfully
applied in the Ferrier rearrangement including Brensted acids
[7-13], Lewis acids [14-19], redox reagents [20] and metal cata-
lysts [21-23]. However, many of these catalysts have limited
substrate scope, give variable selectivities and yields, require
harsh reaction conditions and an excess amount of catalysts that
are typically expensive, toxic and moisture/air sensitive. The
majority of the reported catalysts are metal-based, and in phar-
maceutical manufacturing, traces of metals pose a major chal-
lenge for their removal to acceptable limits. Therefore, the
discovery of efficient, metal-free and mild catalysts for the
Ferrier rearrangement is still challenging and desirable espe-

cially if such catalysts work well with a wide range of C-, O-,
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N- and S-nucleophiles under mild conditions. We also noted
that the use of organocatalysts to catalyze the Ferrier rearrange-

ment is scarcely reported.

Recently, organoboron-catalysis emerged as a mild and effec-
tive strategy for activation of alcohols [24], epoxide opening
[25,26], Friedel-Crafts alkylations [27], dehydrative glycosyla-
tion [28] and many other reactions [29-31]. The robustness and
mildness of organoboronic acid catalysts in comparison to tradi-
tional strong Lewis and Brensted acid catalysts inspired us to
investigate them as promoters for the Ferrier rearrangement. We
envisioned that organoboronic acids can activate the allylic
acetate of glycals making them susceptible to nucleophilic
attacks under conditions favoring a strong polarization of the

allylic acetate moiety (see Figure 4).

Herein, we report a phenylboronic acid-catalyzed synthesis of
2,3-unsaturated C-, O-, N- and S-glycosides via Ferrier rear-
rangement under very mild conditions. We also demonstrate the
scope of the reaction using a wide range of glycals and C-, O-,

N- and S-nucleophiles.

Results and Discussion

We began our study by investigating the reaction of 3,4,6-tri-O-
acetyl-D-glucal (1a) with benzyl alcohol (2) in the presence of
20 mol % of arylboronic acids in different solvents (Table 1,
entries 1-6). Phenylboronic acid failed to promote the reaction
in several solvents and the starting glucal 1a was recovered un-
changed (Table 1, entry 1). This is attributed to its low acidity.
Gratifyingly, the more acidic perflurophenylboronic acid suc-
cessfully promoted the reaction to give 4,6-di-O-acetyl-2,3-
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unsaturated glucoside 3a in CH3CN or CH3NO, solvents
(Table 1, entries 3 and 4). It gave better 92% yield of glucoside
3a in CH3NO; over a shorter reaction time (Table 1, entries 4
vs 3). Under the same conditions, the reaction did not proceed
in THF or DCM due to the lower polarity of these solvents in
comparison to CH3CN and CH3NO, (Table 1, entry 2 vs 3 and
4). Attempts to reduce the amount of perfluorophenylboronic
acid to 5 mol % resulted in a reduction of the yield of glucoside
3a despite various attempts to promote the reaction by increas-
ing the temperature and time (Table 1, entries 5 and 6). In all
the cases, the a:p ratio of glucoside 3a was 90:10. Conditions in
Table 1, entry 4 were considered as optimum. The structure of
glucoside 3a was confirmed by the 'H NMR spectra where the
anomeric proton (H1) appeared at 8 5.16 ppm (for glucal 1a it
appears at 8 6.47 ppm) and the protons of the new double bond
(H2, H3) appeared at & 5.90-5.88 ppm [19]. The corresponding
protons in the B-isomer appeared at & 5.22 (H1) and 6 6.01 (H2,
H3) [19,21].

Using the optimized conditions in Table 1, entry 4, we then ex-
amined the substrate scope. Therefore, glucal 1a was reacted
with various O-nucleophiles (using primary, secondary, tertiary,
allyl, propargyl alcohols and sugars), C-nucleophiles (using tri-
methylsilyl cyanide and trimethyl(propargyl)silane), S-nucleo-
philes (using thiophenol and p-toluenethiol) and N-nucleo-
philes (methane sulfonamide and p-toluene sulfonamide)
(Figure 1). In all the cases, the reactions successfully gave the
respective 2,3-unsaturated glycosides 3a—u in up to 92% yield
with mainly a-anomeric selectivity (Table 1). Noteworthy, the
reaction also gave disaccharide 3n and 30 smoothly with com-
plete a-anomeric selectivity albeit in a moderate yield. Like-

Table 1: Optimization of the arylboronic acid-catalyzed reaction of 3,4,6-tri-O-acetyl-D-glucal (1a) with benzyl alcohol (2).

arylboronic acids

conditions?
3a
Entry Arylboronic acid (mol %) Solvent Time (h) / T (°C) 3a Yield (%) (a:B)°
1 phenylboronic acid (20) CH3CN or DCM or THF or  10/40 ND¢
CH3NO;
2 perfluorophenylboronic acid (20) DCM or THF 10/40 ND
3 perfluorophenylboronic acid (20) CH3CN 10/40 70 (90:10)
4 perfluorophenylboronic acid (20) CH3NO, 6/40 92 (90:10)
5 perfluorophenylboronic acid (10) CH3NO» 6/60 88 (90:10)
6 perfluorophenylboronic acid (5) CH3NO» 12/60 60 (90:10)

a3,4,6-Tri-O-acetyl-D-glucal (1a, 1 equiv) reacted with benzyl alcohol (2, 1.1 equiv). Plsolated yields. a: ratio calculated from NMR after column chro-

matography purification. °ND: not detected.
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Figure 1: Perfluorophenylboronic acid-catalyzed reaction between 3,4,6-tri-O-acetyl-D-glucal 1a and O-, C-, S-, N-nucleophiles.

wise, reaction using Et3SiH gave the desired 2,3-unsaturated
sugar 3i in 74% yield. These results testify to the robustness of
the perflurophenylboronic acid as a versatile organocatalyst for
the Ferrier rearrangement reaction. We noted that the yields of
the disaccharides 3n and 30 and sulfonamides 3t and 3u can be
increased with increase in the temperature (60 °C) and exten-
sion of the reaction time. The results in Table 1 are superior to
the results obtained using boron trifluoride diethyl etherate [32].

We then applied the perfluorophenylboronic acid catalyst to
promote the reaction between 2,3,4,6-tetra-O-acetyl-D-glucal
(4a) and O- and S-nucleophiles (Figure 2). The Ferrier-cata-

lyzed rearrangements of 2-substituted sugars such as 2,3,4,6-
tetra-O-acetyl-D-glucal (4a) to enosides are limited in the litera-
ture and pose special challenges including low product yields
and selectivities, the need for a large excess of the catalyst and
formation of by-products such as furaldehydes and enones
[1,33-35]. Enosides are important building blocks especially for
natural product synthesis [36-40]. Therefore, we used the
perfluorophenyl boronic acid catalyst in the reaction between
2,3,4,6-tetra-O-acetyl-D-glucal (1a) and benzyl alcohol, n-butyl
alcohol, cyclohexyl alcohol and p-toluenethiol (Figure 2). Grati-
fyingly, the reaction proceeded smoothly under mild and cata-

lytic conditions to give the respective 2-acetoxy-2,3-unsatu-
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MeNO, 40 °C,6 h
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Figure 2: Perfluorophenylboronic acid-catalyzed reaction between 2,3,4,6-tetra-O-acetyl-D-glucal 4a and O- and S-nucleophiles.

rated glycosides (enosides) Sa—d in 62-78% yields albeit with
moderate a-selectivity. No byproducts were detected and no
further attempts were made to optimize the yield and selectivity
of this reaction. The yields and selectivities are similar to those
reported using HC104-SiO, [33].

Based on the excellent results obtained with the reactions of
glucals 1a and 4a with O-, C-, N-, S-nucleophiles, we further
extended the scope of this reaction to 3,4-di-O-acetyl-L-
rhamnal (6a, Figure 3). As a demonstration, the reaction be-
tween 3,4-di-O-acetyl-L-rhamnal (6a) and selected alcohols and
p-toluenethiol proceed smoothly and afforded the desired 2,3-
unsaturated L-rhamnosides (enosides) 7a—h in up to 89% yield

with complete a-anomeric selectivity (except for 7a). Disaccha-
ride 7g was also obtained smoothly with complete a-anomeric
selectivity. The reactions using rhamnal 6a was completed at a
much faster rate within 2 h at room temperature in comparison
to glucals 1a and 4a which required =6 h at 40 °C to give the
products.

A plausible pathway of the reaction is proposed in Figure 4.
Coordination of perflurophenylboronic acid to the allylic
acetate moiety of glucal 1a induces polarization (structure I)
and leads to the formation of an allyloxycarbenium ion (struc-
ture II) in the preferred *Hj conformation. Addition of the
nucleophiles to C1 from the a-face gives the lower energy half-

o) perflurophenylboronic n. _O. JNu
| oy 261 (20 mol %) U
+ u
AcO MeNO, tt, 2 h AcO” N
OAc
6a 7a-h
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Figure 3: Perfluorophenylboronic-acid-catalyzed reaction between 3,4-di-O-acetyl-L-rhamnal (6a) and O- and S-nucleophiles.
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Figure 4: Plausible perfluorophenylboronic acid-catalyzed activation of glycal 1a.

chair conformer and results in the observed a-selectivity of the
2,3-unsaturated glycosides III (Figure 4) [22]. However, the ad-
dition of the nucleophiles from the B-face gives the higher
energy twist-boat conformer.

Conclusion

We developed a robust perfluorophenylboronic-acid-catalyzed
protocol for the synthesis of a broad range of 2,3-unsaturated
O-, C-, §- and N-linked glycosides (enosides) in high yields and
mostly a-anomeric selectivity through the reactions of D-glucal
la, 2-acetoxy D-glucal 4a and L-rhamnal 6a with various C-,
O-, N- and S-nucleophiles. Application of this protocol using
other glycals is underway in our laboratory.

Experimental
General procedure for the synthesis of com-

pounds 3a-u, 5a—-d and 7a-h

To a stirred solution of 3,4,6-tri-O-acetyl-D-glucal (1a, 136 mg,
0.5 mmol) or 2,3,4,6-tetra-O-acetyl-D-glucal (4a, 165 mg,
0.5 mmol) or 3,4-di-O-acetyl-L-rhamnal (6a, 107 mg,
0.5 mmol) in anhydrous nitromethane (3 mL) was added the
acceptor (0.55 mmol) and perfluorophenylboronic acid
(0.1 mmol) at room temperature. In the case of 1a and 4a, the
resulting solution was stirred at 40 °C for 6 h while in the case
of 6a, it was stirred at room temperature for 2 h (monitor by
TLC). The reaction mixture was evaporated under reduced pres-
sure, and the residue was purified using silica gel column chro-
matography (EtOAc/hexane).

Supporting Information

Supporting Information File 1

Experimental data and copies of 'H and '3C NMR spectra
of glycosides 3a—u, Sa—d and 7a-h are provided.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-125-S1.pdf]
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