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Introduction
DNA methylation is generally thought to silence gene expres-

sion and reduce transcriptional noise by compacting chromatin 

structure. However, how this is brought about has not been sys-

tematically investigated. The impact of DNA methylation on 

histone modifi cations is well established in plants (Tariq and 

Paszkowski, 2004) but not in mammalian cells. In human cells, 

ablation of the DNA methyltransferase DNMT1 leads to a partial 

reduction of DNA methylation, predominantly at repetitive se-

quences. This is reported to result in a depletion of di- (H3K9me2) 

and trimethylation (H3K9me3) at H3K9 and a concomitant 

 increase in H3K9 acetylation (H3K9ac; Espada et al., 2004). 

Indirect reduction of DNA methylation at pericentromeric hetero-

chromatin by loss of the chromatin remodeling protein Lsh 

also results in increased levels of histone acetylation (Huang 

et al., 2004). In the mouse, little change in H3K9 methylation 

was found in Dnmt1− and Dnmt3− embryonic stem (ES) cells 

(Dnmt3a−/−/Dnmt3b−/− ES cells), which have a 50% reduction 

in levels of DNA methylation (Martens et al., 2005). Because of 

the remaining levels of DNA methylation in all of the afore-

mentioned studies, it has not been clear what the absolute rela-

tionship between DNA methylation and histone modifi cations 

is in mammalian cells.

There has been recent interest in links between linker his-

tones and DNA methylation. Reduction of linker histone levels 

in vivo can give rise to altered DNA methylation at specifi c ge-

nomic sites (Fan et al., 2005). On the other hand, there is con-

fl icting evidence about whether DNA methylation infl uences 

linker histone binding in chromatin. Unmethylated CpG islands 

appear to be depleted of H1 (Tazi and Bird, 1990), and H1-

 containing nucleosomes contain 80% of the 5′-methylcytosine 

(Ball et al., 1983), suggesting that linker histones may prefer to 

bind to methylated DNA. This is confi rmed by some in vitro bind-

ing experiments (Levine et al., 1993; McArthur and Thomas, 

1996). However, other studies suggest that DNA methylation 

does not affect H1 binding to nucleosomes (Campoy et al., 1995; 

Nightingale and Wolffe, 1995; Hashimshony et al., 2003).

Experimentally or genetically induced alterations in lev-

els of DNA methylation have implicated this epigenetic modifi -

cation in mammalian higher order chromatin condensation and 

nuclear organization, especially at sites of constitutive hetero-

chromatin that have the highest concentration of DNA methylation 
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(Schmid et al., 1984; Brown et al., 1995; Karymov et al., 2001; 

Gisselsson et al., 2005; Ma et al., 2005). Chromocenter clus-

tering during differentiation has been recently attributed to in-

creasing levels of DNA methylation and methyl-CpG–binding 

proteins (Brero et al., 2005).

To investigate the consequences of eliminating CpG meth-

ylation on multiple levels of mammalian chromatin structure 

and nuclear organization, we used mouse ES cells that lack 

both Dnmt3a and b (Dnmt3a−/−/Dnmt3b−/− but herein called 

Dnmt3−; Okano et al., 1999). Chromatin structure in these cells 

was analyzed by biochemical, biophysical, and cytological 

 assays and compared with that from wild-type (WT) cells. 

The absence of DNA methylation altered chromatin structure at 

the level of the nucleosome and at the level of nuclear organiza-

tion. There is a genome-wide decrease in H3K9me2, an increase 

in histone acetylation, and an increased clustering of chromo-

centers in mouse ES cells that are devoid of DNA methylation. 

However, contrary to expectations, micrococcal nuclease (Mnase) 

digestion and sucrose gradient sedimentation analyses indicate 

that the compaction of the chromatin in general and of hetero-

chromatin in particular is not affected. Instead, there is a sur-

prising decrease in the mobility of linker histones in the absence 

of DNA methylation. These studies highlight the complex inter-

play between DNA methylation and chromatin structure and the 

need to assess the effects of epigenetic modifi cations at multiple 

levels of chromatin and nuclear organization.

Results
Complete loss of DNA methylation 
in the absence of Dnmt3a and b
At the time of their establishment, Dnmt3− cells show a partial 

loss of CpG methylation (Okano et al., 1999), but, after pro-

longed passage in culture, virtually no (0.6%) CpG methylation 

Figure 1. DNA methylation levels in mutant ES cells. 
(A) Nearest neighbor analysis of CpG methylation in WT 
and Dnmt3− ES cells. The table summarizes the percent-
age of CpGs that are methylated in WT, high passage 
(h.p.) Dnmt3−, low passage (l.p.) Dnmt3−, Dnmt3−res, 
Dnmt1−, and MeCP2− cells. The asterisk indicates depen-
dence on passage number. (B) Analysis of DNA methyla-
tion by Southern blotting in WT, high passage Dnmt3−, 
low passage Dnmt3−, Dnmt3−res, and Dnmt1− cells. B2 
and minor satellite repeats were analyzed on MspI- (M) 
and HpaII (H)-digested DNAs. Mouse major satellite was 
analyzed on DNAs digested with HpyCH4IV (Lehnertz 
et al., 2003). Size markers are1-kb and 100-bp ladders.
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remains (Fig. 1 A; Jackson et al., 2004). This probably refl ects 

the failure of Dnmt1 to effi ciently maintain methylation (Chen 

et al., 2003). Southern blotting shows that methylation is simi-

larly lost at euchromatic (B2 repeat) and heterochromatic (minor 

and major satellite) parts of the genome (Fig. 1 B). In contrast, 

MeCP2− ES cells (Tate et al., 1996) and Dnmt3− cells transfected 

with a Dnmt3b transgene (Dnmt3−res; Jackson et al., 2004) show 

near normal levels of DNA methylation.

Increased chromocenter clustering 
in the absence of DNA methylation
In the mouse nucleus, pericentric heterochromatin comprising 

of major satellite repeats tends to cluster into chromocenters. 

Recently, it has been suggested that increasing levels of DNA 

methylation contribute to progressive chromocenter clustering 

during differentiation and that this is mediated through methyl-

CpG–binding proteins (Brero et al., 2005). If this is the case, 

there should be a reduction of chromocenter clustering in 

Dnmt3− cells compared with WT. Using 3D FISH with a probe 

for major satellite, we analyzed the number of individual chromo-

centers visible in the nuclei of mutant ES cells and in their 

parental WT equivalents, J1 cells (Fig. 2 A). The number of 

chromocenters detected in Dnmt3− ES cells (median = 12) was 

signifi cantly less than in J1 WT cells (median = 19; P = 0.0000 

in Mann-Whitney U analysis; n = 85; taken from three inde-

pendent experiments; Fig. 2 B). This was verifi ed by analysis of 

a subset of images by two independent investigators and was 

even apparent from the DAPI staining pattern in which fewer 

larger, brightly stained foci were visible in Dnmt3− cells com-

pared with WT. This was also confi rmed using an independent 

WT ES cell line, CGR8. The median number of chromocenters 

in these cells (20) is not signifi cantly different (P = 0.9) from 

that in the WT J1 cells and is signifi cantly (P = 0.000) larger 

than the chromocenter number in Dnmt3− cells.

These data indicate that the loss of DNA methylation 

leads to increased clustering of pericentric heterochromatin into 

a few large chromocenters in ES cells. Restoring levels of DNA 

methylation in the Dnmt3−res cells increased the number of 

chromocenters (median = 16; Fig. 2 B). Chromocenter cluster-

ing in Dnmt3− cells is not simply caused by the subsequent loss 

of methyl-CpG–binding proteins because the number of chromo-

centers in MeCP2− cells (median = 16.0) is signifi cantly larger 

(P = 0.0000) than in Dnmt3− cells (Fig. 2).

Loss of DNA methylation does not affect 
heterochromatin compaction
To investigate whether the altered nuclear organization of hetero-

chromatin in DNA methylation–defi cient ES cells is caused 

by a change in underlying secondary chromatin structures, we 

analyzed the Mnase sensitivity of chromatin from WT and mu-

tant cells. All cell lines showed identical digestion kinetics of 

bulk chromatin (Fig. 3 A). Major satellite has a less accessible 

chromatin structure (i.e., is digested more slowly; t1/2 = 11 min) 

than bulk chromatin or chromatin at minor satellite (t1/2 = 

7 min), which is independent of DNA methylation (Fig. 3, B–D). 

Nucleosome repeat length of bulk chromatin and major and 

minor satellites was also identical between cell lines. As previ-

ously shown, dinucleosomes at major satellite are refractory to 

Mnase digestion compared with those at minor satellite (Gilbert 

and Allan, 2001; Guenatri et al., 2004), but this is also un-

affected by the absence of DNA methylation (unpublished data).

A 16-kb region of silent repetitive chromatin adjacent to 

the chicken β-globin locus, which is resistant to Mnase diges-

tion (Prioleau et al., 1999), has been shown to sediment through 

sucrose with a frictional coeffi cient consistent with a rodlike 

shape of approximately the dimensions expected of a compact 

30-nm chromatin fi ber (Ghirlando et al., 2004). Similarly, and 

consistent with the aforementioned Mnase sensitivity, the rate 

of sedimentation of mouse and human satellite DNAs in sucrose 

gradients suggests that they are packaged into 30-nm chromatin 

fi bers that are more compact in shape than those from the bulk 

genome (Gilbert and Allan, 2001; Gilbert et al., 2004). Bulk 

chromatin fi bers from WT and Dnmt3− cells have identical sedi-

mentation rates (Fig. 3, E and F). Moreover, major and minor 

Figure 2. Chromocenter clustering in the nu-
clei of mutant ES cells. (A) Single-image planes 
taken at 1-μm intervals through (left to right) 
the z axis of WT (top) and Dnmt3− (bottom) ES 
cells hybridized with a major satellite probe 
(green). Nuclei are counterstained with DAPI 
(blue in color image and shown in black and 
white below that). (B) Box plots showing the 
number of distinct chromocenters in the nuclei 
of WT, Dnmt3−, Dnmt3−res, and MeCP2− ES 
cells. The lower and upper limits of the boxes 
denote the 25th and 75th percentiles, respec-
tively, and the line in the box is the median. 
Statistical comparisons of chromocenter num-
ber was performed by Mann-Whitney U test 
(**, P = 0.001; ***, P = 0.0000).
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satellite–containing chromatin fi bers from Dnmt3− ES cells still 

sediment more rapidly than equivalently sized bulk chromatin 

fragments from the same cells (Fig. 3 F), indicating that these 

satellite regions remain more compact than bulk chromatin even 

in the complete absence of DNA methylation.

Altered histone modifi cations 
in the absence of DNA methylation
The surprising absence of any effect of DNA methylation on 

secondary chromatin structure suggests that the main infl uence 

might be on primary chromatin (nucleosome) structure. Indeed, 

Western blotting revealed that as DNA methylation disappeared 

in the Dnmt3− cells, levels of H3K9me2 reduced concomitantly 

(Fig. 4, A and B). Adding back Dnmt3b (Dnmt3−res) restored 

H3K9me2 to WT levels. The loss of H3K9me2 is also not sim-

ply the result of the depletion of methyl-CpG–binding proteins 

because it is not seen in MeCP2− cells.

The loss of H3K9me2 in Dnmt3− cells was paralleled 

by a progressive increase in the levels of H3K9ac. Acetylation 

levels at H4K5 and H4K16 are also elevated (Fig. 4, A and B). 

Although levels of H4K16ac and H4K5ac are completely or 

partially restored in Dnmt3−res cells, levels of H3K9ac are not 

rescued in Dnmt3−res cells (Fig. 4 B) or in Dnmt3− cells rescued 

with Dnmt3a (not depicted). In human cells lacking Dnmt1, 

H3K9ac levels did return to those of WT when Dnmt1 was re-

stored (Espada et al., 2004). However, in that case, the effects of 

DNA methylation and, therefore, presumably histone modifi ca-

tion were concentrated in repetitive sequences. We suggest that 

Figure 3. Sensitivity and compaction of Mnase-
digested chromatin from WT and mutant cells. 
(A and B) EtBr-stained gel (A) and Southern blot 
probed for major satellite (B) of DNAs prepared 
from nuclei of WT and Dnmt3− cells after an 
Mnase digestion time course. Markers are 1-kb 
and 100-bp ladders. The percent loss of high 
molecular weight signal for bulk (A) or major 
satellite (B) DNAs, which was calculated by 
measuring the signal between the two top red 
bars and the total signal between the top and 
bottom red bars, is graphed below each gel. 
(C) Percent loss of high molecular weight sig-
nal for minor satellite. (D) Percent loss of high 
molecular weight material signal in WT and 
Dnmt3− cells for bulk chromatin (EtBr; red) and 
minor (black) and major (blue) satellites. (E) 
EtBr-stained gel of DNA prepared from WT and 
Dnmt3− chromatin fractionated on a sucrose 
gradient. (F) The DNA size of the peak EtBr 
signals (red) and the minor (black) or major 
satellite (blue) signals detected after the South-
ern blotting of E was measured for the WT 
(closed circles) and mutant (open circles) ES 
cell chromatins and plotted against fraction 
number (sedimentation rate).
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in the Dnmt3− ES cells, the increased H3K9ac levels are refrac-

tory to rescue by the reintroduction of Dnmt3a or b and that this 

may refl ect a problem in retargeting some histone deacetylases. 

Because we found that both the sedimentation rate of chromatin 

fi bers through sucrose (not depicted) and chromocenter nuclear 

organization (Fig. 2) from Dnmt3−res cells are similar to WT, 

this indicates that histone acetylation does not affect secondary 

chromatin fi ber structure or the nuclear organization of hetero-

chromatin in these assays.

No decrease in global levels of H3K9me3 was detected in 

mutant cells by Western blotting. However, histone methylation 

marks are differentially distributed among tandem and inter-

spersed repeats in the mouse genome (Martens et al., 2005).

We used chromatin immunoprecipitation (ChIP) and Southern blot-

ting of the immunoprecipitated material to investigate H3K9me2, 

H3K9me3, and H3K9ac in Dnmt3− cells at minor and major 

satellite repeats and at the interspersed B2 repeat. Levels of 

H3K9me2 were almost undetectable at minor satellite even in 

WT, but, at the major satellite, there was a large (63%) reduction 

in H3K9me2 and an increase in H3K9ac (Fig. 4 C). Although 

most abundant at the major satellite (Gilbert et al., 2003; Guenatri 

et al., 2004; Martens et al., 2005), levels of H3K9me3 were 

reduced by 30% at all of the repeats in Dnmt3− cells (Fig. 4 C).

Major satellite, minor satellite, and B2 comprise 3%, 0.45%, 

and 2.39% of the mouse genome, respectively (Waterston et al., 

2002; Martens et al., 2005). Normalizing our ChIP data for 

Figure 4. Histone methylation and acetylation levels in mutant ES cells. (A) Western blots of proteins from WT, Dnmt3−, Dnmt3−res, Dnmt1−, and MeCP2− 
ES cells incubated with antibodies that detect H3K9me2, H3K9me3, H3K9ac, H4K5ac, H4K16ac, HP1α, and H3. GAPDH is shown as a control. (B) Mean 
(±SEM [error bars]) levels of histone modifi cations detected in the different mutant ES cells normalized relative to GAPDH and WT (n = 3 or 4). (C and D) 
Abundance (C) and concentration (per kilobase; D) of H3K9me2, H3K9me3, and H3K9ac modifi cations detected by ChIP at different repeats in WT (white bars) 
and Dnmt3− (gray bars) cells. h.p., high passage; l.p., low passage.
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 repeat abundance showed that the concentration  (per kilobase) 

of H3K9me2 is higher at major satellite than at minor satellite 

or B2 (Fig. 4 D). In contrast, the concentration of H3K9me3 is 

higher at minor satellite, although its total abundance is less. 

Loss of DNA methylation redistributes H3K9me3 so that its 

concentration at major and minor satellites is similar.

Altered binding of linker histones 
in the absence of DNA methylation
The binding of linker histones to nucleosomes in order to form 

the chromatosome is a fundamental aspect of dynamic chro-

matin structure. The precise sites of linker histone binding to 

the nucleosome remain in dispute, but there is evidence, mainly 

Figure 5. GFP-tagged linker histone characterization. (A) Distribution of GFP fl uorescence (green) in WT or Dnmt3− ES cells transiently transfected with 
GFP-H1 or -H5. DNA is counterstained with DAPI (blue). Bar, 5 μm. (B) Western blot of nuclei prepared from GFP-H1– or -H5–transfected WT and Dnmt3− 
cells probed with an anti-GFP or -H1 antibody; the position of the GFP-tagged linker histone (GFP-LH) and endogenous H1 are indicated. Transfection effi -
ciency is 	30%. (C) Chromatin isolated from Dnmt3− cells transfected with GFP–linker histone or free GFP and fractionated on a 10/ 50% sucrose step 
gradient. Chromatin was monitored by absorbance at 254 nm (left). GFP fl uorescence was monitored across the fractions at 507 nm (right). (D) EtBr-stained 
1% agarose gel of DNA purifi ed from Mnase-digested chromatin from cells transfected with GFP or GFP-H5 (left). Chromatin was fractionated on a native 
nucleoprotein gel and scanned for GFP fl uorescence (right). M, marker. (E) Coomassie-stained acid-urea (top) or SDS-PAGE (bottom) gels of perchloric 
acid–extracted linker histones from WT and Dnmt3− cells. (F) Western blot with antibodies detecting phosphorylated or hyperphosphorylated H1 on protein 
extracts from WT and mutant ES cells in the presence or absence of colcemid treatment. GAPDH was used as a loading control.



DNA METHYLATION AND CHROMATIN STRUCTURE • GILBERT ET AL. 407

from in vitro analyses, arguing both for (Ball et al., 1983; 

McArthur and Thomas, 1996) and against (Campoy et al., 

1995; Nightingale and Wolffe, 1995; Hashimshony et al., 

2003) a role of DNA methylation in linker histone binding. To 

investigate this in vivo, we used FRAP to analyze the mobility 

of linker histones H1 (subtype H1.4) and H5, which were 

tagged with GFP at their N termini, in WT and Dnmt3− ES 

cells. We chose this orientation to minimize any interference 

of GFP with the high-affi nity C-terminal chromatin-binding 

domain of H1 (Hendzel et al., 2004). We were able to select for 

somatic cells stably transfected with these constructs but not 

undifferentiated ES cell lines. However, in transient trans-

fections of ES cells, viable expressing cells were still visible 

72 h after transfection, the tagged linker histones localized 

correctly in the nucleus, and Western blotting with GFP and 

H1 antibodies confi rms that the levels of GFP–linker histone 

were low compared with endogenous H1 (Fig. 5, A and B). 

Fractionation of Mnase-digested chromatin from these cells 

on a sucrose step gradient showed that the GFP fl uorescence 

cosediments with chromatin (Fig. 5 C). To confi rm that GFP–

linker histone incorporates into nucleosomes, soluble polynucleo-

somes, which were released from GFP- or GFP-H5–transfected 

COS cells with Mnase, were fractionated on a nucleoprotein 

gel, and GFP fl uorescence was analyzed by scanning (Fig. 5 D). 

We conclude that GFP–linker histones are correctly incorpo-

rated into nucleosomal chromatin in transiently transfected ES 

cells but that expression of the exogenous linker histone is in-

compatible with the long-term propagation of  undifferentiated 

ES cells.

Linker histone mobility has been shown to be infl uenced by 

phosphorylation (Hendzel et al., 2004). Perchloric acid–extracted 

linker histones from WT and Dnmt3− cells were examined on an 

acid-urea gel that is able to discriminate proteins based on their 

phosphorylation state. Although the linker histone phosphoryla-

tion associated with mitosis (induced by colcemid treatment) 

was readily apparent, we did not detect any differences in the 

linker histone phosphorylation state between WT and Dnmt3− 

interphase cells (Fig. 5 E). This was confi rmed by Western blot-

ting of the cells with antibodies that detect phosphorylated or 

hyperphosphorylated H1 (Fig. 5 F).

Linker histone mobility was then analyzed in ES cells 24 h 

after transfection by following the fl uorescence recovery every 

7 s (for a total of 340 s) after photobleaching (Fig. 6 A). The re-

covery kinetics of H1 in WT ES cells (t1/2 = 50 s) is consistent 

with previous analyses in differentiated cells (Misteli et al., 

2000; Hendzel et al., 2004). The t1/2 for H5 was longer (70 s), 

which is consistent with the higher affi nity of the arginine-rich 

H5 linker histone for the chromatin fi ber (Thomas and Rees, 

1983). Strikingly, compared with WT cells, the recovery kinetics 

of both H1 and H5 were slowed in Dnmt3− cells (Fig. 6 B), with 

t1/2 values increasing to 70 s for H1 and 100 s for H5 (Table I). 

In contrast, the t1/2 for both H1 and H5 were considerably shorter 

(25–28 s) in Dnmt3−res cells than in WT (Fig. 6 B). This sug-

gests that the prolonged binding of linker histones to chromatin 

in Dnmt3− cells is caused by the lack of DNA methylation and 

not by the elevated levels of histone acetylation because the lat-

ter persists in Dnmt3−res cells (Fig. 4).

The mobility of both H1 and H5 in MeCP2− ES cells was 

indistinguishable from WT (Fig. 6 C and Table I). Therefore, the 

altered kinetics of linker histone binding in Dnmt3− cells is 

likely caused by the lack of DNA methylation itself and not by 

the subsequent loss of this methyl-CpG–binding protein.

Figure 6. Linker histone mobility in WT and mutant cells. 
(A) Representative confocal images of GFP-H1–transfected 
WT and Dnmt3− cells during FRAP. The bleach area is marked 
by red circles, and the fl uorescence recovery is monitored 
over time. (B) Relative fl uorescence within the bleach ROI dur-
ing FRAP of H1-GFP or -GFP expressed in WT (blue), Dnmt3− 
(red), and Dnmt3−res (green) cells. Graphs show mean values 
(±SEM [error bars]) for 10 cells at each time point. (C) Relative 
fl uorescence (mean ± SEM) within the bleach ROI during 
FRAP of H1-GFP or -GFP  expressed in WT (blue) and MeCP2− 
(black) cells.
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Linker histones retard Mnase digestion of the core parti-

cle, pausing digestion at 178 nucleotides before protection of 

the 168-bp chromatosome, which comprises the nucleosome 

core particle together with the DNA that is protected from 

 digestion by linker histone binding to the dyad (Muyldermans 

et al., 1981). If the slowed mobility of linker histone in Dnmt3− 

cells is caused by its altered binding to the nucleosome core 

particle, the rate of Mnase trimming of nucleosomes might 

change. However, the chromatosome was trimmed at the same 

rate in WT, Dnmt3−, and other mutant cells (Fig. 7). Therefore, 

although the overall in vivo mobility of linker histone on 

chroma tin was reduced in Dnmt3− cells, its residence time at 

the nucleo some dyad of the chromatosome measured in vitro 

was not altered.

Discussion
Using mutant mouse ES cells, we show that the absence of 

DNA methylation leads to altered nuclear organization with an 

increase in the level of chromocenter clustering (Fig. 2). This is 

reminiscent of the increased associations between juxtacentro-

meric heterochromatin that are seen in the nuclei of individuals 

with immunodefi ciency centromeric instability facial anomalies 

(ICF) syndrome, which is caused by the mutation of DNMT3b 

and the consequent hypomethylation of satellite sequences 

(Gisselsson et al., 2005). Increased chromocenter clustering in 

Dnmt3− cells is in contrast to the suggested role of DNA meth-

ylation and methyl-CpG–binding proteins in promoting chromo-

center clustering during the terminal differentiation of mouse 

cells (Brero et al., 2005) and might indicate differences be-

tween cell types. Altered nuclear organization in the Dnmt3− 

cells suggests that there is some underlying changes in chroma-

tin structure when DNA methylation is absent. Indeed, we 

have identifi ed such changes at two levels of primary chromatin 

structure: histone modifi cations and linker histone binding.

ES cells lacking DNA methylation have globally elevated 

levels of acetylation at H3K9, H4K5, and H4K16 (Fig. 4). 

 Increased acetylation of H4K5 has been previously reported in 

these cells (Jackson et al., 2004). We also saw reduced levels of 

H3K9me2 in Dnmt3− cells by both Western blotting and ChIP 

and a redistribution of histone methylation within satellite-

 containing heterochromatin compartments (Fig. 4). This con-

trasts with the unaltered histone methylation seen in a previous 

analysis of Dnmt3− ES cells (Martens et al., 2005). However, 

in that analysis, the Dnmt3− cells had substantial residual DNA 

methylation. Both Dnmts and methyl-CpG–binding proteins 

can physically associate with histone deacetylases (Rountree 

et al., 2000; Fuks et al., 2001) and histone methyltransferases 

(Fuks et al., 2003a,b; Lehnertz et al., 2003; Sarraf and 

Stancheva, 2004), so the altered histone modifi cations in cells 

that completely lack CpG methylation may refl ect the loss of 

these interactions.

It has been suggested that histone modifi cations can di-

rectly affect secondary chromatin structures by, for example, 

 altering nucleosome–DNA or nucleosome–nucleosome inter-

actions and by neutralizing charge in the histone N-terminal tails 

(Wolffe and Hayes, 1999; Carruthers and Hansen, 2000; Wang 

et al., 2001). However, neither Mnase digestion kinetics nor 

sucrose gradient sedimentation (Fig. 3) revealed any evidence 

for a general decompaction of secondary chromatin structure in 

the absence of DNA methylation. Satellite sequences remain in 

a more compact structure than the bulk genome using these 

assays regardless of the state of DNA methylation.

Most unexpectedly, the loss of DNA methylation leads 

to the altered binding of linker histones. By FRAP with GFP-

tagged H1 and H5, t1/2 times for both linker histones were in-

creased in Dnmt3− cells compared with WT (Fig. 6 and Table I). 

This was not an indirect effect of the loss of a methylated CpG–

binding protein because recovery times were normal in MeCP2− 

cells (Fig. 6 C). The tighter binding is also not an indirect effect 

of elevated histone acetylation levels because in Dnmt3−res cells, 

in which DNA methylation levels are restored but H3K9ac 

levels remain elevated compared with WT, t1/2 times are dramati-

cally shortened (Fig. 6 B). This is consistent with the increased 

mobility of linker histones found in trichostatin A–treated cells 

(Misteli et al., 2000). The recovery kinetics that we found for 

H1 in WT and mutant ES cells are similar to those previously 

reported in differentiated somatic cells (Misteli et al., 2000; 

Hendzel et al., 2004). We do not detect the fast recovery kinetics 

that have recently been reported for H1 in ES cells (Meshorer 

et al., 2006). This might be the result of differences in the linker 

subtypes or ES cells used or of differential behavior between 

C- and N-terminally tagged H1 (Hendzel et al., 2004). Because 

there was no change in the ability of linker histones to protect 

the chromatosome from trimming by Mnase in Dnmt3− cells 

(Fig. 6), we suggest that the loss of DNA methylation does not 

Table I. Linker histone FRAP analysis

Cell line DNA methylation H3K9me H3K9ac Linker histone t1/2

s

WT High High Low
  50 (H1) 
  70 (H5)

Dnmt3− Low Low High
  70 (H1) 
100 (H5)

Dnmt3−res High High High
  27 (H1) 
  27 (H5)

MeCP2 High High Low
  53 (H1) 
  64 (H5)

The kinetics of GFP-H1 and -H5 were analyzed by FRAP in WT and mutant ES cells. The t1/2 (given in seconds) was measured from the FRAP curves (Fig. 6). 
The DNA methylation and histone modifi cation data are summarized from Figs. 1 and 4.



DNA METHYLATION AND CHROMATIN STRUCTURE • GILBERT ET AL. 409

alter the binding of linker histones to the dyad of the nucleo-

some but that it is binding to another site (perhaps linker DNA) 

that is enhanced (Zhou et al., 1998; Bharath et al., 2003). 

This is consistent with the two-site binding model proposed by 

Phair et al. (2004). The recent identifi cation of a link between 

H1 depletion and altered DNA methylation at specifi c genomic 

regions (Fan et al., 2005) suggests that a better understanding of 

the mechanistic and regulatory interactions between these two 

key chromatin modulators is required.

Materials and methods
Cell culture and transfection
Mouse WT J1, Dnmt3−, Dnmt1− (S/S allele) (gift from E. Li, Novartis Insti-
tutes for Biomedical Research, Cambridge, MA; Lei et al., 1996; Okano 

et al., 1999), Dnmt3−res (Jackson et al., 2004), and MeCP2− (gift from 
A. Bird, Wellcome Trust Centre for Cell Biology, University of Edinburgh, 
Edinburgh, UK; Tate et al., 1996) ES cells were cultured under standard 
conditions in the presence of leukemia inhibitory factor. Cells were trans-
fected using LipofectAMINE 2000 (Invitrogen).

CpG methylation analysis, DNA digestion, and Southern hybridization
Nearest neighbor analysis was performed as described previously (Jackson 
et al., 2004). Genomic DNAs were digested with methylation-sensitive 
isoschisomer pairs (HpaII–MspI) or a methylation-sensitive enzyme (HpyCH4IV) 
and fractionated on a 0.7% agarose gel in Tris–phosphate buffer supple-
mented with ethidium bromide (EtBr). Gels were Southern blotted onto 
Hybond N (GE Healthcare) in 20× SSC and were probed for minor and 
major satellites and the B2 repeat (Gilbert and Allan, 2001).

3D FISH
ES cells were cultured on gelatine-coated microscope slides for 4 h before 
fi xation in 4% PFA for 10 min and processed for 3D FISH as previously de-
scribed (Mahy et al., 2002). Major satellite was detected by hybridization 
with digoxigenin-labeled pSAT (Lewis et al., 1992). After washing and 
detection, slides were counterstained with 50 ng/ml DAPI and mounted 
in Vectashield. Slides were examined with an epifl uorescence microscope 
(Axioskop; Carl Zeiss MicroImaging, Inc.) equipped with a 100× NA 1.3 
lens and a CCD camera (Micromax; Princeton Instruments). A Pifoc piezo-
driven objective focusing device was used to capture images at 0.25-μm 
intervals through the z axis. Images were captured and analyzed using cus-
tom IPlab (BD Biosciences) scripts. The signifi cance of differences between 
cell lines was assessed using a Mann-Whitney U nonparametric test.

Preparation and fractionation of nuclei and chromatin
Nuclei were prepared as previously described (Gilbert et al., 2003) but 
with a reduced concentration (0.05%) of NP-40 in nuclei buffer B. For 
Mnase sensitivity digests, the nuclei concentration was adjusted to 4 A260 
in nuclei buffer R. 20 or 50 U/ml Mnase (Worthington) was added, and 
aliquots were removed into stop buffer (2% SDS, 200 μg/ml proteinase K, 
amd 10 mM EDTA) at various time intervals. Purifi ed DNAs were fraction-
ated on a 1% agarose gel in Tris-borate buffer in the presence of EtBr. 
To distinguish nucleosomal (146 bp) and chromatosome-protected (166 bp) 
DNA after MNase digestion, the nuclei concentration was adjusted to 
4 A260 in nuclei buffer R and were digested with 180 or 360 U/ml 
Mnase. Purifi ed DNAs were fractionated on a 4% (1% regular agarose 
and 3% 3:1 NuSieve agarose [Flowgen]) gel in Tris-borate buffer in the 
presence of EtBr. Gels were scanned on a phosphorimager (FLA5100; Fuji) 
equipped with a 532-nm laser and 575-nm bandpass fi lter and were trans-
ferred to Hybond N by Southern blotting if required. Soluble chromatin 
was prepared and fractionated on sucrose gradients as described previ-
ously (Gilbert and Allan, 2001; Gilbert et al., 2004). Gel and blot images 
were analyzed using the Aida software package version 3.52 (Raytek).

Linker histones were isolated by extracting whole cell lysates with 
5% perchloric acid and subsequently by precipitation with acetone. 
The linker histones were analyzed on either a 15% (80:1 acrylamide/
bis-acrylamide) acid-urea gel (Barratt et al., 1994) or a 18% (200:1 
 acrylamide/bis-acrylamide) SDS-PAGE gel (Thomas and Kornberg, 1978).

Western blotting and ChIP
Cells were lysed in 1× SDS sample buffer (62.5 mM Tris-HCl, pH 6.75, 
2% SDS, 5% β-mercaptoethanol, 10% glycerol, and bromophenol blue), 
sonicated, and 	5 μg of total protein was fractionated on a 12% SDS 
polyacrylamide gel. Proteins were transferred to Hybond P by electro-
blotting, and membranes were probed with antibodies that detect the follow-
ing: H3K9me2 (1:2,000; Upstate Biotechnology), H3K9me3 (1:2,000; 
provided by T. Jenuwein, Research Institute of Molecular Pathology,  Vienna, 
Austria), H3K9ac (1:2,000; Upstate Biotechnology), H4K5ac (1:20,000; 
Upstate Biotechnology), H4K16ac (1:10,000; Upstate Biotechnology), 
HP1α (1:2,500; MAB3446; Chemicon), phosphorylated H1 (0.15 μg/ml; 
clone 12D11; Upstate Biotechnology), hyperphosphorylated H1 (1:500; 
Upstate Biotechnology), and glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH; 1:2,000, Abcam). Detection was performed by ECL (Pierce 
Chemical Co.).

ChIP was performed as described previously (Chambeyron and 
Bickmore, 2004) with antibodies recognizing the aforementioned H3K9me2, 
H3K9me3, and H3K9ac. Immunoprecipitated chromatin was dot blotted 
onto Hybond N+ (GE Healthcare). Membranes were probed with minor 
and major satellite repeats and the interspersed B2 repeat, and the blots 
were analyzed on a phosphorimager (FLA5100; Fuji).

Figure 7. Mnase trimming of chromatosomal particles. (A) EtBr-stained 
gel of DNA prepared from nuclei of WT and mutant ES cells after time 
course digestion with 360 U/ml Mnase. Markers are λ-HindIII and pBR322-
MspI ladders. (B) High resolution agarose gel to distinguish between the 
nucleosome (146 bp) and chromatosome (168 bp) bands. (C) Loss of the 
168-bp band with respect to the total DNA in the 146- and 168-bp bands.
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H1 and H5 constructs
Chicken linker histone H5 cDNA (Krieg et al., 1982) was subcloned 
from pBR-H5 using a blunted NotI–XmnI fragment into the SmaI site of 
pUC18 to give pUCH5. The coding sequence was PCR amplifi ed with 
primers 5′-G A A G A T C T T C C G G A A T G A C G G A G A G C C T G G T C -3′ and 
5′-G G C C G C T C G A G T T A C T T C A G C T C A C T T C T T C T T G G G C G A T T T -3′. Human 
histone H1.4 (a gift from D. Doenecke, German Cancer Research Center, 
Heidelberg, Germany) genomic clone (GenBank/EMBL/DDBJ accession 
no. M60748) was PCR amplifi ed using primers 5′-G A A G A T C T T C C G G A A-
T G T C C G A G A C T G C G C C T -3′ and 5′-G G C C G C T C G A G T T A C T T C A G C C T-
A C T T T T T C T T G G C T G C C G C -3′. Both PCR fragments were digested with 
BglII–XhoI and cloned into a BglII–SmaI site of pDsRed1-C1 (CLONTECH Labo-
ratories, Inc.). The linker histone–containing portion was removed using BspEI–
BamHI and was cloned into EGFP-C1 at BspEI–BamHI. Constructs were checked 
by sequencing, by transient transfection, and by Western blotting for GFP.

To examine the nuclear distribution of the GFP fusion proteins, trans-
fected cells were fi xed in 4% PFA and visualized by fl uorescence micro scopy. 
To investigate the association of GFP–linker histone to chromatin, 3-kb nucleo-
somal fragments from transiently transfected cells were generated by Mnase 
digestion and fractionated on a 10/50% sucrose step gradient at 48 K for 
105 min in a rotor (SW55; Beckman Coulter). Fractions were collected by up-
ward displacement with continuous monitoring of the chromatin at 254 nm 
(Fig. 5 C). GFP fl uorescence was measured in each fraction on a fl uorometer 
(Envision; PerkinElmer) at 510 nm. Proteins were precipitated from the gradi-
ent fractions and analyzed by SDS-PAGE to confi rm that the GFP–linker histone 
fusion protein was present. Binding of GFP-H5 to individual nucleosomes was 
investigated by isolating chromatin from COS7 cells transfected with GFP-H5. 
Soluble chromatin was dialysed overnight against TEP80 and were further di-
gested with Mnase to prepare short oligonucleosomes. The chromatin frag-
ments were fractionated on a 5% polyacrylamide gel in Tris-borate buffer at 
4°C. The gel was analyzed for GFP fl uorescence using a scanner (FLA2000; 
Fuji) equipped with a 479-nm laser and 520-nm bandpass fi lter. The EtBr-
stained gel was scanned using a 479-nm laser and 580-nm bandpass fi lter.

FRAP
Transiently transfected ES cells were grown on 0.17-mm culture dishes (DeltaT; 
Bioptechs) and, 24 h after transfection, were mounted onto a heated stage 
(Bioptechs) on a confocal microscope (LSM510; Carl Zeiss MicroImaging, 
Inc.). An objective warmer (Bioptechs) was used to maintain a stable tem-
perature of the medium in the culture dish. Cells expressing high levels of 
H1- or H5-GFP fusion protein (total cellular pixel intensity > 35,000) were 
excluded from analysis.

For FRAP, a 3-μm-diameter region of interest (ROI) of the nucleus in 
the midfocal plane was bleached with 10–15 iterations at 100% power 
with an argon laser at 6.1 mA. The pinhole size for the confocal was set at 
1 Airy U. The time series software option was used to specify the appropri-
ate time delay between rounds of 3D image stack capture. Images were 
captured with a 100× objective at 7-s intervals for a total of 340 s using 8% 
of laser power. Each image was processed by an interactive script (IPLAB 
version 3.6; Scanalytics) to correct for nuclear rotation and cell movement. 
Loss of fl uorescence attributed to the imaging process alone was assessed 
from the sum of pixel intensities in the cell. The fl uorescence intensity for each 
ROI over time was then normalized to this (Phair and Misteli, 2000).
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