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Abstract: Adult-onset Still’s disease (AOSD) is a systemic inflammatory disorder of unknown aetiol-
ogy affecting young adults, which is burdened by life-threatening complications, mostly macrophage
activation syndrome (MAS). Interferons (IFNs) are signalling molecules that mediate a variety of
biological functions from defence against viral infections, to antitumor and immunomodulatory
effects. These molecules have been classified into three major types: IFN I, IFN II, IFN III, presenting
specific characteristics and functions. In this work, we reviewed the role of IFNs on AOSD and MAS,
focusing on their pathogenic role in promoting the hyperinflammatory response and as new possible
therapeutic targets. In fact, both preclinical and clinical observations suggested that these molecules
could promote the hyperinflammatory response in MAS during AOSD. Furthermore, the positive
results of inhibiting IFN-γ in primary hemophagocytic lymphohistiocytosis may provide a solid
rationale to arrange further clinical studies, paving the way for reducing the high mortality rate in
MAS during AOSD.

Keywords: adult-onset Still’s disease; macrophage activation syndrome; IFN-γ

1. Introduction

Adult-onset Still’s disease (AOSD) is an inflammatory disease usually affecting young
adults [1]. AOSD is associated with a very heterogeneous clinical picture, a triad of high
fever, arthritis, and evanescent pink salmon skin rash are commonly observed [2]. Further-
more, a multiorgan involvement of the disease is recognised, including liver involvement,
splenomegaly, and poly-serositis [2]. A typical hyperferritinemia is observed in these pa-
tients, associated with increases of C-reactive protein (CRP) and erythrocyte sedimentation
rate (ESR) [1]. Additionally, patients with AOSD experience life-threatening complica-
tions, which may rapidly evolve into multiple-organ failure and death [3]. These patients
would frequently develop macrophage activation syndrome (MAS), a secondary form of
hemophagocytic lymphohistiocytosis (HLH) [4,5]. The latter is characterised by continuous
high fever, extreme hyperferritinemia, pancytopenia, and histopathological evidence of
hemophagocytosis by activated macrophages, typically in bone marrow [5,6].

Although it is typical, this histological finding is not mandatory for HLH diagnosis
since it cannot be recognized at the beginning of the disease in bone marrow biopsies [4].
Another important characterisation of HLH is the organomegaly, splenomegaly, and hep-
atomegaly frequently recognized in these patients [4]. In addition, it was proposed that
AOSD and MAS may be considered part of the same disease spectrum, sharing clinical and
pathogenic features, and in which AOSD may represent a milder form [7]. Furthermore,
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these diseases have been recently included in the so-called hyperferritinemic syndrome,
which, together with catastrophic anti-phospholipid syndrome and septic shock, share
similar clinical and laboratory features, including very high levels of ferritin [8].

As far as the pathogenesis is concerned, AOSD is considered at the crossroads between
auto-inflammatory and autoimmune diseases [9]. Both the innate and adaptative arms
of the immune system are called upon in the pathogenic mechanisms underlying this
disease [10]. The pathogenic mechanisms of MAS have not been fully clarified yet, but
recently a multi-layer pathogenic model was proposed [6]. Both genetic predisposition and
several triggers may contribute to the development of a cytolytic dysfunction, prolonging
the survival of target cells and enhancing antigen presentation to overproduce proinflam-
matory cytokines, leading to full-blown MAS syndrome [5,6,11]. In this context, the role of
interferons (IFNs) was pointed out mainly for inducing cytokine storm syndrome and MAS
occurrence during AOSD [5,6,11]. On these bases, in this work we reviewed the role of IFNs
on AOSD and MAS, focusing on their pathogenic role in promoting the hyperinflammatory
response and as new possible therapeutic targets.

2. Interferons

In 1957, a molecule was first described with the ability to “interfere” with viral replica-
tion and protect cells from infection, which was called an IFN [12]. Since then, a growing
body of evidence has shown that multiple IFNs exist which mediate a variety of biological
functions from defence against viral infections to antitumor and immunomodulatory ef-
fects [13]. IFNs are classified into three main groups according to chromosomal location,
their aminoacidic sequence, and specific receptors: i. type I IFNs (-α, -β, -δ, -ε, -ζ, -κ, -τ,
and -ω); ii. type II IFN (-γ); iii. type III IFNs (-λ1, -λ2, -λ3). Type I IFNs and IFN-γ are
physiologically expressed and are increased by stress and infections [13]. IFNs are critical
effectors of both innate and adaptive immune responses, associated with the development
of immune cell populations and their activation in response to pathogens, cancers, and
other conditions [14]. In addition, the elevated production of IFNs is recognised during
both autoimmune and autoinflammatory diseases [15]. This increases the expression of
target genes and the canonical interferon-stimulated genes (ISGs) in affected tissues and in
circulating blood cells, thus defining the “IFN signature” [14]. The latter is reported to be a
typical characteristic of some diseases [16].

3. IFN I
3.1. Generalities

IFN-α and IFN-β are the most studied and characterised members of this class of
IFNs [16]. IFN-α is encoded by more than 20 different genes. Among these, 13 lead to a
functional protein in humans and 14 in mice, whereas IFN-β is encoded by a single gene
in both humans and mice [16,17]. Although IFN-α and -β may regulate an overlapping
set of genes, these two cytokines differ slightly in their downstream effects and in their
expression pattern [18]. Other type I subtypes (IFN- δ, -ε, -ζ, -κ, -τ, and -ω) are less-
often studied [16]. Type I IFNs act on most cell types and induce an antiviral state by
increasing the major histocompatibility complex expression and inducing the production
of chemokines and cytokines [19,20]. Furthermore, type I IFNs boost the innate arm of the
immune system by stimulating the maturation of dendritic cells and the function of natural
killer cells [16]. These IFNs also enhance the adaptive response of the immune system
by promoting the activation of T and B cells [14]. As a major component of the innate
immune system protecting against viruses, the expression of IFN-α and IFN-β is induced
by viral infection [19,20]. Type I IFNs bind to the ubiquitously expressed type I IFN receptor
(IFNAR) in an autocrine and paracrine manner, modulating the expression of numerous
IFN-stimulated genes (ISG) which are involved in the antiviral and anti-inflammatory
responses and the pro-apoptotic and anti-proliferative activities [18].
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3.2. Pathogenic Implications in AOSD and MAS

Multiple lines of evidence indicate that type I IFNs also exert anti-inflammatory func-
tions [21–23]. These anti-inflammatory phenomena were proposed because IFN-α may
reduce both interleukin (IL)-1α and IL-1β production by two main pathways [23,24]. By
acting on the signal transducer and activator of transcription 1 (STAT1), type I IFNs may
repress the activity of the Nucleotide Binding Domain (NBD), Leucine-Rich Repeat (LRR)
containing (NLR) protein 1 (NLRP1) and NLRP3 inflammasomes, thereby suppressing
caspase-1-dependent IL-1β maturation [23]. These molecules could also induce the ex-
pression of IL-10 in a STAT1-dependent manner, which in turn may reduce the abundance
of the pro-IL-1α and pro-IL-1β signals via STAT3 [23]. Such inflammasome inhibition by
type I IFNs may also suggest a mechanism for the observed IFN-dependent suppression of
IL-18 maturation, since it would also depend on inflammasome activity [23]. Because of
these anti-inflammatory functions, an impaired response of type I IFNs may be implicated
in the generation of the hyperinflammatory processes [18]. Patients with more severe
COVID-19, during the ongoing catastrophic pandemic by SARS-CoV-2, may provide a
virally induced representative model of cytokine storm syndrome, thus suggesting similar-
ities with the underlying pathogenic mechanisms of AOSD and MAS [25,26]. Interestingly,
severe coronavirus disease 2019 (COVID-19) may display many common aspects with
other disorders included in hyperferritinaemic syndrome, including continuous fever and
high levels of ferritin [27]. In the context of COVID-19, Hadjadj et al. observed a distinct
phenotype in severe and critical patients, associated with a highly impaired type I IFN
response, associated with decreased production and reduced activity [28]. In addition, the
presence of neutralizing autoantibodies against type I IFNs was supposed in the inhibition
of the type I IFN response [29]. These autoantibodies against type I IFNs seemed to be
clinically silent until the infection, suggesting that the small quantities of such molecules
could be implicated in the onset of cytokine storm syndrome [29].

Taking these observations together, the impairment of the functions of type I IFNs
or their delayed response may be implicated in the development of a cytokine storm
syndrome. These pathogenic alterations could be also associated with the development
of MAS during AOSD, thus providing food for thought for further mechanistic studies.
In fact, limited data are available about the role of IFN I in the pathogenesis of AOSD
and MAS, so far. In this setting, sera levels of both IFN-α and IFN-β were studied by
enzyme-linked immunosorbent assay (ELISA) in 39 AOSD patients, both during a flare
of the disease and when following therapies [30]. Levels of IFN-αwere detected in only
one of the AOSD patients. Instead, levels of IFN-β were found in both patients with an
active flare of the disease and those following therapies, without any statistically significant
difference [30]. Notably, the type I IFN response on the HLH experimental model was
studied in a murine model with a specific deletion of IFNAR (IFNAR-KO) [31]. HLH was
induced by stimulation with an IL-10 receptor-blocking antibody and a Toll-like receptor
9 (TLR9) agonist. When IL-10 signalling was maintained, the administration of the TLR9
agonist resulted in a milder HLH in wild-type (WT) mice, with less severe hepatitis and
lack of hemophagocytosis. However, thrombocytopenia and IFN-γ were similar between
the IFNAR-KO and the WT mice. Despite IFN-γ levels being comparable to those of the WT
mice, the IFNAR-KO mice did not develop anaemia, suggesting that type I IFNs could be
involved in leading to this feature during HLH [31]. In the same model, the simultaneous
administration of both an IL-10 receptor-blocking antibody and a TLR9 agonist led to
fulminant HLH. The IFNAR-KO mice had less weight loss than their WT counterparts
but were comparable for thrombocytopenia, hepatitis, and splenic hemophagocytosis.
Furthermore, the IFNAR-KO mice treated for fulminant HLH conditions experienced the
same degree of anaemia when compared to WT mice. Taking together these findings, a
complex interaction between type I and type II IFNs in the pathogenesis of TLR9-mediated
HLH could be suggested [31].
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4. IFN II
4.1. Generalities

The type II IFN subtype is made of a single gene product: IFN-γ [16,32,33]. Its struc-
ture is different from type I IFNs, but it is classified in this family of molecules due to its
antiviral effects [16]. IFN-γ binds to the nearly ubiquitously expressed receptor (IFNGR),
and signals through Janus kinase 1 (JAK1) and JAK2 to phosphorylate STAT1 [13]. IFN-γ is
involved in the modulation of the immune and inflammatory responses and is predom-
inantly produced by natural killer (NK), NKT, and activated T cells [18]. It has weaker
antiviral effects than type I IFNs, but potent effects on increasing major histocompatibility
complex expression, antigen presentation, and chemokine production, while suppressing
cell proliferation [18]. IFN-γwould be the prototypic “macrophage-activating factor” in-
creasing cytokine and chemokine production, phagocytosis, and the intracellular killing
of microbial pathogens by macrophages [33]. Furthermore, IFN-γ boosts type 1 adaptive
immunity by promoting the differentiation of type 1 helper T cells, the generation of follic-
ular helper T cells, B cell class switching, autoantibody production, and the generation of
autoimmunity-associated B cells [18]. This molecule may also have protective functions
by suppressing responses mediated by type 2 helper- and IL-17-producing helper T cells,
inducing specialized regulatory T cells and restraining tissue damage [18]. Moreover,
IFN-γmay directly enhance antigen presentation by promoting antigen processing and by
inducing the expression of major histocompatibility complex molecules [18].

In this context, the involvement of the IFN-γ pathway in the pathogenic mechanisms
of HLH, either primary or secondary, was proposed [30]. Although the mechanisms
leading to IFN-γ-mediated immunopathology remain to be fully clarified, many data
would suggest this cytokine is a crucial mediator in HLH occurrence [30,34–36].

4.2. Pathogenic Implications, Ex Vivo Observations

The pathogenic implications of IFN-γ in HLH were studied through the evaluation of
neopterin levels in HLH patients [37]. Neopterin is a marker of inflammation belonging to
a group of pteridines, and it is biosynthetically derived from guanosine triphosphate. It is
secreted by human monocyte-derived macrophage and dendritic cells upon stimulation
with IFN-γ. On these bases, it may be considered as a surrogate marker of this cytokine.
Sera neopterin levels obtained at the time of diagnosis of 21 HLH patients and 50 untreated
children with active juvenile dermatomyositis were evaluated by competitive enzyme
immunoassay. HLH patients had higher levels of neopterin than the control group. Fur-
thermore, neopterin significantly correlated with ferritin, suggesting a possible pathogenic
link. Moreover, a cut-off of 38.9 nmol/L was derived by a ROC curve with a 70% sensitivity,
and 95% specificity in diagnosing HLH, thus suggesting that neopterin levels could be an
accurate marker of the disease [37].

Considering that IFN-γ is rapidly catabolized, it may be difficult to use it as a
biomarker, thus highlighting the assessment of IFN-γ-induced chemokines in studying this
pathway. In an elegant study, sera levels of the IFN-γ-induced chemokines (C-X-C motif)
ligand 9 (CXCL9), and CXCL10 were evaluated in 14 patients with active HLH. These
chemokines were higher than those collected from patients with a non-active disease or
following therapies. Furthermore, the correlations among IFN-γ, CXCL9, and CXCL10 and
the laboratory features of HLH were evaluated, including neutrophil and platelet counts,
ferritin, lactate dehydrogenase, and alanine transaminase levels. CXCL9 correlated with
all studied laboratory parameters. IFN-γ and CXCL10 correlated with all the parameters
except for platelet counts for IFN-γ, and ferritin levels for CXCL10 [38]. In a further study,
IFN-γ and IFN-γ-induced chemokines, CXCL9, CXCL10, and CXCL11, were studied using
ELISA. Sera samples of 39 active and untreated AOSD patients, 30 rheumatoid arthritis
patients, and 28 healthy controls were collected. IFN-γ, CXCL9, CXCL10, and CXCL11
were higher in AOSD patients when compared with RA patients or healthy controls. Fur-
thermore, CXCL9, CXCL10, and CXCL11 were significantly higher in AOSD patients with
MAS than those without it. In addition, these chemokines correlated with inflammatory
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markers and systemic scores. Notably, a decrease of these chemokines except for IFN-γ
was observed after the reduction of disease activity during the follow-up. Finally, on
immunohistochemistry, more inflammatory cells expressing CXCL10 were observed in
skin biopsy samples from AOSD patients than in healthy controls [30].

4.3. Pathogenic Implications and In Vivo Observations

The importance of IFN-γ in the pathogenesis of both primary and secondary HLH
would be enhanced by the data obtained in experimental models. In fact, IFN-γ may be
suggested as a pivotal mediator in murine models of HLH [39,40]. In this setting, the
first experimental model of HLH was provided in perforin-deficient mice infected by
lymphocytic choriomeningitis virus (LMCV). After this infection, the mice manifested
the typical features of HLH, including fever, pancytopenia, and hypofibrinogenemia,
associated with evidence of tissue hemophagocytosis. Furthermore, in this model, a
marked increase of pro-inflammatory cytokines was shown with a remarkable quantity of
IFN-γ. The latter was related due to a persistent antigen presentation and an increase in the
antigen responsiveness of cytotoxic T cells [39]. Subsequently, in Rab 27a-deficient (Rab27a–
/–) mice, it was also shown that infection with LCMV led to HLH [40]. Interestingly,
in both these models, the administration of an IFN-γ blocking agent had a therapeutic
effect [39,40]. In fact, the authors described how this treatment improved survival and led
to an improvement of haematological and histopathological features in these mice. Indeed,
the inhibition of IFN-γ increased blood cell counts. A significant reduction of triglyceride
and ferritin levels was also observed over time in these experimental models. Furthermore,
following IFN-γ inhibition, complete normalization of the histopathological features of the
spleen was described in these models. The authors also noted a reduction of macrophage
activation, as evidenced by the reduction of haemophagocytosis in the liver of both murine
models [40].

In another study, it was shown that experimental HLH could be induced by repeated
stimulation of TLR9 [34]. The authors also tested if IFN-γ could be required for the in-
duction of HLH. Compared with WT mice, the IFN-γ–/–mice did not develop anaemia,
thrombocytopenia, or hepatic inflammation, and these mice preserved the splenic struc-
ture. However, some features could not be dependent on IFN-γ, since leukopenia and
hyperferritinemia were observed in both the WT and the IFN-γ –/– mice. Furthermore,
the authors described the protective role of IL-10 in this setting, showing that the inhibi-
tion of its signal and/or the IL-10 receptor led to the development of hemophagocytosis.
These data could reinforce the idea that IL-10 may also contribute by modulating both
the variability and severity of this disease [34]. These findings were investigated in a later
work in which IFN-γ-deficient mice underwent stimulation with a TLR9 agonist, IFN-γ,
or a combination of both [35]. Following singular and repeated stimulation with a TLR9
agonist or IFN-γ, HLH features were not developed. However, mice treated with both a
TLR9 agonist and IFN-γ reproduced the main features of HLH, developing cytopenias,
hepatitis, and hepatosplenomegaly. On these bases, the authors suggested that TLR9- and
IFN-γ-dependent signals could synergize in enhancing the myeloid progenitor function
and inducing myelopoiesis. Thus, in this study, TLR9-driven signals would potentiate
the effects of IFN-γ, leading to the development of HLH [35]. In a subsequent study,
HLH in WT, transgenic, and cytokine-inhibited mice was assessed following stimulation
with an IL-10 receptor-blocking antibody and a TLR9 agonist. Interestingly, fulminant
HLH and hemophagocytosis developed independently of the presence of IFN-γ, whereas
anaemia and dyserythropoiesis did not suggest an IFN-γ dependence [31]. IFN-γ depen-
dent anaemia during HLH was also confirmed and detailed [41]. In fact, it was shown that
IFN-γ could induce cytopenia and hemophagocytosis. The latter may have derived from
the direct action of IFN-γ on macrophages in vivo, altering endocytosis and consequently
leading to severe anaemia, the so-called consumptive anaemia of inflammation [41]. Other
processes involved in HLH-associated anaemia could be blood loss, haemolysis, and de-
creased bone marrow output [41]. In addition, the IFN-γ-induced chemokines CXCL9 and
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CXCL10 were identified as possible biomarkers to be correlated with disease parameters
including thrombocytopenia, hyperferritinemia, and lymphopenia [38]. These results pro-
vided the rationale for studying these IFN-γ-induced chemokines as possible predictors of
HLH occurrence in humans, as previously mentioned [38].

In addition, some authors used a murine model of HLH induced by the administration
of a TLR9 ligand in IL-6 transgenic mice to study the pathogenic mechanisms of the
disease [36]. These mice, when injected with TLR ligands, may develop this condition by
mimicking an acute infection on a background of high levels of IL-6 [36]. This experimental
approach would more closely resemble what occurs in AOSD and its juvenile counterpart,
an infectious trigger on an inflammatory background leading to MAS occurrence [36]. In
addition, these IL-6 transgenic mice, following the administration of a TLR9 agonist, were
associated with reduced survival, low neutrophils and platelet counts, and high levels of
ferritin, LDH, and pro-inflammatory cytokines. In this experimental model, it was observed
that IFN-γ and the IFN-γ-induced chemokines CXCL9 and CXCL10, were significantly
increased in the liver, spleen, and plasma of the IL-6 transgenic mice, as compared to
the WT mice. Furthermore, IFN-γ inhibition significantly decreased circulating levels of
CXCL9, CXCL10, IL-1β, IL-6, TNF, and ferritin. Thus, a complex interplay between IL-6
and IFN-γ could be suggested in generating HLH [36].

4.4. Therapeutic Strategies

As previously discussed, experimental mouse models and ex vivo observations pro-
vide the rationale behind the use of IFN-γ inhibiting strategies for the treatment of HLH on
account of the importance of the underlying IFN-γ-associated pathogenetic mechanisms of
the disease [31,34–36,38–41].

Emapalumab is a fully human monoclonal antibody that neutralises both free- and
receptor-bound IFN-γ by inhibiting receptor dimerization and the transduction of the sig-
nalling pathway of this molecule [42]. The efficacy of emapalumab was recently assessed
in a clinical trial enrolling thirty-four patients aged between 0–18 years with a diagnosis of
primary HLH, some were previously treated, while others were untreated. As main end-
points, the overall response was codified into patients with a complete response (defined
absence of fever, cytopenia, hyperferritinemia, coagulopathy, neurological manifestations,
increase of soluble CD25, and a normal spleen size), a partial response (three or more
abnormalities that met the criteria for a complete response), or an improvement larger
than 50% from baseline in at least three abnormalities associated with HLH. Twenty-six
patients completed the eight-week treatment study. The percentage of previously treated
patients with a response as assessed by the pre-defined parameters was 63%, while for the
whole population of patients it was 65%. Of the previously treated patients, 26% achieved
a complete response, 30% a partial response, 7% had improvement of HLH features, and
37% had no response. In the untreated patients, 43% achieved a partial response, 28.5%
an improvement, and 28.5% no response. In this study, the authors also assessed CXCL9,
which significantly decreased following the administration of emapalumab. Interestingly,
low CXCL9 levels were associated with the clinical response during this clinical trial,
suggesting possible predictors of efficacy following the administration of this drug [43].

In addition, a case report of a patient with refractory Epstein–Barr virus-associated
HLH treated with emapalumab was recently described, with the resolution of all clinical
symptoms and an improvement of laboratory markers of the disease [44]. Although IFN-γ
inhibition would commonly be employed as a bridge to allogeneic stem cell transplantation,
the successful use of emapalumab was also reported after transplant rejection in three
relapsed primary HLH patients [45,46]. Finally, despite emapalumab being licensed for the
treatment of primary HLH, several ongoing studies are assessing its use in the additional
clinical settings of secondary HLH to systemic juvenile idiopathic arthritis (SJIA), and
occurrence in adult ages (NCT03985423, NCT03311854).
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5. IFN III

The third class of IFNs is composed of IFN-λ1, -λ2, -λ3, and -λ4 [16,47]. These are
produced by most cell types, mainly from plasmacytoid dendritic cells following either
viral or bacterial infection. Type III IFNs bind to the type III IFN receptor (IFNLR), pref-
erentially expressed on certain myeloid cell types and epithelial cells of the respiratory,
gastrointestinal, and reproductive tracts. This expression pattern is associated with local
viral control at the site of entry. Furthermore, type III IFNs activate similar signalling
pathways and partly induce the same genes as type I IFNs, resulting in a potent antiviral
response [48]. The pathogenic role of type III IFNs in AOSD and MAS has yet to be defined.

6. Discussion and Appraisal of Literature

During AOSD, the difficult clinical scenario of MAS makes it difficult to manage
patients, since genetic background, pro-inflammatory milieu, and triggers are mixed with
a high mortality rate [5,6]. Thus, a growing body of studies has focused on investigating
new therapeutic targets to better manage these patients [11,49]. Although IL-1 and IL-6
inhibiting agents were shown to be efficacious in AOSD [50,51], findings from clinical trials
of canakinumab and tocilizumab on SJIA suggested that these therapies could not fully
abrogate the risk of MAS development, even if the disease could be well controlled [52,53].
Consequently, these data suggest that additional pathogenic mechanisms could be impli-
cated in MAS occurrence and together with the preclinical data, provided the rationale
for IFN-γ inhibition in this field [31,34–36,38–41]. Thus, IFNs could be implicated in the
development of this life-threatening complication during AOSD, as shown in Figure 1. In
fact, Locatelli F et al. demonstrated the efficacy of emapalumab in children with primary
HLH [43], which could be considered a genetic model of cytokine storm syndrome [54].
These clinical results may further confirm the pathogenic role of IFN-γ. It could also be
possible to postulate the efficacy of emapalumab on cytokine storm syndromes from other
aetiologies, including inflammatory or iatrogenic, and in adult ages. However, the data
mined from children to adults with HLH would be limited by the presence of comorbidities,
which may contribute to a higher rate of mortality in adulthood (almost 40%) [55,56]. In
fact, patients with cytokine storm syndrome and comorbidities may be at high risk of poor
prognosis, less able to tolerate medical procedures, and less responsive to any treatment, as
recently shown in severe COVID-19 cases [57,58].

In addition, considering the poor prognosis of MAS occurring in AOSD, one crucial
point would be a more accurate estimation of the subsequent clinical response. In this
context, IFN-γ-induced chemokines were correlated with markers of MAS disease severity
and clinical response to emapalumab [43,44], thus suggesting possible predictors of clinical
response to treatment. Furthermore, IFN-γ-induced chemokines could be considered
as mechanistic biomarkers, better reproducing the ongoing pathogenic mechanisms in
MAS during AOSD and possibly more accurately reflecting the manipulated signalling
pathways. In this context, specific HLH features such as anaemia and thrombocytopenia
would be more correlated to IFN-γ [31]. In the heterogenous scenario of these patients,
some clinical features should be considered as possible predictors of clinical response to
IFN-γ inhibition when more relevant than others. Looking at new therapeutic strategies
targeting IFN-γ, the possible role of JAK inhibitors was proposed in animal models of
HLH as a further therapeutic option in these patients [59,60]. By the modulation of IFN-γ
and other cytokines, the JAK1/2 inhibitor ruxolitinib reduced immune cell proliferation
and activation, and reversed organ pro-inflammatory damage on experimental models of
HLH [59,60]. Since they were concomitantly affecting different proinflammatory pathways,
these drugs could simultaneously target IFN-γ and other pathogenic mechanisms of MAS
during AOSD, possibly allowing for better management of cytokine storm syndrome
in these patients [61]. On these bases, recent evidence has shown ruxolitinib may be
considered for patients with secondary HLH with contraindications to glucocorticoids,
with a good clinical response [62–64].
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Figure 1. Pathogenic implications of IFNs in a cytokine storm syndrome occurrence. Type I IFNs bind to the IFNAR complex,
consisting of two different chains, IFNAR1 and IFNAR2. Type II IFN activates the IFNGR, which is composed of two
different chains, IFNGR1 and IFNGR2, and type III IFNs signal through a receptor complex made up of IL28RA and IL10R2.
The impairment of the functions of type I IFNs or its delayed response may be implicated in the development of a cytokine
storm syndrome lacking the negative control of production and maturation of pro-inflammatory cytokines as well as lacking
the positive control on the production of anti-inflammatory cytokines. The enhanced activity of IFN II results in occurrences
of cytokine storm syndrome via increased production of pro-inflammatory cytokines and chemokines and the increased
activation of macrophages and cytotoxic T cells. The role of IFN III in this context has yet to be fully defined. Abbreviations:
IFN: Interferon; IFNAR: interferon-alpha/beta receptor; IFNGR: interferon-gamma receptor; IL28RA: interleukin 28 receptor,
alpha subunit; IL10R2: interleukin 10 receptor 2; TYK2: tyrosine kinase 2; JAK 1: Janus kinase 1; JAK 2: Janus kinase 2.

Finally, it must be pointed out that HLH could be also observed in patients with severe
combined immunodeficiency lacking the main pathogenic effectors of the disease, T- and
NK-cells. In these patients with severe combined immunodeficiency, the aberrant activa-
tion of macrophages and the subsequent cytokine storm syndrome may occur despite the
complete absence of lymphocytes [65]. Furthermore, IFNGR1 deficiency is a rare immune
deficiency characterized by selective susceptibility to mycobacterial disease due to IFNGR1
gene mutations [66]. Complete autosomal recessive IFNGR1 deficiency is characterized
by the early onset of disseminated life-threatening infections from low-virulent mycobac-
teria, lack of response to IFN-γ cytokine replacement therapy, and high mortality [67]. A
hematopoietic stem cell transplant is the only curative therapy available for these patients.
Taking these observations together in the context of HLH, early identification of these pa-
tients would be needed to avoid unnecessary exposure to IFN-γ inhibition during cytokine
storm syndrome.

7. Conclusions

In conclusion, IFNs are signalling molecules that mediate a variety of biological
functions from defence against viral infections to antitumor and immunomodulatory
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effects. Preclinical and clinical observations suggest that these molecules could promote
the hyperinflammatory response in MAS during AOSD, although additional evidence
is needed to fully elucidate this topic. Finally, the positive results of inhibiting IFN-γ in
primary HLH may provide a solid rationale to arrange further clinical studies, paving
the way towards new therapeutic targets and reducing the high mortality rate in MAS
during AOSD.
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