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Abstract. Sporadic amyotrophic lateral sclerosis (SALS) is a 
devastating neurodegenerative disorder. However, the under-
standing of SALS is still poor. This research aimed to excavate 
attractor modules for SALS by integrating the systemic module 
inference and attract method. To achieve this, gene expression 
data and protein-protein data were recruited and preprocessed. 
Then, based on the Spearman's correlation coefficient (SCC) of 
the interactions under these two conditions, two PPI networks 
separately with 870 nodes (979 interactions) in normal control 
group and 601 nodes (777 interactions) in SALS group were 
built. Systemic module inference method was performed to 
identify the modules, and attract method was used to iden-
tify attractor modules. Finally, pathway enrichment analysis 
was performed to disclose the functional enrichment of these 
attractor modules. In total 44 and 118 modules were identified 
for normal control and SALS groups, respectively. Among 
them, 6 modules were with similar gene composition between 
the two groups, and all 6 modules were considered as the 
attractor module via attract method. These attractor modules 
might be potential biomarkers for early diagnosis and therapy 
of SALS, which could provide insight into the disease biology 
and suggest possible directions for drug screening programs.

Introduction

Amyotrophic lateral sclerosis (ALS) is characterized by 
widespread loss of motor neurons in the major motor 
cortex and is a devastating neurodegenerative disorder (1). 
Approximately  10% of ALS cases have a family history 
and the other 90% of cases are sporadic amyotrophic lateral 
sclerosis (SALS) (2,3). To date, >150 genetic mutations and 
>25 different genes have been identified to possibly lead to 

the same clinical disease of FALS in patients, and it is char-
acterized to some extent (4). However, the understanding for 
the more common SALS is still poor and there is no effec-
tive treatment or definitive diagnostic test for SALS  (5). 
Identification of genetic factors may provide some insight into 
the underlying mechanisms of this motor neuron degeneration 
disease (6). Recently, the mutations of PFN1 (7), CAMTA1 (8), 
and MATR3  (9) have been identified to be associated with 
SALS cases. Moreover, the whole gene composition of the 
SALS has been identified (10). Even though researchers have 
tried their best to overcome this complicated and refractory 
disease, the pathological mechanism of SALS is still unclear.

During the past several years, high-throughput experi-
mental and the second generation sequencing technologies 
have produced large amounts of gene expression profile data, 
and make it possible to study the pathological mechanism 
of a certain disease systematically (11). It is well known 
that the genes that are functionally related to the disease are 
always highly co-expressed across organisms (12). In other 
words, they are active in modules (13). Fortunately, several 
module approaches have been proposed to determine the 
differential expression of the modules under differential 
cell types, and systemic module inference method (14) and 
attract method (15) is the most frequently used methods to 
conducted analysis on the differential expressed modules. The 
systemic module inference method can reveal the interesting 
patterns between gene composition and expression correlation, 
especially those affecting modules for genomic stability (14), 
and the attract method can best discriminate the differences 
between different cell phenotypes, and is not restricted to the 
annotated genes (15).

Therefore, to understand the mechanism of SALS, we inte-
grated the systemic module inference method and the attract 
method to conduct analysis on the gene expression of SALS, so 
as to identify the differentially expressed modules, which we 
called attractor modules for SALS. The results might provide 
insight into potential biomarkers for early diagnosis and therapy 
of SALS, or even give a hand for clinical treatment of this 
complicated and refractory disease and other related diseases.

Materials and methods

Gene expression data recruiting and preprocessing. Data 
recruitment of SALS, with accession number E-MTAB‑2325, 
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was conducted from ArrayExpress database (http://www.ebi.
ac.uk/arrayexpress/). E-MTAB-2325 exists on A-AGIL-28 - 
Agilent Whole Human Genome Microarray 4x44K 014850 
G4112F (85 cols x 532 rows) Platform, and consist of 41 samples 
(10 normal control samples and 31 SALC patients).

Prior to analysis, the robust multichip average  (RMA) 
method (16) was used to perform background correction and 
quantile based algorithm (17) and invited to carry out normali- 
zation to debride the effect of nonspecific hybridization. 
Besides, Micro Array Suite 5.0 (MAS 5.0) algorithm was used 
to amend perfect match and mismatch value (18). Moreover, 
the median polish was utilized to conduct the calculation of 
the gene expression value analysis (19). Finally, all the genes 
in the probe level were converted into gene symbols, and 
18,411 gene symbols were procured.

PPI network construction. To construct the PPI network, 
data were firstly recruited from the database Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING, 
http://string-db.org/). The data comprised of 1,048,576 inte- 
ractions with combine-scores obtained from STRING in order 
to build PPI network. Following the removing of self-loops and 
proteins without expression value, a PPI network containing 
7,279 nodes and 43,786 highly correlated interactions (with 
combine-score ≥0.7) was constructed. Taking the intersection 
of the 12,493 genes in E-MTAB-2325 and the nodes in the PPI 
network, we established a novel PPI network with 7,033 nodes 
(43,786 interactions).

PPI network re-weighting. The score of an interaction could 
represent the reliability of PPI network, and the re-weighted 
interaction could better reflect the practical network intera- 
ction than the original one  (20). In the present study, PPI 
networks under two conditions were separately re-weighted by 
the parameter of Spearman's correlation coefficient (SCC) to 
reflect the actual relationship between these interactions. First 
of all, the SCC of each interaction in the novel PPI network was 
calculated according to the gene expression profile value, and 
the absolute values of the SCC were separately considered as 
the combine-score value of each interaction. Then, a two-tailed 
t-test with Benjamini-Hochberg false discovery rate (FDR) 
adjustment was used to identify the P-values of differential 
gene expression between SALC and control conditions (21), 
and the interactions with P-value <0.05 were established to 
build the destination networks for normal control and SALS 
groups, respectively. In the circumstances, two PPI networks 
separately with each of the edges were assigned a combined 
score were built for normal control and the SALS groups, 
respectively.

Identifying maximal cliques from the PPI networks. A 
maximal clique is a maximal independent set of sub-graph in a 
graph, and any two vertices in the clique are adjacent (22). The 
maximal cliques are always one of the fundamental problems 
in a certain network, and identifying maximal cliques has 
been widely used in bioinformatics and clustering (23). Here, 
for identifying the maximal cliques from the PPI networks, we 
invited the fast depth-first method to perform the analysis. All 
of the maximal cliques were ranked according to the number 
of nodes. The cliques with too small amount of nodes might 

be too simple and insufficient to describe the correlation of the 
biomarkers and the disease while the cliques with too large 
numbers of genes were not easy enough to be understood by 
human experts. Hence, we only retained the maximal cliques 
whose number of nodes was not less than 6 and not larger 
than 20 for further analysis in this study.

Identifying modules. Furthermore, to identify modules for 
normal control and the SALC groups, clique-merging were 
utilized to perform module-identification algorithm in this 
study (24). First of all, the weighted interaction density (WID) 
was separately calculated for each maximal cliques that we 
identified above, and all of the maximal cliques were ranked 
in descending order on the basis of their values of WID. 
Moreover, there might be thousands of maximal cliques in a 
PPI network and most of them overlapped with one another, 
and the highly overlapped cliques should be removed to reduce 
the result size. Moreover, merging highly overlapped cliques 
to form bigger sub-graphs was also desirable since complexes 
were not necessarily fully connected and PPI data might be 
incomplete. Hence, the inter-connectivity between any two 
cliques was calculated according to the WID values, and the 
inter-connectivity values were used to determine whether two 
overlapped cliques should be merged together or not. In the 
present study, the inter-connectivity value >0.5 was used as 
the cut off value whether to merge or not merge these two 
maximal cliques.

Comparison of the genes in the modules under different 
conditions. In order to better compare the differential 
expression of the modules between normal control and 
the SALS conditions, the modules that were with same or 
similar genetic make-up in the two groups were determined. 
The Jaccard similarity of the module in the case and control 
condition were identified, which was calculated according to 
J (Sa, Tb) = |Sa ∩ Tb| / |Sa ∪ Tb| (25). The modules J (Sa, Tb) 
≥0.7 were considered as similar modules in gene composi-
tion. In the present study, all of the modules in similar gene 
composition were considered as candidate attractors in the 
following analysis.

Identification of attractor modules. Further to determine the 
differential attractor modules between the normal control 
and the SALS groups, the attract method was utilized to 
perform analysis on the candidate attractor. In the present 
study, GSEA-ANOVA, a gene set enrichment algorithm was 
used to indentify the differential expression on the attractor 
level data.

First of all, take gene m as an example, an ANOVA model 
was fit to it as its gene expression was modeled by a single 
factor. Suppose that there was u (u = 1, …, u) samples and v 
(v = 1, …, v) cell phenotypes, the gene expression profile of 
gene m was modeled in light of the following formula:

β represented the overall mean, β denoted the u-th cell type 
group's effect on the expression of the gene m, and δuv reflected 
the random normal residual error term.
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Then, an F-statistic value was assigned to gene m, which 
was calculated in light of the following formula:

MSSa represents the mean treatment sum of squares, which 
was determined by the amount of variation according to the 
cell type group-specific effects, and RSSa denotes the residual 
sum of squares.

In this case, we could identify which genes were infor-
mative for a particular set of cell types by integrating the 
ANOVA model with the F-statistics. As it was indicated that 
the F-statistic could capture the strength of association of a 
gene's expression over the different cell types, and the larger 
the F-statistic values were, the larger the cell type-specific 
expression changes (26). Therefore, in the present study, to 
test the relationship between the F-statistic values and cell 
type-specific expression changes, we used t-test and Welch 
modification to perform further analysis. For increasing the 
sensitivity of the differences between the global distribution 
of F-statistics and the module distribution, we performed a 
multiple-testing by using the Benjamini-Hochberg FDR-based 
method to adjust the resulting P-values (27). Finally, these 
candidate attractors with adjusted P-values <0.05 were 
regarded as attractor modules.

Pathway enrichment analysis of the attractor modules. To 
determine the functional enrichment of these attractor 
modules, pathway enrichment analysis was grounded in Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway data-
base in Genelibs (http://www.genelibs.com/gb/index.jsp). To 
determine the P-values of the enrichment condition, the Fisher's 
exact test was performed. Moreover, Benjamini‑Hochberg 
method was utilized to go on multiple testing on the P-values. 
The pathways with adjusted P-value <0.05 were considered as 
the pathways where certain attractor module was enriched. 
Additionally, the pathway with the minimum adjusted P-value 
was considered as the significant pathway that the attractor 
module was enriched in.

Results

PPI network re-weighting. To present the reliability of the 
network, the interactions were all re-weighted to reflect an 
actual interaction network based on SCC. As statistical anal-
ysis was conducted on the distributions of the absolute value 
of SCC in the normal control and the SALS groups, we found 
that the distributions were different from each other (Fig. 1). 
To increase the comparability of these two groups, a two-
tailed t-test with Benjamini & Hochberg FDR adjustment 
was utilized to determine the P-values of differential gene 
expression between the normal control and the SALS condi-
tions, and under the cut-off value of P-value <0.05, two PPI 
networks separately with each of the edges were assigned a 
combined-score built for the normal control and the SALS 
groups, respectively. However, there were some nodes out of 
the main networks, and these nodes with lower degree were 
not associated with the biological process of a certain disease. 
Hence, to conduct the following analysis more conveniently, 
the nodes out of the main networks were removed, and only 
the main networks remained to perform a further analysis. 
There were 870 nodes (979 interactions) in the normal control 
group and 601 nodes (777 interactions) in the SALS group of 
the main PPI networks, respectively.

Identifying maximal cliques from the PPI networks. Maximal 
cliques were one of the fundamental problems in a certain 
network, hence in the present work, we identified the maximal 
cliques to perform analysis on the reweighted network. The 
fast depth-first method identified the maximal cliques from 
the PPI networks, and we gained 12,849 and 22,605 maximal 
cliques, respectively, for the normal control and the SALS 
groups. Finally, under the threshold value of node number 
larger than  6 and less than  20, 1,474 and 4,224  maximal 
cliques, respectively, were obtained for the normal control and 
the SALS groups for further analysis.

Identifying modules. To further refine the maximal cliques, 
modules were identified based on the clique-merging. After 
the WID values in both groups were calculated and ranked in 

Figure 1. The distributions of the absolute value of Spearman's correlation 
coefficient (SCC) in the normal control and the sporadic amyotrophic lateral 
sclerosis groups. The X-axis denotes the absolute value of the SCC, and the 
Y-axis represents the number of interactions.

Figure 2. The distributions of the weighted interaction density in the normal 
control and the sporadic amyotrophic lateral sclerosis groups. The X-axis 
denotes the WID values, and the Y-axis represents the number of interactions.
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descending order, we found that the WID values were ranged 
from 0.316 to 0.498 in the normal control group, and in the 
SALS group they ranged from 0.178 to 0.499 (Fig. 2). Thus, 
the cliques in the normal control group were more likely 
to have more common neighbours than the cliques in the 
SALS group. Moreover, the inter-connectivity between two 
cliques was defined based on the connectivity between the 
non-overlapping parts of the two cliques. Under the threshold 

value of the inter‑connectivity value >0.5, 44 and 118 modules 
were confirmed as the normal control and the SALS groups, 
respectively.

Comparison of the genes in the modules under different 
condition. Having identified modules for both groups, for 
better comparing the differential modules between normal 
control and the SALS conditions, we performed analysis 

Figure 3. The 6 attractor modules identified based on the approach of integrating the systemic module inference method with the attract method. The yellow 
nodes represent the genes of the modules and the lines denote the interactions between these genes.

Table I. Details of the attractor modules and the pathway.

		  Gene		  Enriched pathway
Module	 P-value	 number	 Gene	 (P-value)

Module 1	 0.3130570	 6	 NUP88, NUP107, NUP37, NUP153, NUP133, NUP155	 NA
Module 2	 0.2126378	 7	 NDUFAB1, NDUFB2, NDUFB4, NDUFB5, 	 Oxidative phosphorylation
			   NDUFB3, NDUFS1, NDUFAF1	 (P=1.63x10-10)
Module 3	 0.4126378	 8	 RPS20, RPL18, RPS16, RPL6, RPS13, RPL27, 	 EIF2 signaling
			   RPS12, RPL19	 (P=3.67x10-12)
Module 4	 0.4126378	 6	 SCTR, SCT, IAPP, ADCY7, GIPR, VIPR2	 Neuroactive ligand-receptor
				    interaction (P=1.11x10-3)
Module 5	 0.5841532	 8	 RPS20, RPL35, RPL18, RPS16, RPL6, RPS13,	 NA
			   RPL8, RPL19
Module 6	 0.5841532	 6	 ESR1, NR4A1, RARA, NR1H2, NR1D1, RORA	 Circadian rhythm
				    (P=0.2.31x10-3)
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to determine the modules that were with same or similar 
genetic make-up in the two groups. Under the cut-off value 
of J (Sa, Tb) ≥0.7, 6 candidate attractors, which we named as 
module 1 - module 6 were selected for further analysis.

Identification of attractor modules. To determine the diffe- 
rential expression normal control and the SALS groups, the 
attract method was conducted for analysis on the attractor 
level. After having used the t-test and Welch modification to 
determine the F-statistic values and cell type-specific expres-
sion changes, the resulting P-values were adjusted by using 
Benjamini-Hochberg FDR-based method, 6 attractor modules 
were identified under the threshold value of adjusted P-values 
<0.05. As shown in Fig. 3, in module 1 to module 6, there 
were, respectively, 6 nodes (15 interactions), 7 nodes (21 inte- 
ractions), 8 nodes (28 interactions), 6 nodes (15 interactions), 
8 nodes (28 interactions) and 6 nodes (15 interactions). The 
details of the P-values and nodes are listed in Table I.

Pathway enrichment analysis of the attractor modules. 
Further to disclose the functional enrichment of these attractor 
modules, pathway enrichment analysis was performed. Under 
the adjusted P-value <0.05, we found that there was no 
pathway enriched in module 1 and module 5. While module 2 
was enriched in oxidative phosphorylation (P=1.63x10-10), 
module  3 was enriched in EIF2 signaling (P=3.67x10-12), 
module 4 was enriched in neuroactive ligand-receptor inte- 
raction (P=1.11x10-3) and module 6 was enriched in circadian 
rhythm (P=0.2.31x10-3). We predicted that these attractor 
modules mainly influenced the pathway functions during the 
occurrence and development of SALS.

Discussion

In the present study, we combined the systemic module infe- 
rence method with the attract method to perform analysis 
on the gene expression of SALS to identify the attractor 
modules for SALS, expecting to gain further clarification. By 
performing this integrated approach, we successfully identi-
fied 6 attractor modules, where module 2 was enriched in 
oxidative phosphorylation pathway, module 3 was enriched in 
EIF2 signaling pathway, module 4 was enriched in neuroac-
tive ligand-receptor interaction pathway and module 6 was 
enriched in circadian rhythm pathway.

ALS is one of the most destructive neurological diseases. 
Worse, most of ALS patients can survival only 3-4 years after 
symptom onset (28). Fortunately, there are still around 10% 
of patients that can live beyond 10 years after symptom onset, 
which is mainly related to younger age of onset, pure lower 
motor neuron involvement, or pure upper neuron involve-
ment (29). Researchers have focused on studying the oxidative 
stress in clinical or patient-oriented SALS during the last 
several years. Analyses of post-mortem neuronal tissue in 
SALS patients consistently showed that oxidation did result 
in damage to proteins, lipids or DNA (30). The study of the 
effects of oxidative stress on molecular targets and the identi-
fication of reliable biomarkers involved in oxidative stress are 
two major challenges in SALS (31). Although the evidence for 
oxidative damage in the pathogenesis of SALS is extensive, 
the ultimate triggers of increased levels of reactive oxygen 

species remain unknown, leading to speculation that oxidative 
stress is a major cause of the disease or is only a secondary 
consequence (32). In the present study, oxidative phosphoryla-
tion pathway was a pathway that one of the attractor modules 
identified, which exposed the close connection between the 
SALS and the oxidative stress.

In addition, the pathway of neuroactive ligand-receptor 
interaction was also shown great importance during the pro- 
gress of SALS in the present study, and the module genes of 
SCTR, SCT, IAPP, ADCY7, GIPR and VIPR2 were enriched in 
this pathway. It is well known that ALS is a devastating neuro-
logical disease, hence, there may be no dispute or divergent 
idea that there is a close connection between the pathway of 
neuroactive ligand-receptor interaction with SALS. Moreover, 
it was indicated that gene ADCY7 presented an important 
role in the central nervous system, hence, ADCY7 may have 
properties related to cell viability and may potentially be ALS 
pathology  (33). In addition, the pituitary adenylyl cyclase 
activating polypeptide (PACAP) originally isolated from the 
hypothalamus is a member of the vasoactive intestinal poly-
peptide (VIP)/mycin/glucagon superfamily (34). VPAC1 and 
VPAC2 bind PACAP and related neuropeptide VIPs with 
similar affinities are expressed by various cell types including 
neurons, glial cells, endothelial cells, lymphocytes, and macro-
phages  (35). Therefore, endogenous PACAP may promote 
microglial destruction, and these functions are thought to 
drive progression of ALS disease (36). VAPC2 is produced by 
VIPR2 gene during the generation of gene-specific ribonucleic 
probes for RNA in situ hybridization experiments (36). In this 
case, there might be some relationship between the VIPR2 and 
SALS. Verification experiments will be conducted to confirm 
the roles of these attractor modules on the SALS pathology.

Therefore, the approach of integrating the systemic module 
inference method with the attract method to perform analysis 
on the gene expression of SALS to identify the attractor 
modules for SALS was suitable. Six attractor modules (module 
1 - module 6) were identified for SALS, where module 2 was 
enriched in oxidative phosphorylation, module 3 was enriched 
in EIF2 signaling, module  4 was enriched in neuroactive 
ligand-receptor interaction and module  6 was enriched in 
circadian rhythm. We predicted that these attractor modules 
mainly influenced these pathways to function during the occur-
rence and development of SALS, and these attractor modules 
might be potential biomarkers for early diagnosis and therapy 
of SALS, which could provide insight into the disease biology 
and suggest possible directions for drug screening programs, or 
even provide a hand for future study of related disease research.
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