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The allelic architecture of complex traits is likely to be underpinned by a combination of multiple common fre-
quency and rare variants. Targeted genotyping arrays and next-generation sequencing technologies at the
whole-genome sequencing (WGS) andwhole-exome scales (WES) are increasingly employed toaccesssequence
variation across the full minor allele frequency (MAF) spectrum. Different study design strategies that make use of
diverse technologies, imputation and sample selection approaches are an active target of development and evalu-
ationefforts. Initial insights intothecontributionofrarevariants incommondiseasesandmedically relevantquan-
titative traits point to low-frequency and rare alleles acting either independently or in aggregate and in several
cases alongside common variants. Studies conducted in population isolates have been successful in detecting
rare variant associations with complex phenotypes. Statistical methodologies that enable the joint analysis of
rarevariants across regions of the genome continue toevolve withcurrent efforts focusing on incorporating infor-
mation such as functional annotation, and on the meta-analysis of these burden tests. In addition, population
stratification, defining genome-wide statistical significance thresholds and the design of appropriate replication
experiments constitute important considerations for the powerful analysis and interpretation of rare variant asso-
ciation studies. Progress in addressing these emerging challenges and the accrual of sufficiently large data sets
are poised to help the field of complex trait genetics enter a promising era of discovery.

The genetic architecture of complex traits has not been fully elu-
cidated yet. Following the advent of genome-wide association
studies (GWASs) and large-scale consortial meta-analyses of
GWASs, several thousands of variants have been robustly
associated with complex phenotypes of medical relevance
(http://www.genome.gov/gwastudies), giving valuable insights
into underlying biological processes. GWASs are designed to
provide a survey of common variation [minor allele frequency
(MAF) . 0.05], therefore examining only a portion of the
genomic landscape of complex traits. Low-frequency (MAF
0.01–0.05) and rare (MAF , 0.01) variation has thus far been
more challenging to access. Early studies on data from deep se-
quencing of small numbers of loci and more recently larger-scale
studies (e.g. 1000 Genomes Project) demonstrate that rare
variants constitute the majority of polymorphic sites in human
populations (1–3).

ACCESSING RARE VARIANTS

Current approaches to investigate the effect of rare variants in
complex traits involve direct genotyping—for example,
through targeted arrays like the exome chip (http://genome.sph.
umich.edu/wiki/Exome_Chip_Design), metabochip (4) or
immunochip (5), using the GWAS as a scaffold to impute low-
frequency variants based on a sequenced reference panel (e.g.
1000 Genomes Project) (3), or resequencing of specific
regions and increasingly the whole exome (WES) or the whole
genome sequencing (WGS) (schematic overview in Fig. 1).
The most commonly used WGS platforms generate millions of
short sequence reads that are then aligned to a reference
genome through read mapping. Variant calling algorithms
are subsequently employed to identify candidate sites at which
one or more samples differ from the reference sequence and to
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call genotypes across samples. Currently, studies tend to focus
on single nucleotide variants, as accurate calling of copy
number variation is less straightforward. High-depth WGS is
currently the preferred approach to exhaustively study variation
across the full allelic spectrum genome-wide but for complex
trait studies, where a large number of individuals need to be
sampled costs remain prohibitively expensive. For mapping
complex trait variants, study designs that increase the number
of sequenced samples by decreasing sequencing depth are
more powerful and cost-effective than sequencing fewer indivi-
duals at high depth (4,6–8), but detection and calling accuracy at
rare variant sites can be compromised. WES interrogates only
the coding regions of genes. The lower cost of WES compared
with WGS means that higher depths are feasible, leading to
higher accuracy in rare variant calls.

EXAMPLES OF RARE VARIANTS CONTRIBUTING

TO COMPLEX TRAITS

There is growing evidence that rare variants can play a role in
complex disease aetiology. One of the earliest examples came
from the field of breast and ovarian cancers with the discovery
of multiple rare mutations in the BRAC1 and BRAC2 genes
(reviewed in 9–11). A more recent example is provided by a
study which identified four rare variants acting independently
on type 1 diabetes (T1D) risk through targeted resequencing of
IFIH1, a gene located in a region previously associated with
T1D by GWAS (12). A further report of rare variants exerting in-
dividual effects showed that five distinct rare variants in NOD2
are associated with the risk of Crohn’s disease and appear to act
independently from each other and from the previously impli-
cated low-frequency causal variants (13–15). In a different
allelic architecture paradigm, sequencing the exons of the
GWAS-implicated type 2 diabetes (T2D) gene MTNR1B identi-
fied several rare variants impairing melatonin receptor 1B func-
tion which collectively contribute to T2D risk (16). Several
examples of rare and low-frequency variants with individually

large effect sizes have also been reported. For example, a
rare missense variant in MYH6 was found to be associated
with high (�12-fold) risk of sick sinus syndrome (17) in a
pioneering study from Iceland, which combined whole-genome
sequencing, genome-wide genotyping and imputation-based
approaches. Notably, over the past few years, WGS of affected
trios has led to the identification of several de novo mutations
implicated in the aetiology of autism (18–21), schizophrenia
(22,23) and intellectual disability (24).

Perhaps, the most abundant examples of rare variants acting
collectively have emerged from the study of medically relevant
quantitative traits and in particular circulating lipid levels.
Screening for variants in genes implicated in Mendelian forms
of low high-density lipoprotein cholesterol (HDL-C) levels
revealed an aggregation of rare alleles in individuals with low
HDL-C compared with those with high HDL-C (25). Resequen-
cing of ANGPTL4 uncovered both rare and common variants that
reduce triglycerides and increase HDL (26). Recently, a region
near PARM1 was implicated in HDL-C level variation through
a sliding-window burden testing approach performed on variants
with MAF , 0.01 in one of the first WGS-based complex trait
studies to date (27). An aggregation of rare alleles has also
been associated with low-density lipoprotein cholesterol
(LDL-C) (28) and with blood pressure reduction and protection
against hypertension (29). The first reported application of
exome array genotyping identified five independently acting,
low-frequency variants associated with fasting proinsulin con-
centrations (30).

POPULATION ISOLATES

The study of rare variation can be empowered by focusing on
population isolates (31,32). Isolated populations are character-
ized by increased phenotypic, genetic and environmental homo-
geneity. In these populations, rare variants may have drifted up in
frequency and linkage disequilibrium (LD) tends to be extended.
Founder populations carry a subset of the genetic variation
present in the original population from which they have
diverged. The effect of random genetic drift on increasing
allele frequencies is higher for rare compared with common var-
iants. Population bottlenecks can also affect the genetic architec-
ture of isolates by reducing the population size and hence
heterogeneity, increasing endogamy levels and subsequently in-
creasing levels of homozygosity and LD. Population isolates
tend to demonstrate geographical and/or cultural isolation fre-
quently commensurate with a homogeneous set of environmen-
tal exposures, e.g. diet and lifestyle.

For example, the Iceland-based deCODE study has been suc-
cessful in identifying rare variants contributing to complex traits
by leveraging these characteristics of population isolates in con-
junction with extended genealogical information for a variety of
complex traits (including prostate cancer, Alzheimer’s disease,
gout and serum uric acid levels) (33–36). Association of a rare
functional variant (R19X) in the APOC3 gene with HDL-C
and triglycerides levels was first detected in the Amish founder
population and later confirmed in a Greek population isolate
from Crete. R19X appears to have drifted up in frequency inde-
pendently in the two population isolates (37,38).

Figure 1. An overview of steps taken in the search for low-frequency and rare
variants affecting complex traits.
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RARE VARIANT REFERENCE PANELS

Large-scale collaborative efforts aiming to help understand the
full spectrum of sequence variation serve as valuable resources
for the scientific community. The 1000 Genomes Project (3)
has helped enhance our understanding of low-frequency and
rare variants by providing a catalogue of common and uncom-
mon variation through WGS and exon sequencing across
several global populations. Importantly, it has also enabled the
first-line use of imputation approaches (39) to infer genotypes
at untyped low-frequency variants in large-scale GWAS meta-
analysis efforts. This approach has started contributing to the
identification of novel disease-associated variants (e.g. 40).
The National Heart Lung and Blood Institute Exome Sequencing
Project (NHLBI-ESP) (https://esp.gs.washington.edu) has pro-
vided insights into rare coding variants through WES of 6500
samples in phenotyped sets from the USA. The UK10K
Project (www.uk10k.org) has undertaken high-depth WES of
6000 and low-depth WGS of 4000 well-phenotyped individuals
primarily from the UK. The imputation of low-frequency and
rare variants can be challenging compared with common
alleles, and the availability of very large-scale reference panels
can improve imputation performance. It is envisaged that
large-scale WGS efforts will join forces to generate an overarch-
ing reference panel to enable efficient and widespread use of the
generated data.

RARE VARIANT ASSOCIATION ANALYSIS

Statistical genetics considerations of rare variant association ana-
lysis have been the focus of intensive method development over
the last few years. The single-point analysis of rare variants is
under-powered, because not enough copies of the rare variant
allele are observed in sample sizes typically available to date.
Instead of examining the association of each rare variant in
isolation, multivariate methods that combine information across
multiple variant sites within a gene or other functional genomic
region are a viable alternative strategy (Fig. 1). A plethora of
such locus-specific statistical approaches have been developed
and fall broadly into a few categories: collapsing methods based
on summary statistics (Cohort Allelic Sum Test (41); Combined
Multivariate and Collapsing Test (42); Weighted Sum Test (43);
Variable-Threshold Approach (44)); methods based on similar-
ities among individual sequences (Kernel Based Association
Test (45); Sequence Kernel Association Test (46)); and regression
models that use collapsed sets of variants and other factors as pre-
dictors (collapsing test using proportion of rare variants (47);
Adaptive Sum Test (48); LASSO andRidge Regression (49)) (50).

Collapsing methods aggregate information across multiple
variants within a region of interest into a single quantity,
which is then used to test for trait association with an accumula-
tion of rare minor alleles. Collapsing methods vary in the way
they collapse the variants and in the chosen statistical test
(42,47), for example options include using a regression approach
that models the phenotype as a function of the proportion of rare
variants at which an individual carries a minor allele, or as a func-
tion of the presence or absence of a minor allele at any rare
variant within an individual. Collapsing approaches assume
that all collapsed variants are associated with the disease, and
that they can be either deleterious or protective. Alternative

approaches that model similarities among individual sequences
using various kernel functions, such as KBAT (45) and SKAT
(46), are multivariate tests that combine single-variant test statis-
tics. They make no assumptions about the probability or direc-
tion of effect of each rare variant, and are therefore more
flexible, given that the allelic architecture of complex traits is
unknown. A unified approach between collapsing methods and
SKAT (SKAT-O (51)) adapts to the data to give more weight
to the test that makes the most realistic assumptions for the spe-
cific region and trait of interest.

Genotype uncertainty metrics for imputed genetic variants or
for sequencing-derived variants could be incorporated as
weights in different statistical tests, instead of filtering out var-
iants with low imputation or quality scores, to increase associ-
ation power as shown by (52). Moreover, variants in rare
association tests can be down or up weighted according to
their probability of being functional. Such weights can be
based on the MAF under the assumption that rarer variants are
more likely to be deleterious according to the natural selection
theory. Alternatively, weights can be based on functional anno-
tation predictions. Coding variants that are predicted to have
severe functional consequences may be hypothesized to confer
larger phenotypic effects, have higher translational potential
and may be more amenable to designing downstream functional
experiments. Functional annotation of non-coding variation is
more challenging and an active area of current research.

An open question for rare variant analysis in WGS studies is
how to define the region of interest. In WES studies, such a deci-
sion is more straightforward, as a gene unit is an intuitive option.
In WGS studies, a potential approach is to divide the genome into
windows of certain physical size. However, it is not clear what
the size of the windows should be and whether they should be
overlapping or by how much. Genome-wide significance
levels for the GWAS era were estimated to be at P ¼ 5 × 1028

based on the number of independent common-frequency var-
iants across the genome calculated based on the European popu-
lation data from the HapMap Project (53). This threshold has
served the scientific community well, representing a standard
to be attained before declaring significance. The analysis of
rare variants across the genome requires a more stringent signifi-
cance threshold that takes into account single-point common and
rare variant tests as well as burden tests. This threshold is likely to
vary depending on the study design parameters like sample size
and sequencing depth, and is expected to be lower for African-
descent populations.

META-ANALYSIS OF RARE VARIANTS

Meta-analysis of common variants in GWASs is a common strat-
egy of combining studies examining the same trait to increase
power to obtain statistical evidence of association. Traditional
meta-analysis techniques, such as Fisher’s (54) and Stouffer’s
(55) tests, that use region-level P-values from the different
burden tests are not necessarily powerful in combining data
across independent studies for rare variant association testing,
as they do not capture all of the available information (56).
Ideally, meta-analytical approaches for next-generation sequen-
cing studies should result in little or no power loss when
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compared with a joint analysis approach, in the same way as
meta-analysis of single tests for common variants (57).

Lumley et al. (58) and Lee et al. (59) have independently devel-
oped meta-analytical techniques for SKAT (46) and SKAT-O
(51), respectively. The latter approach can assume both homoge-
neous and heterogeneous genetic effects across studies, corre-
sponding to a fixed- and random-effects meta-analysis model,
respectively. Both approaches are similar in spirit and are based
on study-specific summary statistics rather than individual-level
data. They combine single-variant score statistics first across
studies and then within a region. They also require between-
variant covariance-type relationship statistics (such as LD struc-
ture) for each region, as well as MAF of variants.

Liu et al (60) and Tang and Lin (61) suggest approaches that
encompass a number of popular gene-level association tests
such as collapsing tests (42,47), variable threshold (44) and
SKAT (46). Their methods also combine single-variant score
statistics across studies. A unique feature of the Liu et al
(2013) approach is that apart from calculating asymptotic
P-values, it also evaluates significance in an empirical and
numerically stable way via an adaptive Monte-Carlo simulation
scheme. Another unique feature of Liu et al.’s approach is its
ability to conduct conditional meta-analysis of gene-level
tests. Lumley et al., Lee et al. and Liu et al. (2013) show in simu-
lation studies that their proposed approaches are as efficient as an
analysis that pools individual-level data together. The evaluation
of different meta-analysis approaches of rare variant tests is an
active field of study.

POPULATION STRATIFICATION AT RARE

VARIANTS

Population stratification at rare variants is an important consid-
eration for next-generation association studies. Rare variants
show increased population specificity (3). Based on the theoret-
ical examination, rare variants can show a stronger pattern of
population stratification than common variants, particularly in
the presence of sharp spatial distributions for non-genetic risk
of disease (62). Existing methods to correct for population strati-
fication at common variants such as principal component ana-
lysis and genomic control have not been shown to effectively
control stratification at rare variants with implications for both
single-point and locus-based approaches (62–64). In empirical
data from the UK population, rare variants were found to
display different stratification patterns to common variants
(65). These findings underscore the need for carefully matching
samples, for example cases and controls, between geographical
regions and highlight the need for replication in independent
datasets.

REPLICATION OF RARE VARIANT SIGNALS

Strategies for replication of associations discovered in low-
frequency and rare variants depend on the allelic architecture
of the associated locus. For example, if a single low-frequency
or rare variant is driving the signal, replication can be sought
by genotyping the implicated variant in an independent sample
set (e.g. 17). For associations uncovered via locus-based
approaches, two replication strategies have been proposed:

variant-based replication, where only variants found in the dis-
covery phase are followed-up by, e.g. genotyping, and sequence-
based replication, where the whole region is re-sequenced in the
replication sample set and novel variants can be included in the
test (Fig. 1). Under several simulation scenarios, it has been
demonstrated that there are small gains in power when adopting
the sequence-based replication design and more so if the discov-
ery sample set is small. At medium- to large-scale studies and
when discovery and replication sample sets are drawn from
the same population, genotyping can offer a viable alternative
solution (66).

The emerging generation of studies in search of low-
frequency and rare variants affecting complex traits will
require robust strategies to ensure high power in the context of
an appropriate statistical framework. It is anticipated that
sequence-based meta-analysis across diverse populations, in-
cluding populations of African descent, will empower novel
locus discovery, and that accruing the necessary sample sizes
is likely to be a key determinant of success. Initial insights into
the contribution of rare variation indicate a firm role in
complex trait aetiology and suggest a combination of potential
allelic architectures underpinning biological phenotypes. Their
powerful detection will require tailored study design and ana-
lysis approaches.
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