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Abstract
Over the last few years, the development and relevance of 19F magnetic resonance imaging (MRI) for use in clinical practice 
has emerged. MRI using fluorinated probes enables the achievement of a specific signal with high contrast in MRI images. 
However, to ensure sufficient sensitivity of 19F MRI, fluorine probes with a high content of chemically equivalent fluorine 
atoms are required. The majority of 19F MRI agents are perfluorocarbon emulsions, which have a broad range of applications 
in molecular imaging, although the content of fluorine atoms in these molecules is limited. In this review, we focus mainly on 
polymer probes that allow higher fluorine content and represent versatile platforms with properties tailorable to a plethora of 
biomedical in vivo applications. We discuss the chemical development, up to the first imaging applications, of these prom-
ising fluorine probes, including injectable polymers that form depots that are intended for possible use in cancer therapy.
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TFEA	� 2,2,2-Trifluorethylacrylate
TFEMA	� 2,2,2-Trifluorethyl methacrylate
UTE	� Ultrashort echo time
ZTE	� Zero echo time

Introduction

Magnetic resonance imaging (MRI) using fluorinated probes 
(19F MRI) enables high contrast in images due to the negli-
gible fluorine background of living tissues. For this reason, 
fluorine isotopes are visualized with high specificity, allow-
ing for so-called “hot spot” imaging where the 19F MR signal 
is overlaid on a proton reference MR image. Moreover, the 
fluorine isotope 19F resonates at a Larmor frequency close 
to that of the proton 1H (94% of 1H); therefore, the hardware 
used for 1H MR imaging, with minor modifications, can also 
be used for 19F MRI. Currently, many clinical and experi-
mental scanners have become available for hardware modifi-
cations and the use of appropriate radiofrequency (RF) coils. 
Usually, the RF coils intended for 19F MR are constructed 
to be dual-tuned for both 1H/19F MRI. The 19F MR signal 
is proportional to the number of 19F nuclei, which allows 
absolute quantification of the 19F content.

For 19F MRI, fluorine-containing probes need to be syn-
thesized and then administered into the organism by either 
injection (intravenously or locally to the site of interest) 
or exogenous labeling of cells. Currently, there is a wide 
range of available fluorine probes for experimental and even 
clinical applications summarized in many excellent reviews 
[1–4]. The implementation of 19F MR probes ranges from 
cell targeting [5–8] and in vivo tracking of labeled cells 
[9–18], cancer diagnosis [19–22], inflammation monitoring 
[23–26], amyloid plaque detection or suppression [27–29], 
in situ partial oxygen pressure (pO2) determination [30, 31], 
drug metabolism (e.g., of 5-fluorouracil) investigation [32], 
intra/extracellular pH measurement [33, 34] or cation con-
centration estimation in cells and tissues [35]. In humans, 
the 19F probes have been tested in the immunotherapy of 
colorectal cancer with labeled dendritic cells, and a number 
of other clinical trials are ongoing [3, 12]. Currently, several 
theranostic 19F MR probes combining both diagnosis and 
therapy [36] have been implemented; however, testing of the 
probes on biological models of diseases is far behind their 
constantly evolving chemical development.

The main drawback of 19F MR imaging is its low sensi-
tivity due to the low amount of 19F nuclei per molecule of 
the synthesized fluorine-based probes. Usually, the concen-
tration of 19F atoms in fluorine-based probes is in the mil-
limolar range (for comparison, water has a proton concen-
tration of approximately 110 M under ambient conditions); 
therefore, agents containing a large number of 19F atoms are 
necessary for a sufficiently high signal-to-noise ratio (SNR). 

For a well-resolved single spectral peak, the key property 
needed for fluorine probes is an as-high-as-possible fraction 
of chemically equivalent 19F atoms in the molecule. A single 
peak allows us to detect a higher 19F MR signal compared 
to multiple spectral peaks, which can cause chemical shift 
artifacts in the MR images.

These demands can be accomplished, e.g., by probes 
based on polymer structures. Polymer probes enable the 
incorporation of a large amount of chemically equivalent 
fluorine atoms into a single molecule and thus could over-
come the sensitivity issue of 19F MRI. Moreover, polymer 
probes can be easily modified to increase their biological 
response and improve their behavior in living systems (pH, 
thermoresponsive parts or bonds, which might be enzymati-
cally degraded) or to add the imaging labels to drug moie-
ties. In this review, we summarize the current state of the art 
for polymer-based 19F MRI probes that have great potential 
in human medicine.

Types of fluorine‑containing probes

Various types of fluorinated agents are available in the form 
of fluorinated perfluorocarbon (PFC) nanoemulsions [37], 
fluorinated lanthanide chelates [2, 6], fluorinated nucleotides 
[32], fluoride-based nanocrystals [38], multicompartment 
amphiphilic polymers [19, 39–41], etc. A brief overview 
of fluorine-containing probes, including their system-
atic names, abbreviations, chemical structures, molecular 
weights and fluorine content, can be found in Table 1.

The most frequently used 19F MR agents are liquid PFCs, 
e.g., perfluoro-15-crown-5-ether (PFCE) (containing 20 flu-
orine atoms), perfluorooctyl bromide (PFOB) (17 fluorine 
atoms), a superfluorinated probe called PERFECTA (bearing 
36 chemically equivalent fluorine atoms per molecule) [42], 
or perfluoropolyethers (PFPE) (with more than 40 fluorine 
atoms per molecule). These probes possess convenient fea-
tures for in vivo applications such as nontoxicity, biological 
and chemical inertness and the ability to be internalized into 
cells, enabling their labeling. In this way, e.g., macrophages, 
stem cells, immune cells [8, 11, 13], or even clusters of 
cells such as pancreatic islets [17, 43] may be visualized 
and tracked. PFCs are both hydrophobic and lipophobic, 
and thus, liquid PFC emulsions must be stabilized with sur-
factants (lipids or phospholipids) or entrapped in polymer 
nanoparticles [44, 45] for stabilization and biocompatibility 
[15, 44]. There are many preclinical applications using PFC-
based agents covering the imaging of cardiac progenitor 
stem cells and bone-derived bone marrow macrophages [15], 
detection of dendritic cells [46], visualization of the immune 
response [47, 48], tracking of cells or pancreatic islets [43], 
etc. PFCs with a single 19F MR peak in their spectra have 
been implemented in various studies, including a clinical 
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trial with labeled dendritic cells (DCs) intended for adeno-
carcinoma treatment [12]. Although widely implemented, 
PFCs also have limitations, such as nonspecific accumula-
tion in tissues or at the site of inflammation [49], possible 
macrophage activation after high dosage [50], altered cel-
lular responses due to the incorporation of PFCs into the 
cellular membranes [1] and long retention times in the body.

In addition to cell labeling and tracking, fluorine-con-
taining probes can also be implemented for other purposes. 

Recently, polymer agents consisting of molecular hydro-
phobic and hydrophilic blocks (copolymers) have shown 
promising properties for biomedical applications, especially 
for tumor diagnosis based upon their responsiveness to the 
chemical environment or as possible drug carriers due to 
their nanoscale size. These probes can carry large amounts 
of fluorine atoms, resulting in a high sensitivity of visuali-
zation, although their short relaxation times resulting from 
polymerization need to be adjusted. In the majority of these 

Table 1   Overview of the most commonly used fluorine-containing probes

Systematic name Abbreviation Structure Mw (g/mol)
Fluorine
atoms %

wt.
Reference

Perfluoro-15-crown-5-
ether

PFCE 579.94 65.50
[15,43,57,

58]

Perfluorooctyl bromide PFOB 497.89 64.73 [18]

1,3-Bis[[1,1,1,3,3,3-
hexafluoro-2-(trifluoro-

methyl)propan-2-
yl]oxy]-2,2-

bis[[1,1,1,3,3,3-hex-
afluoro-2-(trifluorome-
thyl)propan-2-yl]ox-
ymethyl]propane

PERFECTA 1007.98 67.84 [42]

Perfluoropolyethers PFPE 319.97 71.24

[8,12,
15,46-
48,59-
61,62]

N-(2,2,2-Trifluo-
rethyl)acrylate

TFEA 154.02 36.99 [52,63,64]

N-(2,2,2-Trifluorethyl)
methacrylate

TFEMA 168.04 33.90 [52,63,64]

2,3,4,5,6-Pen-
tafluorostyrene

PFS 194.02 48.94 [51]

Octafluoropentyl meth-
acrylate

OFPMA 300.04 50.64 [65]

N-(2,2-Difluorethyl)
acrylamide

PDFEA 135.05 28.12 [39]



176	 Magnetic Resonance Materials in Physics, Biology and Medicine (2019) 32:173–185

1 3

amphiphilic agents, the fluorinated block is based on acrylic 
acid, specifically on 2,2,2-trifluorethylacrylate (TFEA), 
2,2,2-trifluorethyl methacrylate (TFEMA), poly[N-(2,2-dif-
luorethyl)acrylamide] (PDFEA) [39, 40] or octafluoropentyl 
methacrylate (OFPMA). There are also polymers based on 
functionalized styrenes (e.g., 2,3,4,5,6-pentafluorostyrene 
(PFS)) [51] or polydimethylsiloxanes (PDMS) [52]. These 
probes are described in more detail in the section “Polymer 
agents for drug delivery”

Fluorine-containing agents can also be targeted to specific 
structures (e.g., the cell surface); accumulated in specific 
cells such as macrophages, stem cells and immune cells [1, 
53]; and responsive to specific stimuli in the environment 
(physiological processes, enzymatic activity, concentrations 
of metal ions, pH or pO2) [3, 35, 54–56].

Preparation of fluorinated probes

The most commonly employed probes are PFCs, which 
are typically used as stabilized aqueous (nano)emulsions 
prepared under high pressure; emulsification is usually 
performed by probe sonication. An emerging class of 19F 
probes are fluorinated polymers. These polymers can be used 
either alone or as colloidal stabilizers for PFCs. Fluorinated 
copolymers are typically synthesized analogously to their 
nonfluorinated counterparts, i.e., by (controlled pseudo liv-
ing) radical, cationic, anionic or coordination polymeriza-
tion. The most commonly used controlled radical polymeri-
zation techniques involve nitroxide-mediated polymerization 
[66, 67], atom transfer polymerization (ATRP) [68, 69] and 
reversible addition fragmentation chain transfer (RAFT) 
polymerization [70, 71]. It is worth mentioning that if mul-
tiple fluorine atoms are in close proximity to the polymeriz-
able moiety, then they may dramatically reduce the elec-
tron density of the moiety, greatly influencing its reactivity 
to polymerization. Other procedures to introduce fluorine 
atoms into polymer structures involve fluoroalkanoyl per-
oxide initiation [72, 73], telomerizations with fluorinated 
mercaptan and fluorinated iodides [74] and esterification 
with perfluoroacyl chloride [75]. The fluorine block can 
also be introduced within the termination process [76]. The 
various copolymer structures include linear copolymers, 
hyperbranched copolymers, dendrimers [77–79], micelles 
[80] and star- and knedel-like structures [51, 65].

Properties of fluorinated polymers

A high density of equivalent fluorine atoms is required in the 
probes suitable for 19F MRI. However, (per)fluorinated—
fluorophilic parts of the molecules/polymer blocks are natu-
rally insoluble in water and aggregation of 19F probes with 

high fluorine content is often observed in aqueous solution. 
This causes attenuation of MR signal and decreasing the 
19F MR sensitivity. Therefore, it is necessary to solubilize 
them in aqueous milieus for their use as contrast agents. 
This may be done by adding covalently bound sufficiently 
hydrophilic moieties or polymer block(s) or by noncovalent 
incorporation of fluorophilic molecules into supramolecular 
assemblies containing amphiphiles solubilizing the whole 
system in aqueous milieu.

The specific advantage of polymer systems, especially 
from a diagnostic and therapeutic point of view, is the possi-
bility to construct delivery systems for drugs, nucleic acids, 
imaging labels or radionuclides to target cancerous tissue, 
macrophages or other cells and their subcellular compart-
ments. The polymer systems can easily build “molecular 
toolboxes”, which can be targeted and used as efficient ther-
anostic tools [81]. Self-assembled (supramolecular) poly-
mer systems are very promising. Supramolecular polymer 
systems are assembled from many molecules that can be 
bound together by various noncovalent interactions, such 
as hydrophobic, ion–ion, and coordination interactions [82, 
83]. The degradability of such systems may be controlled 
not only chemically but also physically. According to the 
type of bonds and molecules, different polymer systems can 
be created, such as polymer micelles, polymersomes, poly-
plexes, and polymer nanoparticles [76, 84]. Many fluori-
nated polymers exhibit self-assembly properties, which are 
based on the ability of fluorinated molecules to phase sepa-
rate and assemble into a fluorous phase that is both hydro-
phobic and lipophobic. The advantage of the self-assembly 
feature is its dependency on environmental conditions; 
therefore, these agents can act primary as environmentally 
responsive probes. These systems are responsive to external 
stimuli, such as changes in pH, temperature, redox potential, 
enzymes, and ion concentrations. Their features can be used 
for custom-built self-assembling scaffolds and depots.

From an imaging point of view, the challenge in syn-
thesizing multiblock copolymers is ensuring high fluorine 
contents and suitable relaxation times for 19F MRI. Under 
optimal conditions, the T1 relaxation time should not be 
too long for recovery of the longitudinal magnetization; 
T1 relaxation times of many fluorinated molecules are in 
the range of 1–4 s, which results in long acquisition times 
for in vivo experiments [85, 86]. Fluorine T2 relaxation 
times are based on the mobility of the fluorine segments 
and need to be adjusted to permit imaging by standard spin, 
gradient and ultrashort echo time (UTE) sequences [37], 
which means the T2 relaxation times should not be too short 
(> 10 ms). Adjustment of the relaxation times is crucial and 
challenging, and various chemical approaches have been 
tested [53, 87–89]. For instance, control over the molecular 
mobility can be achieved by preventing the very strong fluo-
rine–fluorine interactions by hydration of the fluorosegments 
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[19]. Moreover, the association of the fluorine segments 
needs to be taken into account due to strong dipole–dipole 
interactions and shortening of the relaxation times [63]. The 
proximity of paramagnetic atoms, such as lanthanides, also 
highly influences fluorine relaxation.

From a diagnostic point of view, fluorine-containing 
contrast agents possess the added value of specificity and 
responsiveness. The specificity can be achieved by modifica-
tion with a targeting moiety; therefore, it is crucial to prepare 
easily modifiable chemical structures for the probes.

In summary, a polymer probe suitable for 19F MRI should 
possess:

1.	 a high content of equivalent fluorine atoms so that all of 
them fit into the chemical shift window of interest,

2.	 efficient mobility and limited association resulting in 
suitable relaxation times,

3.	 adequate solubility in water,
4.	 an easily modifiable structure for targeting, and
5.	 reliable pharmacokinetic and pharmacodynamic proper-

ties, including biodegradability and elimination after the 
probe fulfills its task

Polymer perfluorocarbons

The commercially available PFC-based probes include the 
PFPE-based agents Cell Sense and V-Sense (CS-1000-DM-
Red and VS-1000H, Celsense, Inc., Pittsburgh, USA). These 
types of probes were introduced in the 1980s for tumor 
detection [60, 61], and their use as a cell label was shown 
for the first time in 2005 [8]. Although PFPE-based agents 
have been implemented in various preclinical and clinical 
studies, they are difficult to further functionalize, and the 
possible extra covalent bond would break the symmetry 
of the probe, which could lead to multiple 19F peaks [42]. 
Therefore, there is a need for the synthesis of novel probes 
with higher fluorine content and the potential for easy modi-
fication. In 2017, Zhang et al. [62] synthesized a polymer 
agent based on PFPE with a high fluorine content between 
10 and 29% wt. The polymer consists of PFPE end-func-
tionalized homopolymers of oligo(ethylene glycol) methyl 
ether acrylate (poly(OEGA)m-PFPE). These polymers are 
water-soluble and possess outstanding imaging sensitivity as 
was shown with in vitro and in vivo experiments. The long 
T2 relaxation times (> 80 ms) of these PFPE-based probes 
are suitable for imaging using common MR sequences, such 
as a spin-echo-based sequence. The polymers accumulated 
in the liver, kidneys and spleen of mice after intravenous 
administration of the probe. The difference in the ratio of 
hydrophobic (PFPE) and hydrophilic [oligo(ethylene oxide) 
methyl ether acrylate] segments played an important role in 
the accumulation of the probe in biological tissue. The poly-
mer showed resistance to rapid uptake by macrophages and 

thus longer circulation times in the blood. This effect is also 
seen in other studies [90, 91]. The polymer with exposed 
PFPE segments showed enhanced recognition and filtration 
by macrophages, resulting in faster clearance from the body.

Fluorine molecular blocks

Development of fluorine copolymers for 19F MRI: 
from chemical concept to first in vivo 19F MR images

Since the first reports on the synthesis of copolymers con-
sisting of fluorinated molecular blocks, these probes have 
been extensively studied. In 2007, Cheng et al. [52] intro-
duced a hyperbranched fluorinated copolymer consisting 
of a fluorinated backbone and PDMS. The proposed cross-
linking of the hyperbranched fluoropolymers with PDMS or 
poly(ethylene oxide) (PEO) showed unique properties, such 
as an anti-biofouling ability, release behavior for various 
molecules and mechanical performance [92]. This approach 
inspired the further synthesis of 19F copolymers intended 
for 19F MRI. In 2008, the Wooley group synthesized poly-
mers of trifluorethyl methacrylates and acrylic acid grafted 
onto a hydrophobic hyperbranched core. The fluoropolymers 
possessed good imaging properties (T1/T2 = 500/50 ms) and 
achieved a high SNR in a phantom study, although with 
an extensive scanning time (13 h) [93]. Later, this group 
studied the imaging performance of styrene-based polymers 
and observed that the packaging of fluorine-rich segments 
into the core restricts the mobility of the chains and limits 
19F detectability [51]. The polymers had to be dissolved in 
dimethyl sulfoxide (DMSO) to increase their mobility, which 
increased the sensitivity of 19F MR signal detection in MR 
spectra; therefore, this approach is not suitable for biological 
applications due to the toxicity of DMSO.

The first report of 19F MRI of fluorinated copolymers 
was published in 2009 by Peng et al. [64]. This group syn-
thesized diblock copolymers of acrylic acid with partially 
fluorinated acrylate or methacrylate monomers, which 
undergo spontaneous assembly in mixed or aqueous solvents 
resulting in the formation of micelles (diameter 20-45 nm). 
The micelles exhibited a strong signal in 19F MR images, 
with a higher signal obtained from the methacrylate poly-
mers compared to the acrylate polymers due to the short T2 
relaxation times of the acrylate. The 19F T1 relaxation times 
were approximately 500 – 600 ms, and the 19F T2 relaxa-
tion times were 331 ms and 249 ms for TFEA and TFEMA, 
respectively. These ranges for the T1 and T2 relaxation times 
are suitable for visualization with routinely used MR imag-
ing sequences without the need to use UTE or zero echo 
time (ZTE) sequences. The 19F MR images of phantoms 
containing the copolymers were acquired within 1 h 20 min 
using a 3D spin-echo sequence at 7 T (2.5 mm slice thick-
ness). The low 19F MR signal detection attributed to the 
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restricted mobility of the fluorinated segments; however, 
the group later introduced various approaches to increase 
the mobility of the fluorinated segments while maintaining 
the high amount of 19F atoms in a molecule. In 2010, the 
group reported an approach to enhance the hydration of the 
fluorinated blocks by preventing their aggregation in water 
by exploiting the electrostatic repulsion between monomeric 
units, which contributed to higher detectability [94].

Then, in 2010, highly flexible hyperbranched polymers 
that maintained the molecular mobility of the fluorinated 
chains were introduced by Thurecht et al. [80]. Moreover, 
this cytocompatible hyperbranched polymer can be eas-
ily functionalized for tracking or targeting. The polymer 
possesses “shape-resistance”, which is important for cell 
targeting and ensures the proper orientation for biological 
recognition. To eliminate the toxic effect of the cationic 
hyperbranched core, PEO monomethylether methacrylate 
(PEOMA) was incorporated into the molecule. Importantly, 
the polymer had been modified with mannose for biologi-
cal targeting, e.g., the immune responses mediated by mac-
rophages, which possess DC-SIGN surface receptors for 
mannosylated species. Fluorine T2 relaxation times of the 
polymers were in the detectable range (68–122 ms).

The same group reported a study focused on testing the 
solvent influence on an assembly of TFEA/TFEMA-based 
polymers [63]. Diffuse aggregates were formed in dichlo-
romethane and micelles were formed in acetone. After the 
addition of water to these systems, both systems formed 
cylindrical structures. The highest 19F MR signal was 
observed from polymers dissolved in acetone, which high-
lights the dependence of imaging properties on the solvent 
used due to the rigidity of the structure. Association of the 
fluorine segments leads to strong dipole–dipole interac-
tions between the 19F spins, causing shortening of the 19F 
spin–spin relaxation times and therefore lowering the 19F 
MR detectability. To overcome the effect of dipole–dipole 
interactions, several approaches for improving MRI detect-
ability were proposed, such as distributing the monomers 
along the polymer chain, incorporating branches and limit-
ing the content of the fluorinated monomers [63]. Although 
this study was performed in biologically irrelevant organic 
solvents, it reveals rules of general applicability.

Fluorine copolymers responsive to environmental changes: 
from optimization of the chemical structure to biological 
applications

In addition to the use of fluorine copolymers for contrast 
modulation in 19F MR images, various probes also respond 
to environmental stimuli and can act as responsive probes 
for, e.g., controlled in situ supramolecular nanostructure 
formation due to external environment change or even 
responsive 19F MRI. The rationale for such a responsive 

agent would be, e.g., the evaluation of treatment response by 
changes in pH, controlled release of drugs upon changes in 
pH, and accumulation of the system at the target site accord-
ing to pH (acidity in tumors).

The agents mostly respond to changes in pH or tempera-
ture by triggering self-assembly. For the synthesis and appli-
cation of these types of polymers, it is crucial to achieve 
a lower critical solution temperature (LCST) within an 
adequate range. The LCST refers to the temperature below 
which the components of the polymer are miscible. At tem-
peratures above the LCST, polymers lose their hydration 
layer, start to precipitate and change into a solid phase. As 
a macroscopic measure, the value most often used is the 
cloud point temperature (CPT), which is where the poly-
mer visibly phase-separates at the given concentration, 
where LCST is the temperature minimum in the function 
CPT = f(concentration). As the components become less 
mobile, the relaxation times are shortened. These aggrega-
tion properties can be implemented in the creation of solid 
implants without the need for surgical intervention [40, 95].

In 2007, the group of Mao et al. [65] presented amphiphi-
lic hyperbranched star-block copolymers containing poly[2-
(N,N-dimethylamino)ethyl methacrylate] (PDMAEMA) 
and OFPMA, which self-assemble into micelles in either an 
acidic aqueous solution or in a dimethylformamide/water 
mixture (both at pH 3). The size (expressed as hydrody-
namic diameter, DH) of the micelles depends on the length 
of the DMAEMA segment and varies with pH. The authors 
reported various sizes (50–200 nm) and structures for the 
synthesized probes ranging from micelles to fibers depend-
ing on the length of the protonated PDMAEMA chains. Flu-
orine MR spectra showed multiple 19F peaks for the polymer.

Similar thermo- and pH-responsive fluoroalkyl end-
capped amphiphilic diblock copolymers containing 
PDMAEMA and poly[2-(N,N-diethylamino)ethyl meth-
acrylate] (PDEA) were synthesized by the Zhang [96]. 
These polymers can form flower-like micelles in aqueous 
solution upon pH changes or by changing the linking order 
of the PDMA and PDEA blocks. The LCST of these poly-
mers decreases with increasing concentration or pH. At a 
low pH of approximately 3, there is no aggregation, and the 
copolymers exist in the aqueous solution as unimers. At a 
higher pH (7- 9), the copolymer forms micelles, and at a pH 
of approximately 9, the immiscible components aggregate 
into a core. By changing the linking order of the PDMA and 
PDEA blocks and changing the pH, different morphologies 
were obtained such as sphere-on-sphere, flower-like micelles 
and anomalous vesicles. Fluorine MR spectroscopy showed 
three 19F peaks in the spectra of the polymers.

In another study, PEO-coated nanogels constructed from 
PEO chains and a polyamine gel core compound with 19F 
showed suitable properties for targeting solid tumors via 
their responsiveness to the low pH (6.5) present in the tumor 
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environment [20]. The polymer prepared from 2-(N,N-
diethylamino)ethyl methacrylate (DEAMA) and TFEMA at 
various molar ratios with PEO chains showed volume phase 
transition points in the pH range of 6.8–7.3. This effect is 
caused by the hydrophobicity of the gel core and deprotoni-
zation of the amino groups, leading to a broadening of the 
19F MR signals due to the limited molecular motion, sug-
gesting that the PEO-coated nanogels will swell only in the 
acidic environment of, e.g., tumors (pH 6.5–7.0). This effect 
was confirmed by 19F MR spectroscopy; the polymers were 
only detected at acidic pH, and there was almost no 19F MR 
signal in the physiological pH range (7.4). A stable on–off 
behavior was observed even in the presence of 90% fetal 
bovine serum, which is promising for future biological appli-
cations. The probe showed high sensitivity (the detection 
threshold as measured by 19F MR spectroscopy was 55 µM 
at 12 T), although 19F MR imaging was not performed in 
this study.

Polymer agents for drug delivery

In theranostics (therapy + diagnosis), nanoparticles and 
micelles (with DH, below 200 nm) can be used for passive 
targeting of solid tumors due to the enhanced permeability 
and retention effect (EPR) [97–99], which is caused by the 
leaky vasculature and limited lymphatic drainage of solid 
tumor tissue. Moreover, the probes can be further function-
alized to prolong their circulation times [e.g., with PEO or 
poly(2-methyl-2-oxazolines)] and thus increase their prob-
ability of accumulation in tumor tissue [100–103].

The first example of 19F MR imaging of the accumu-
lation of fluoropolymers in tumors was reported in 2014 
by Rolfe et al. 2014 [19]. In this study, a tunable polymer 
probe, which targeted melanoma cells and enabled multi-
modal imaging due to the addition of a fluorescent dye, was 
introduced. The probe was further functionalized for tumor 
targeting via modification with folate. The probe was found 
to be taken up by B16 melanoma cells, which overexpress 
folate receptors. The probe was detected in the tumors of 
mice after intravenous administration. Fluorescence and 19F 
MR images revealed the accumulation of the probe in the 
major organs (the liver, kidneys and bladder) 4 h following 
injection. 19F MR images of the mice were acquired within 
18 min at 16.4 T.

In 2017, the nanoparticles of block copolymers con-
taining a PEO hydrophilic block and a fluorine-contain-
ing polymethacrylate block were synthesized by Fu et al. 
[104]. These polymer nanoparticles exhibit a higher 19F 
MR signal in the presence of H2O2 (i.e., after micelle dis-
assembly due to hydrophilization after oxidation of the 
thioethers to sulfoxide), suggesting a promising direc-
tion for future biological applications. The sensitivity of 

the imaging agents was further enhanced by adding a pH 
switch, resulting in a reactive oxygen species (ROS)/pH 
dual-responsive 19F MRI agent. The most pronounced 
change in the intensity of the 19F MR signal was achieved 
in response to the presence of ROS in a mildly acidic 
environment.

Self-assembled biocompatible polymer nanogels con-
sisting of hydrophilic-thermoresponsive diblock copoly-
mers containing either poly[N-(2-hydroxypropyl)meth-
acrylamide] (PHPMA) or poly(2-methyl-2-oxazoline) 
(PMeOx) as the hydrophilic block and PDFEA as the 
fluorinated thermoresponsive block exhibited thermal 
responsivity, being molecularly soluble at room tempera-
ture and forming well-defined nanogels at body tempera-
ture (Fig. 1) [39]. The probes exhibit suitable relaxation 
times (T1 ≈ 275–312 ms, T2 ≈ 17–305 ms; at 4.7 T, 37 °C) 
for visualization by 19F MRI using standard spin-echo 
sequences. The presence of both polymers (PMeOx-
PDFEA and PHPMA-PDFEA) was observed by 19F MRI 
after injection either into the muscle of mice or subcuta-
neously (Fig. 2). These probes have promising properties 
for cell tracking or tumor theranostics due to their easily 
modifiable structure, for incorporation of cell targeting 
moieties, and their nanosize (approximately 100 nm), 
allowing passive accumulation in the tumor tissue via the 
EPR effect.

Fluorinated thermoresponsive polymers can also be 
implemented for sustained release of drugs from implants, 
which are created upon injection into the body [105]. Typi-
cally, the polymers are injected in an aqueous solution, and 
after heating to body temperature, which is above the CPT, 
they form a depot [95, 106]. Above the LCST, the poly-
mers precipitate, and after phase separation, they create a 
solid depot without surgery [95]. Moreover, if the poly-
mers contain 19F atoms, the localization, size and biodeg-
radation of the implants can be monitored by 19F MRI with 
high sensitivity due to the high local 19F concentration 
at the injection site. In our recent study [40], we used a 
thermoresponsive fluorinated PDFEA copolymer modified 
with pH-responsive imidazole units, where the pH change 
from slightly acidic in the injected solution to neutral in 
the tissue adjusts CPT, allowing for in situ depot forma-
tion due to temperature change without the risk of needle 
obstruction during injection. This multistimuli-responsive 
agent was tracked by 19F MRI after intramuscular and sub-
cutaneous administration in rats (Fig. 3). The depot was 
visualized for 11 months with high sensitivity, indicating 
that these thermoresponsive polymers can be utilized as 
injectable solid implants with the possibility of drug incor-
poration. Importantly, the degradability of the polymers 
can be tailored in future theranostic applications.
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Conclusion and future perspectives

19F MRI using fluorine-containing agents represents a 
specific imaging method with applications in both experi-
mental and clinical medicine due to the negligible 19F MR 
signals from the body. To achieve sufficient sensitivity of 
19F MRI, novel fluorine-containing probes are needed. 
Polymer-based probes are a very promising and versatile 
platform with properties tailorable to a plethora of in vivo 
biomedical applications. In particular, stimuli-responsive 
supramolecular polymer nanostructures allowing for func-
tional imaging in response to changes in temperature, pH, 
reactive oxygen species and other physiological stimuli 

hold promise for noninvasive functional diagnostics of 
pathological tissues in the future. Targeted cell labeling 
for long-term tracking of transplanted cells by 19F MRI 
is another highly promising direction for such 19F agents.

To employ the 19F MRI polymer probes in practice, espe-
cially in clinics, several properties of these probes must be 
fulfilled. Among them are a high content of fluorine atoms 
that are chemically equivalent so that all of them fit into 
the chemical shift window of interest, an efficient mobility 
and limited association of the fluorine segments resulting 
in suitable relaxation times, an adequate solubility in water, 
an easily modifiable structure for targeting, reliable pharma-
cokinetic/pharmacodynamic properties including biodegra-
dability, clearance of the probe after the system fulfills its 

Fig. 1   Thermal self-assembly of a PHPMA-PDFEA copolymer in 
phosphate-buffered saline (PBS) buffer at temperatures above 23 °C: 
3D graph of the dependence of particle size distribution as measured 
by dynamic light scattering (DLS) on temperature (left) and trans-
mission electron cryomicroscopy (CryoTEM) image of the formed 

nanoparticles (right). The polymer remains molecularly dissolved 
(monomers—Rh approx. 6.5  nm) at temperatures below 23  °C and 
undergoes self-assembly into nanogel particles (hydrodynamic radius 
Rh approx. 77 nm at 37 °C) above this temperature [39]

Fig. 2   A scheme of self-assembling nanoparticles containing a hydro-
philic shell and a fluorine-containing core (a). 19F MR images (red 
color) superimposed on 1H (grayscale) MR images of mice injected 

with probes: PMeOx-PDFEA (b) and PHPMA-PDFEA (c). The 
acquisition time of the 19F MR images was 17  min at 4.7 T. The 
arrows indicate the injection sites
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task, and the capability of functional imaging if needed in 
the particular application. Another important challenge that 
must be solved is the biodegradability of the imaging agents 
so that the system may be fully eliminated from the organism 
after fulfilling its task.
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