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Objective(s). The major challenge encountered to decrease the milliamperes (mA) level in X-ray imaging systems is the quantum
noise phenomena.This investigation evaluated dose exposure and image resolution of a low dose X-ray imaging (LDXI) prototype
comprising a low mA X-ray source and a novel microlens-based sensor relative to current imaging technologies. Study Design. A
LDXI in static (group 1) and dynamic (group 2)modeswas compared tomedical fluoroscopy (group 3), digital intraoral radiography
(group 4), and CBCT scan (group 5) using a dental phantom. Results. The Mann-Whitney test showed no statistical significance
(𝛼 = 0.01) in dose exposure between groups 1 and 3 and 1 and 4 and timing exposure (seconds) between groups 1 and 5 and 2
and 3. Image resolution test showed group 1 > group 4 > group 2 > group 3 > group 5. Conclusions. The LDXI proved the concept
for obtaining a high definition image resolution for static and dynamic radiography at lower or similar dose exposure and smaller
pixel size, respectively, when compared to current imaging technologies. Lower mA at the X-ray source and high QE at the detector
level principles with microlens could be applied to current imaging technologies to considerably reduce dose exposure without
compromising image resolution in the near future.

1. Introduction

With all other technical factors (e.g., kilovolts, distance,
time, etc.) held constant, patient radiation dose is directly
proportional to the milliamperes (mA). A 50% reduction in
mA would result in a decrease in radiation dose by 50% [1].
Previously, the mA range has not been taken into considera-
tion in any attempt to reduce radiation dose to which dental
patients are being exposed [2–6]. The sensitivity of a digital
sensor is measured at a constant wavelength in nanometers
(nm) on the basis of the detective quantum efficiency (DQE).
This value is used primarily to describe imaging detectors in
optical imaging and medical radiography [7]. The quantum
efficiency (QE) is the ratio of impinging photons on a pixel to
the number of collected electrons.TheQE of the pixel is equal
to the QE of the complementary metal oxide semiconductor
(CMOS) photodiode multiplied for the fill factor of the pixel

[8]. Fluoroscopy is a dynamic X-ray or X-ray movie showing
images of video frame rates produced by a low mA X-ray
source and image intensification at the detector level [9]. An
image intensifier unit is capable ofmultiplying 1,000 to 20,000
times, electron-by-electron, of the produced image, therefore
increasing the system QE while allowing dose reduction [10,
11]. Unfortunately, image intensifier units and direct radiog-
raphy large flat panel detectors have heretofore been too bulky
to be used inside the mouth as well as being expensive for a
dental setting [12–14]. Another disadvantage of intensifiers is
image distortion [15]. With regard to visualization of a stent
created from 50microns (𝜇m) diameter wires in flat panel X-
ray fluoroscopy, for the idealized direct detector, the 100𝜇m
pixel size resulted inmaximummeasured contrast sensitivity.
For an idealized indirect detector, with a scintillating layer,
the maximal measured contrast sensitivity was obtained at
200𝜇m pixel size [16].
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The major challenge encountered to decrease the mA
level in X-ray imaging systems is the quantum noise phe-
nomena. In electronic imaging systems such as fluoroscopy or
intraoral radiography digital sensors, we find three principal
sources of noise. The first and most relevant arises from
quantum statistics, in which the discrete nature of the radio-
graphic signal (which often is photon-starved) introduces
uncertainty into the image. The second is electronic noise
which is generated in the detector or detector electronics.The
third is quantization error that occurs in digital electronic
imaging systems when the signal is digitized. For a quantum
statistics noise limited system, if the number of photons
used is quadrupled, the noise in the resultant image should
be halved [17–20]. Not only X-ray systems but also digital
cameras are noise limited and quantum limited. Randomly
spaced speckles, called noise, can appear in digital images.
Noise is similar to grain that appears in photos taken with
traditional cameras using high International Organization of
Standardization (ISO) films. Noise increases in photos taken
with a digital camera using a high ISO number. The higher
ISO number leads to more noise. When noise is present,
image detail and clarity are reduced, sometimes significantly.
The ISO level indicates the film anddigital camera’s sensitivity
to light. According to the ANSI/ISO classification, a dental
film with raw speed of ISO 29–56 would be classified as
E speed, while one with speed of ISO 57–112 would be
classified as F speed [21]. Photographic film typically has
a QE of much less than 10% [22]. Current digital cameras
have improved their ISO settings which can achieve up to
ISO 204,800 [23–25]. To improve the sensitivity or QE of
front illuminated charged couple device (CCD) and CMOS
image sensors without increasing their pixel size, digital
cameras manufacturers apply a thin (0.5–1.0mm thickness)
and inexpensive microlens array to the sensors to reach high
ISO levels [26]. The microlens principle was invented in the
17th century where Hooke and Van Leeuwenhoek developed
techniques to make small glass lenses for use with their
microscopes [27]. The microlens collects and focuses light
that would have otherwise fallen onto the nonsensitive areas
of the sensor chip, improving the QE significantly (Figure 1)
[28].

Attempts for improving digital sensors QE without com-
promising the system’s noise have been made through the
introduction of back illuminated and electron multiplied
CCD and CMOS image sensors. Their major drawbacks are
complicated manufacturing processes and elevated cost [29,
30]. As a result, the most common used image sensor in
dentistry is the front illuminated type [31].

Consequently, a lower milliamperes (mA) setting at the
X-ray source and the use of front illuminated sensors with
microlens or back illuminated sensors at the detector level
for an increased QE that reduces the required radiation dose
and sensor pixel size without impacting image quality should
have a dramatic positive impact on dental radiology and oral
diagnosis. The purpose of this investigation was to prove
the concept of radiation exposure reduction and dynamic
fluoroscopy feasibility in dentistry without compromising
image quality by testing a low-dose X-ray imaging (LDXI)
prototype comprising a low-dose X-ray source and a high

QE front illuminated sensor with microlens and comparing
it to standard of care in terms of dose exposure in milligrays
(mGy) and image resolution in lines per millimeters (lp/mm)
[6].

2. Materials and Methods

The Temple University Environmental Health and Radiation
Safety Institutional Department approved this study. A LDXI
prototype (Real Time Imaging Technologies, LLC, Cleveland,
OH) was used. The LDXI was comprised of a 35–80 kilovolt
peak (kVp), 0.1–0.5mA X-ray source (9.95󸀠 L × 5.27󸀠W ×
5.35󸀠H) (SourceRay, Bohemia, NY), and a 8󸀠 rectangular
collimator (Margraf Dental, Jenkintown, PA) and an X-ray
detector utilizing a CMOS front illuminated sensor (EOS 5D
Mark III, Canon, Japan) having 36 × 24mm effective area,
6.25× 6.25 umpixel size, 22.3megapixels resolution, and 49%
[32] QE with microlens and capable of performing up to 30
frames per second (fps) for the dynamic video mode. The
CMOS sensor modular transfer function (MTF) was >30% at
the 18 lp/mm range. Upon low-pass filter and sensor removal,
the scintillator/fiber optic plate (AppliedScintech, UK) was
coupled at the sensor [33, 34] on top of the microlens [35]
with optic glue (BEW Engineering, Ketsch, Germany). The
scintillator/fiber optic platemeasured 20.8×20.8mmandwas
comprised of a 6 um columnar cesium iodide with thallium
(CsI : TI) coating with a MTF curve showing and ultimate
resolution >18 lp/mm at 60 kVp with 98% attenuation at
70 kVp. Camera software (EOS Utility Ink, Japan) and a kid’s
watch (Disney Store, Orlando, FL) were used in order to
establish and calibrate sensor’s ISO settings. Images obtained
were raw positive still shots and video. Raw images (A)
were converted to negative radiographic images (B) through
a software and then cropped (Microsoft Digital Suite 2006
Editor, Microsoft, Redmond, WA) (Figure 2).

Ionization chambers Radcal 9010 (Radcal Corp., Mon-
rovia, CA) and RaySafe Xi (RaySafe, Hopkinton, MA) were
used to measure the dose exposure in mGy (obtained
through rad formula conversion) received by a patient phan-
tom (DXTTR, RINN, Elgin, IL) in all groups and sixteen
dosimeters (Landauer, Inc., Glenwood, IL) were utilized for
obtaining the dose equivalent in millisievert (mSv) (obtained
through rem formula conversion) received by the operator
simulated distance at 30 cm for LDXI and fluoroscopy (Fig-
ure 3).

ISO settings were established at ISO 5,000 for group 1 and
ISO 12,800 for group 2 and image acquisition was made at
1/30 shutter (0.03 seconds). Group 1 was exposed to the LDXI
prototype (Real Time Imaging Technologies, LLC, Cleveland,
OH) at 0.2mA and 80 kVp in static mode during 10 intervals
from 0 to 27 continuous seconds with a 6.25 × 6.25 um pixel
size sensor and 49% QE. Group 2 was exposed to the LDXI
prototype at 0.2mA and 80 kVp in the dynamic video mode
during 31 intervals from 0 to 300 seconds with a 6.25 ×
6.25 um pixel size sensor and 49% QE. Group 3 was exposed
to medical fluoroscopy (GE C-arm OEC 9800, Cleveland,
OH) at 0.038mA and 55 kVp in 31 intervals from 0 to 300
seconds with a 12.8 × 12.8 um pixel size sensor and a 9󸀠 image
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Figure 1: CMOS sensor and microlens (right side) architecture scheme.
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Figure 2: (a) Molar tooth raw positive image obtained at 0.2mA and 1/30 camera shutter (0.03 seconds) with collimation and (b) negative
image.

intensifier with 65%QE at 550 nm [36]. Group 4 was exposed
to digital intraoral radiography (Gendex GX-770, Hatfield,
PA/Planmeca Dixi 2 v3, Roselle, IL) at 7mA and 70 kVp in 29
intervals from 0 to 1.65 seconds with a 19 × 19 um pixel size
sensor. Group 5 was exposed to CBCT Scan (iCat Imaging
Sciences International Inc., Hatfield, PA) at 5mA and 120 kVp
from 0 to 26.9 seconds in 28 intervals and several modalities
with a 125 um voxel size sensor. Six thermoluminescent
Luxel and ten optical stimulated luminescence technology
Nanodots dosimeters (Landauer, Inc., Glenwood, IL) were
used at the patient phantom, area monitor, and positive and
negative controls for the LDXI. After research completion,
all the dosimeters were mailed back to Landauer for analysis
purposes. Image resolution for the LDXI was measured with
a resolution test pattern (Fluke Corp., Cleveland, OH) in
lp/mm. An endodontic file size 10 (Dentsply, Maillefer, York,
PA) was placed within phantom’s tooth number 27 at the
radiographic apex for intraoral imaging subjective resolution

assessment purposes in which two endodontists and one
oral and maxillofacial radiologist from the institution were
asked to confirm tooth’s working length [6]. Dose exposure
measurements and image resolution were calculated for all
groups and dosimeters were analyzed.

3. Results

The Mann-Whitney test showed no statistical significance
(𝛼 = 0.01) in dose exposure (mGy) between groups 1 and
3 and 1 and 4 and timing exposure (seconds) between groups
1 and 5 and 2 and 3 (Figure 4).

Dosimeters for the LDXI operator simulated distance and
controls did not register significant dose equivalent (mSv).

Image resolution test showed LDXI 1 > digital intraoral
radiography > LDXI 2 > medical fluoroscopy > CBCT scan
(Table 1).
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Figure 3: (a) Dental size sensor with microlens coupled with scintillator/FOP (front view) and (b) LDXI prototype testing on the DXTTR
phantom at 0.2mA and 80 kVp.
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Figure 4: Radiation and timing exposures comparison amongst all groups.

File size 10 was observed at the working length as con-
firmed by two endodontists and one oral and maxillofacial
radiologist (Figure 5).

4. Discussion

Technical advances enable cameras to better capture the
drama of low-light photography/video. As a rule, bigger is

indeed better when it comes to the overall dimensions of a
sensor because a bigger sensor provides not only more pixels,
but also bigger pixels, which more efficiently gather light.
However, of all the improvements in the imaging field, per-
haps the most notable are not the increases in sensor size but
the innovations in increasing a sensor’s ability to gather light
in low-light situations and to record a wider range of light.
Much improved sensors with microlens now allow one to
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Figure 5: Group 1 LDXI static: (a) endodontic file number 10 at working length and (b) 18 lp/mm.

Table 1: mA, kVp, pixel size settings, and resolution outcome
comparison of different devices.

Device type mA kVp
Pixel/voxel

size
(um)

Resolution
(lp/mm)

LDXI 1 (static) 0.2 80 6.25 × 6.25 18
LDXI 2 (dynamic) 0.2 80 6.25 × 6.25 10
Medical
fluoroscopy (image
intensified)

0.038 55 12.8 × 12.8 1.75

Digital intraoral
radiography 7 70 19 × 19 16

CBCT scan 5 120 125 1.6

obtain detailed low-light images by allowing shots at high ISO
levels that previously generated unflattering digital “noise” or
graininess in an image at smaller pixel sizes. From an image
resolution dental perspective, studies have demonstrated that
spatial resolution affects bone loss and caries diagnosis in
dentistry. A research undertaken to determine the effect of X-
ray beam alignment and spatial resolution on quantification
of alveolar bone using radiometric techniques concluded
that 50 um pixel spatial resolution is apparently superior
to 200 um pixel images if radiometric data is to be evalu-
ated [37]. Another study determined that spatial resolution
affected radiometric analyses aimed at detecting progressive
enamel loss. Cumulative percent histograms shifts associated
with the smaller 59 um pixels accounted for 68% of the
variation in weights caused by enamel reduction, whereas
the shifts associated with the larger 200 um pixels accounted
for 50%. The results indicated that pixel size does affect
radiometric determinations of enamel reduction [38, 39]. In
summary, the smaller the pixel size and the more pixels are
arranged in a sensor, the better the quality of the image that
is captured. In this study, microlens also allows decreasing
the sensor’s pixel size (6.25 × 6.25 um), therefore increasing
image spatial resolution as compared to the larger pixel size
of current sensors used in digital intraoral radiography (19 ×
19 um), CBCT scans (125 um voxel), andmedical fluoroscopy

(12.5 × 12.5 um for image intensifiers and 100×100 um for flat
panel detectors). As compared to similar front illuminated
intraoral sensors used in dentistry (DQE 3% CCD and
DQE 18% CMOS) [40, 41] the LDXI prototype has used a
large size (35mm), full frame, and front illuminated CMOS
sensor with a thin microlens array for improved DQE (49%)
directly coupled to the scintillator/fiber optic plate, capable of
acquiring lowmA images at ISO 5,000 and ISO 12,800 as well
as in dynamic video frame rates. From a radiation exposure
perspective, we found that 3.05 and 3.95 seconds of LDXI
are comparable to one single shot of 0.2 seconds of digital
intraoral radiography and 26.9 seconds 4 cm landscape single
area CBCT scan, respectively. As a result, the LDXI used for
0.2 seconds would reduce 93.4% dose exposure as compared
to digital intraoral radiography used for 0.2 seconds. For a
conventional root canal requiring a pre-op, working length,
master cone, partial condensation, and final X-ray, the LDXI
prototype could be used during 15 secondswithout producing
more dose exposure due to the addition of microlens for
increased QE as compared to digital intraoral radiography.
As a result, lower mA settings (up to 0.2mA) as compared
to digital intraoral radiography (7mA) could be captured
at 18 lp/mm and 10 lp/mm image resolution for the static
and dynamic modalities, respectively [6]. In addition, an
endodontic file size 10 was observed at the working length at
the phantom as confirmed by two endodontists and one oral
and maxillofacial radiologist from the institution (Figure 5).
In addition to root canals, other clinical applications for low
dose X-ray sources and high QE image sensors in the static
mode would be full mouth X-rays, pre- and postradiographs,
bitewings, and panoramic, cephalometric, and CBCT scans
for oral diagnosis while the dynamic mode would allow the
introduction of fluoroscopy in dentistry for dental implant
placement, temporomandibular joint analysis, maxillofacial
surgeries, and postplacement. Since the scintillator/fiber
optic plate was coupled in the central area of the sensor, the
effect of X-rays on the surrounding, residual, and uncovered
area caused significant noise causing black spots at the
image. In addition, despite the fact that sensor’s housing was
internally masked against light, light pollution was observed
on one corner (Figure 6).



6 Radiology Research and Practice

Light 
pollution

Radiation 
contamination

Figure 6: Preventable artifacts obtained in images.

These artifacts should be avoided in future studies by
providing complete sensor shielding and a 100% light proof
housing. In addition to further evaluations with higher QE
(>65% at 550 nm) new generation front illuminated sensors
with microlens, the authors recommend testing a back
illuminated sensor due to its increasedQE as compared to the
front illuminated sensor used in this study [14, 35]. Finally,
we propose testing the next generation LDXI using head
and neck anthropomorphic phantoms following Sections C
and D of the FDA guidance for Solid State X-Ray Imaging
Devices (MTF, detective quantum efficiency, and signal-to-
noise ratio) and compare it to digital intraoral radiography,
medical fluoroscopy, and CBCT scan imaging devices.

5. Conclusions

The LDXI proved the concept for obtaining a high definition
image resolution for static and dynamic radiography at lower
or similar dose exposure and smaller pixel size, respectively,
when compared to traditional imaging devices. Lower mA at
the X-ray source and high QE at the detector level principles
with microlens could be applied not only to digital intraoral
radiography and dental fluoroscopy but also to panoramic,
cephalometric, and CBCT scans devices to considerably
reduce X-ray source dose exposure as well as sensor pixel
size and more research is recommended to demonstrate this
further.
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