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A B S T R A C T   

Protein Film Electrochemistry is a technique in which a redox enzyme is directly wired to an electrode, which 
substitutes for the natural redox partner. In this technique, the electrical current flowing through the electrode is 
proportional to the catalytic activity of the enzyme. However, in most cases, the amount of enzyme molecules 
contributing to the current is unknown and the absolute turnover frequency cannot be determined. Here, we 
observe the formation of electrocatalytically active films of E. coli hydrogenase 1 by rotating an electrode in a 
sub-nanomolar solution of enzyme. This process is slow, and we show that it is mass-transport limited. Measuring 
the rate of the immobilization allows the determination of an estimation of the turnover rate of the enzyme, 
which appears to be much greater than that deduced from solution assays under the same conditions.   

Protein Film Electrochemistry is a technique in which a redox 
enzyme is immobilized on an electrode in a configuration allowing 
direct electron transfer [1–3]. The enzyme retains its native catalytic 
activity on the electrode, which acts as a substitute for its natural redox 
partner (the latter can be either in solution or membrane-bound). The 
catalytic reaction generates a current whose magnitude is proportional 
to the enzyme’s turnover rate, according to Eq. (1): 

j = 2 F Γ kcat (1)  

where F is the Faraday constant, j the current density, Γ the “electro
active coverage”, the surface concentration of electrically connected 
enzymes, and kcat the turnover rate. The electrochemical measurement 
can be used to monitor variations of turnover frequency under various 
experimental conditions (electrode potential, pH, substrate/product 
concentration) [1–5], or as a function of time when the enzyme in
activates or reactivates following exposure to inhibitors or changes in 
potential [6]. These variations can be interpreted quantitatively to yield 
mechanistic information [7]. However, most of the studies focus on the 
interpretation of relative variations of current, since it is difficult to 
determine the absolute value of the turnover frequency of an immobi
lized enzyme. Indeed, the catalytic current is also proportional to the 
electroactive coverage, which is often unknown and impossible to 
determine. In rare cases, when the electroactive coverage is high, it is 

possible to measure non-catalytic signals, which result from the stoi
chiometric reduction/reoxidation of the redox centers present in the 
enzyme. These experiments must be conducted in the absence of sub
strate or at rates that outrun catalysis [8]. Optimization of the interac
tion between the enzyme and the electrode can help increase the 
coverage enough to obtain non-catalytic signals [9,10]. Several strate
gies can be used, including some based on computational methods [11]; 
the reader is referred to recent reviews for further reading [4,12,13]. 
These signals can be integrated to yield the electroactive coverage; 
combining this information with the measurement of the magnitude of 
the catalytic current gives the turnover frequency. This strategy has been 
used successfully with a number of enzymes, such as sulfite oxidase [14], 
formate dehydrogenase [15], fumarate reductase [16], Allochromatium 
vinosum hydrogenase [17], and Aquifex aeolicus hydrogenase [10]. 
Alternatively, it is possible to determine the enzymatic coverage in the 
absence of non-catalytic signals, by using strategies such as quartz mi
crobalance electrodes [18,19], ellipsometry [20] or surface plasmon 
resonance [21]. These techniques allow the determination of the total 
coverage, including enzyme molecules that do not undergo electron 
transfer with the electrode and therefore do not contribute to the cata
lytic current. It is also sometimes possible to determine an upper limit of 
the electroactive coverage by measuring the amount of protein 
consumed by the immobilization process [10]. 

Here we focus on a NiFe hydrogenase, Hyd-1 from Escherichia coli (Ec 
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Hyd-1), which catalyzes the oxidation of dihydrogen to protons and 
electrons at a bimetallic NiFe active site. This protein gives very stable 
and active films on graphite electrodes, which has been used to study its 
behavior, and, in particular, its high tolerance to inactivation by oxygen 
[22,23]. We show that it is possible to make electroactive films of Ec 
Hyd-1 by rotating the electrode in a sub-nanomolar solution of the 
enzyme, and that the adsorption is mass-transport-limited. Following 
the change of coverage as a function of time makes it possible to provide 
an estimation of the turnover frequency of Ec Hyd-1. This approach may 
be applied to other enzymes, even in the case that the amount of 
immobilized enzymes is indetectable via non-catalytic signals. 

Fig. 1 shows a series of voltammograms recorded rotating a freshly 
polished pyrolytic graphite edge electrode in a solution containing only 
0.7 nM Ec Hyd-1 under 1 atm. of H2. The voltammograms show H2 
oxidation currents at high potentials. The shape of the voltammograms 
is similar to that previously published by us and others [22,23]. What is 
new is that the magnitude of the signal increases steadily, from a current 
density of approximately 24 µA/cm2 for the first scan to about 360 
µA/cm2 after about 15 min. Transferring the electrode to a solution 
devoid of enzyme stops the increase (see SI fig. S5), which shows that the 
growth does not reflect the activation of the enzyme, but rather a slow 
adsorption process that is dependent on the presence of the enzyme in 
solution. The process slows over time, and after 16 voltammograms (at 
20 mV/s, this takes about 15 min), the current density reaches a 
maximum and starts to decrease slowly. The process does not change the 
shape of the catalytic response (see SI figs. S3 and S4), and hence does 
not affect the chemistry of the hydrogenase. 

The bottom panel of Fig. 1 shows the evolution of the maximum 
current density of each voltammogram, which starts with an initial 
linear increase (until about 350 s), followed by a slower increase until a 

peak of the current is attained (here at about 800 s). The shape suggests a 
transition from an initial regime in which the enzyme adsorbs onto the 
electrode at a constant rate, to a regime in which the surface becomes 
saturated. We examine the two regimes one after the other below. The 
current density j is given by Eq. (1) above. As the shape of the voltam
mograms does not change, there is no reason to assume that kcat changes 
during the experiments, so that all changes in j arise from variations in 
the surface concentration Γ: 

dj
dt

= 2 F kcat
dΓ
dt

(2) 

In a first step, we hypothesize that the initial linear increase reflects 
an adsorption process entirely rate-limited by the transport of the 
enzyme to the electrode. Under this assumption, the rate of increase of 
the surface concentration is the flux of enzyme towards the electrode: 

dΓ
dt

= menz × cbulk (3)  

in which Γ is the surface concentration, cbulk is the concentration of 
enzyme in the bulk (away from the electrode), and menz is the mass- 
transport coefficient for the transport of enzyme towards the rotating 
electrode (in cm/s), which is given by the Levich equation [24]: 

menz = 0.62 × D2/3
enz ω1/2ν1/6 (4)  

in which Denz is the diffusion coefficient of the enzyme in solution (in 
cm2/s), ω  is the angular velocity of the rotating disk electrode (in rad/s) 
and ν is the kinematic viscosity of water (in cm2/s). Combining Eqs. (3) 
and (4) into Eq. (2) yields: 

dj
dt

= 2 F kcat × 0.62 × D2/3
enz ω1/2ν1/6 × cbulk (5) 

As a consequence, under the assumption that the adsorption is fully 
mass-transport limited, the slope of the initial linear increase in current 
is proportional to the square root of the electrode rotation rate. We have 
therefore repeated experiments similar to that in Fig. 1, varying the 
electrode rotation rate. We have determined the slope of the initial 
linear variation and plotted it as a function of the square root of the 
electrode rotation rate in Fig. 2. The data confirm that the slope is 
proportional to the square root of the rotation rate, as expected from Eq. 
(3), which validates the hypothesis that the initial linear increase in the 
current is mass-transport limited. We have also verified that the rate of 
initial linear increase is proportional to the concentration of enzyme in 
the bulk, as expected from Eq. 5 (see SI fig.S2). 

In Eq. 5, the only unknown, besides the catalytic turnover rate kcat , is 
the diffusion coefficient of the enzyme. We estimated a value of Denz =

10–6 cm2.s-1 based on the Stokes-Einstein relationship, assuming a hy
drodynamic radius of 3.5 nm (see SI section 5). With this value, we 

Fig. 1. Top panel: successive voltammograms of a graphite electrode rotating 
at 3000 rpm in a solution containing 0.7 nM Ec Hyd-1 and equilibrated under 
one atm. of H2 by bubbling inside the electrochemical buffer. The successive 
voltammograms are colored from light blue to dark blue and then to red. 
Bottom panel: plot of the current density at 0.04 V vs SHE for each voltam
mogram as a function of the time, together with a linear fit of the 
initial variation. 

Fig. 2. Slope of the initial linear increase in current density (the slope of the red 
dotted line in Fig. 1) as a function of the square root of the electrode rotation 
rate. Conditions as in Fig. 1. The error bars represent the standard deviation 
across two experiments except for 3000 rpm (3). 
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deduce a value of kcat of 2700 ± 300 s-1 from the linear fit to the data of 
Fig. 2. This value is a lower bound because it is likely that only a fraction 
of the enzyme molecules adsorbed are immobilized in a configuration 
that actually allows electron transfer. In fact, it is very common that 
enzymes are immobilized with a dispersion of orientation [25], and 
indeed the voltammograms of Fig. 1 show the typical linear increase at 
high potentials that is indicative of a uniform distribution of the distance 
between the redox active centers and the electrode [26,27]. 

It is also possible to analyze the complete evolution over time of the 
increase in current, and in particular to reproduce the transition to a 
plateau after some time. We hypothesized that the immobilization of the 
enzyme follows a Langmuir adsorption isotherm, so that the plateau 
reflects that the surface sites are in equilibrium with the bulk concen
tration of the enzyme. Under this assumption, we derived Eq. (6), a 
differential equation predicting the evolution over time of the surface 
concentration and, hence, of the current density (see SI section 6): 

dΓ
dt

= menz ×

(

cbulk −
Γ

Kad × (Σ0 − Γ)

)

(6) 

This equation can be integrated numerically to fit the experimental 
traces, using the free software QSoas [28]. The parameters of the fit are 
menz, which was calculated from Eq. (2), the solution concentration of 
enzyme cbulk = 0.7 nM, and three free parameters: the catalytic rate 
constant kcat, the surface concentration of sites Σ0 and the equilibrium 
constant Kad of the reaction of a molecule of enzyme in solution with a 
free surface site to form a surface-bound enzyme molecule. Eq. (6) 
predicts that the adsorption process gradually slows down until the 
surface concentration of enzymes corresponds to the value in equilib
rium with the concentration in the bulk. 

Fig. 3 shows the evolution of the current over time for one of the 
adsorption experiments, together with the fit of an exponential decay to 
the data (blue dashes) and the fit of Eq. (6) (red dashes). The latter fits 
the experimental trace better than the former (with a corresponding 
five-fold reduction of the residuals from 7.5 µA/cm2 to 1.4 µA/cm2 

average deviation), although both equations depend on the same num
ber of free parameters (3). This confirms that the adsorption follows a 
Langmuir isotherm. The parameters determined from the fit are kcat =

2220 ± 40 s-1 (in which the error corresponds to the 95% confidence 
interval of the fit), consistent with the value deduced from the slope of 
Fig. 2 and Eq. 5, a density of sites 

∑
0 = 1.2 pmol/cm2 and a dissociation 

constant 1/Kad= 0.26 nM, which suggests that the surface sites are about 
75% saturated when the plateau of the current density is reached. The 
density of sites corresponds to an intersite distance of 12 nm, i.e. slightly 
less dense than in a fully packed monolayer, considering that the size of 
the enzyme is about 7 nm, and an atomically flat electrode surface. 
However the latter assumption greatly underestimates the actual surface 

available for adsorbing the enzyme. Similar parameters were obtained 
from the experiments carried out at other rotation rates (see supple
mentary fig. S6). 

In parallel to the determination of the catalytic activity from elec
trochemistry experiments, we performed solution assays to determine 
the catalytic activity of Ec Hyd-1 in various H2-saturated buffers, using 
10 mM of benzyl viologen as electron acceptor. The results are presented 
in Table 1. 

Since the beginning of Protein Film Electrochemistry, a range of 
techniques to prepare the electroactive films were employed, from 
simply drop-casting the protein solution, sometimes with a co-adsorbant 
to help the adhesion to the electrode [1], to the chemical modification of 
electrodes and proteins to allow covalent grafting [29–32]. Films have 
also been made by slowly rotating an electrode in a buffer containing 
micromolar concentrations of enzyme under catalytic conditions, lead
ing to a gradual increase over time of the catalytic current [17]. Here, we 
observed that in the case of Ec Hyd-1, it is possible to apply this strategy 
from solutions containing sub-nanomolar concentrations of enzyme, and 
that under these conditions, the adsorption process is limited by the 
transport of the enzyme towards the electrode, which is induced by the 
rotation of the electrode. We showed that, by following the increase in 
current over time due to very diluted enzyme solutions adsorbing under 
mass-transport control, it is possible to determine a higher boundary 
estimate of the amount of enzyme immobilized on the electrode, by 
quantifying the amount of enzyme that actually reaches the electrode 
per unit of time. Like the other methods that quantify the total amount of 
enzyme immobilized on the electrode, based on surface plasmon reso
nance or on quartz microbalance, this method only provides a higher 
boundary of the number of connected enzyme molecules – however, the 
approach we propose here does not require specifically engineered 
electrodes. In all of these approaches, the number of electrically con
nected enzyme molecules can be significantly lower than the enzyme 
loading – for instance, in the case of macroporous carbon felt electrode 
modified by carbon nanotubes, Mazurenko and coworkers were able to 
determine both the amount of electroactive enzymes (from non-catalytic 
signals) and the total amount of immobilized enzymes (by comparing 
the activity of the solution before and after immobilization); they found 
that under their conditions, only 14% of the enzymes were immobilized 
in a configuration that allowed direct connection [10]. 

There is often an important discrepancy between the value of the 
catalytic rate determined by solution assays and that determined by 
electrochemical methods, be it a true value or a lower boundary esti
mate. In the case of human sulfite oxidase, it was remarked early on that 
the catalytic rate determined from catalytic voltammograms was 20 
times lower than the rate determined in solution assays under similar 
conditions, leading to the initial conclusion that only a small subset of 
the immobilized enzymes was in an active conformation [14]. However, 
it was later demonstrated that the reason for the decreased activity is 
that a conformational change necessary for the catalytic activity [33] is 
slowed down on the electrode to the point of becoming rate-limiting 
[34]. In some cases, the activity deduced from solution assays matches 
the value determined from catalytic voltammograms, for instance for 
E. coli fumarate reductase FrdAB on pyrolytic graphite edge electrodes 
[16], or bilirubin oxidase immobilized on carbon felt modified with 
carbon-nanotubes [10]. Sometimes, the catalytic rate measured in 

Fig. 3. Top panel: evolution of the current density as a function of time during 
the course of an immobilization process, together with a mono-exponential fit 
(blue dashed line) and the fit of Eq. (6) (red dashed line). The black dots are the 
same data as those in Fig. 1. Bottom panel: residuals of the two fits (same color 
code as for the top panel). 

Table 1 
results of the solution assays of Ec Hyd-1, using various buffers as indicated, 
saturated with 1 atm. H2 and containing 10 mM benzyl-viologen. Temperature: 
40 ◦C.   

Tris–HCl 0.1 
M pH 8 

Tris–HCl 0.1 
M pH 7 

Electrochemical buffer 
(pH 7) 

Specific activity 
(µmol H2/min/mg) 

88 ± 7 50 ± 8 92 ± 10 

Catalytic rate (s-1) 139 ± 11 79 ± 12 146 ± 15  
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solution was much smaller than that deduced from protein film elec
trochemistry experiments; this is the case of Allochromatium vinosum 
hydrogenase, for which values of the turnover rates in the 1500 s-1 – 
9000 s-1 range were extrapolated from Koutecky–Levich plots [17], with 
solution assays in similar conditions giving values up to 900 s-1. It should 
be noted however that enzyme-modified electrodes are not expected to 
obey Koutecky-Levich relationships [35], therefore, the catalytic rates 
deduced by these extrapolations are likely to be overestimations. 

Concerning Ec Hyd-1, solution assays conducted under the same 
conditions as those of Fig. 1, yielded values of turnover rates of 146 ±
15 s-1, more than 15 times lower than the lower values deduced from 
experiments such as that of Fig. 1 (it should be noted that, as the same 
determination of the enzyme concentration is used for both computa
tions, errors in the determination of the concentration would have no 
impact on the final ratio). This suggests that solution assays greatly 
underestimate the actual catalytic activity of Ec Hyd-1. This may arise 
from non-optimal conditions being used in the solution assays, in 
particular in terms of choice of artificial redox partner. Our conclusion is 
consistent with the fact that early electrochemical studies of Ec Hyd-1 
yielded very large current densities in spite of solution assays giving 
very small activities (1.5 s-1) [22], for which it is usually considered that 
catalytic currents should be very hard to detect. Our results are also 
consistent with the relatively high values of the catalytic rate (around 
600 s-1) measured using Fourier-transformed AC voltammetry with the 
same enzyme [36]. 

Using a complete model taking into account Langmuir adsorption 
isotherms, we could also determine the adsorption equilibrium constant 
(3.8 nM-1, corresponding to a half-saturated layer at 0.26 nM), which is 
comparable to those determined for the hydrogenase from Aquifex 
aeolicus (0.16 nM-1, corresponding to a half-saturated layer at 6.3 nM) 
[10]. These low values also suggest that very dilute solutions may be 
used to form films using the usual drop-casting methods. The decrease 
observed at long times cannot be explained by the Langmuir adsorption 
process, which predicts that the system reaches an equilibrium between 
the surface-immobilized enzyme and the one in solution. It is more likely 
attributable to irreversible damage, like enzyme inactivation on the 
electrode. 
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