
TYPE Review

PUBLISHED 13 September 2022

DOI 10.3389/fnut.2022.977548

OPEN ACCESS

EDITED BY

Bin Li,

Shenyang Agricultural

University, China

REVIEWED BY

Yanglei Yi,

Northwest A&F University, China

Paripok Phitsuwan,

King Mongkut’s University of

Technology Thonburi, Thailand

Haisong Wang,

Dalian Polytechnic University, China

*CORRESPONDENCE

Shuangqi Tian

tianshuangqi@haut.edu.cn

Zhicheng Chen

chen_1958@163.com

SPECIALTY SECTION

This article was submitted to

Food Chemistry,

a section of the journal

Frontiers in Nutrition

RECEIVED 24 June 2022

ACCEPTED 11 August 2022

PUBLISHED 13 September 2022

CITATION

Yan F, Tian S, Du K, Xue X, Gao P and

Chen Z (2022) Preparation and

nutritional properties of

xylooligosaccharide from agricultural

and forestry byproducts: A

comprehensive review.

Front. Nutr. 9:977548.

doi: 10.3389/fnut.2022.977548

COPYRIGHT

© 2022 Yan, Tian, Du, Xue, Gao and

Chen. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Preparation and nutritional
properties of
xylooligosaccharide from
agricultural and forestry
byproducts: A comprehensive
review

Feng Yan, Shuangqi Tian*, Ke Du, Xing’ao Xue, Peng Gao

and Zhicheng Chen*

College of Food Science and Technology, Henan University of Technology, Zhengzhou, China

Xylooligosaccharide (XOS) are functional oligosaccharides with prebiotic

activities, which originate from lignocellulosic biomass and have attracted

extensive attention from scholars in recent years. This paper summarizes the

strategies used in the production of XOS, and introduces the raw materials,

preparation methods, and purification technology of XOS. In addition, the

biological characteristics and applications of XOS are also presented. Themost

commonly recommended XOS production strategy is the two-stage method

of alkaline pre-treatment and enzymatic hydrolysis; and further purification by

membrane filtration to achieve the high yield of XOS is required for prebiotic

function. At the same time, new strategies and technologies such as the

hydrothermal and steam explosion have been used as pre-treatment methods

combined with enzymatic hydrolysis to prepare XOS. XOS have many critical

physiological activities, especially in regulating blood glucose, reducing blood

lipid, and improving the structure of host intestinal flora.

KEYWORDS
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Introduction

XOS are functional oligosaccharides, which are composed of 2–7 xylose molecules

linked by β-1, 4-glycosidic bonds, and the relative molecular weight is generally about

200–300 kDa (1, 2). XOS have excellent physical and chemical properties, such as high

heat and acid resistance (3). The sweetness of XOS is about 40%-50% of sucrose (4). The

viscosity of XOS is lower than other oligosaccharides, which can reduce the water activity

and improve the ability to hold water in water solution (5).
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In addition to excellent physical and chemical properties,

XOS are also the research hotspots of scholars from all walks

of life as prebiotics (6). A large number of animal experiments

have proved the beneficial effects of XOS in preventing

caries, regulating blood glucose, reducing blood lipid, reducing

cholesterol, preventing inflammatory, improving immunity,

preventing oxidation, promoting calcium absorption, which are

relating to the ability of regulating intestinal flora structure

of XOS (7–16). In addition, XOS could effectively prevent

obesity, cardiovascular disease, atherosclerosis, and intestinal

diseases (17, 18). The International Association of probiotics

and prebiotics (ISAPP) identified XOS as emergent prebiotic

oligosaccharides in its latest update of its prebiotic definition

(19).

Most XOS are prepared by degradation of agicultural

biomass (20, 21). Typical raw materials for preparation of

XOS include crop straws such as wheat and sugarcane, as

well as processing byproducts such as corncob and rice husk

(22). XOS can also be produced from the cotton stalk, corn

straw, sugarcane bagasse, and other common agricultural

wastes (23). There are three main methods of extracting XOS:

autohydrolysis, acid hydrolysis, and enzymatic hydrolysis (24–

26). At present, enzymatic hydrolysis preparation of XOS is the

primary method (27).

XOS have great potential as food ingredients due to their

price competitiveness, thermal stability and pH stability, sensory

properties and multidimensional effects on human health and

livestock compared with other prebiotics (28–30). Globally, XOS

are mainly used in the feed industry (49.6%), followed by health

and medical products (25.4%), food and beverage (23.2%), and

other applications (1.8%) (31). In addition, the industry’s interest

in XOS is reflected in an increasing number of XOS patent

applications (20). The global prebiotic ingredient market is

estimated to be 4.07 billion in 2017, expected to reach $7.37

billion by 2023. The compound annual growth rate (CAGR) is

10.4% (32), and the Asia Pacific region, including China, India,

and Japan, are expected to have the highest increase, exceeding

9.5% (33).

This article summarizes the research progress of preparation

and purification methods of XOS in recent years and introduces

the physiological activities and applications of XOS to provide

the basis for the further development and application of XOS.

Preparation of XOS

Raw materials for XOS preparation

Figure 1 showed the schematic representation of the

lignocellulosic biomass composition. Lignocellulose biomass are

the non-starch part of renewable and abundant plant materials.

Lignocellulose materials are mainly cellulose, hemicellulose,

and lignin (35). The composition of lignocellulose varies, with

an average of cellulose (30–50%), hemicellulose (20–40%),

and lignin (15–25%) in the total dry matter (36). Cellulose

is composed of a glucose molecular chain, which forms

hydrogen bonds between different layers of polysaccharides and

forms crystalline conformation. Xylan, the main component of

hemicellulose, is the critical target of XOS production.

Figure 2 showed the structure of xylan. Xylan is the main

component of hemicellulose (60–90%), a heteropolysaccharide

with a degree of polymerization (DP) between 50 and

200, containing acetyl, 4-o-methyl-dglucouronosyl, and α-

substituents of arabinofuranyl residues, related to themain chain

of β-1,4-linked xylopyranose units (23, 37). Table 1 lists the

composition of several common lignocellulose raw materials.

The higher the xylan content of the raw materials, the lower the

cost of XOS production. Among these lignocellulose biomass,

the hemicelluose content of corncob, sugarcane bagasse, and

wheat straw are relatively high, which are ideal raw materials for

XOS industrial production.

Preparation of XOS

Acid hydrolysis

Xylan can be hydrolyzed into soluble XOS under acidic

conditions. Generally, dilute hydrochloric acid and sulfuric acid

are used to hydrolyze xylan with a high degree of polymerization

to produce XOS. The purpose of acid treatment is to improve

the hydrolysis degree of hemicellulose, to improve the yield

of XOS. Hemicellulose is separated into oligosaccharides and

monosaccharides with a wide range of DP through the breaking

of glycosidic bonds of xylose (37, 47). However, acid hydrolysis

leads to equipment corrosion, which limits its use. In addition,

acid hydrolysis will produce excess xylose and other toxic

reaction products at high temperatures, such as furfural and

hydroxymethylfurfural (HMF), which are harmful to food

applications (48, 49).

It was reported that the yield of XOS obtained by

hydrolyzing poplar wood with 5% acetic acid at 170◦C

was 39.8% (50). Ying et al. elucidated that the increase

of sulfuric acid dosage enhanced the lignin removal of

poplar pretreated with hydrogen peroxide acetic acid (51).

The maximum XOS yield was 68.5% when XOS were

produced by hydrolyzing corncob with 5% propionic acid

at 170◦C for 50min (52). It was reported that the product

obtained by hydrolyzing brewer’s grains with 1.85% sulfuric

acid for 19.5min contains 6.6 g/L arabinoxylooligosaccharide

(AXOS) (53). The acetic acid pre-treatment of poplar could

effectively produce XOS, with a yield of 55.8%, and acetylation

degradation of lignin occurred after acetic acid pre-treatment

(54).

Acid hydrolysis to obtain XOS has been widely used

because it was a fast and easy technology (21). High XOS

yield could be obtained by hydrolysis with sulfuric acid

Frontiers inNutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.977548
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yan et al. 10.3389/fnut.2022.977548

FIGURE 1

Schematic representation of the lignocellulosic biomass composition [Adopted from Capetti et al. (34)].

FIGURE 2

Xylan structure shows di�erent intermolecular bonds [Adopted from Otieno et al. (7)].

of lignocellulose biomass. However, the yield of oligomers

is lower than monomers, mainly due to the higher yield

of xylose (6, 55). Even some methods change the acid

conditions, improve the yield of XOS and optimize the

existing preparation process; but the acid hydrolysis

efficiency is still not high; there are still many impurities

in the prepared products; and the content of XOS is

still low.

Autohydrolysis

Agricultural plant biomass rich in xylan can also be directly

hydrolyzed under high temperature and high pressure to

produce XOS. Autohydrolysis is a non-chemical process, which

refers to the deacetylation of D-xylan at high temperature

in the presence of water (56). Autohydrolysis occurs under

slightly acidic conditions due to the partial cleavage of acetyl

groups in plant cell walls to form acetic acid (57). In the
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TABLE 1 Cellulose, hemicellulose, lignin composition in raw

lignocellulose biomass.

Biomass Cellulose

(%)

Hemicellulose

(%)

Ligin

(%)

References

Almond shell 34.3 20.2 28.8 (38)

Big blue stem 37 28 18 (36)

Birch wood 40 24 24 (39)

Beech wood 42.5 34.3 22.2 (40)

Corncob 30–42 31–38 18–22 (37)

Coconut husk 34.1 32.6 26.0 (41)

Chestnut husk 20.6 10.5 48.3 (42)

Corn stover 40 25 17 (36)

Hazelnut shell 18.7 28.9 46.7 (43)

Miscanthus 43 24 19 (36)

Olive pomace 13.8 18.9 31.2 (44)

Olive stones 15.3 20.3 42.1 (44)

Pineapple peel 20.9 31.9 10.4 (45)

Peanut shell 20.9 19.3 42.7 (46)

process of autohydrolysis, XOS are typical reaction intermediate,

and their concentration depends on the balance between

the decomposition of polymer hemicellulose into XOS and

their further decomposition into monomer xylose. Therefore,

under medium conditions, the yield of XOS will be higher.

Treatment with increased severity resulted in decreased DP

and increased decomposition of XOS into xylose. Hemicellulose

is easily affected by water under high pressure and high

temperature. Exposure of lignocellulosic biomass to water causes

hemicellulose to penetrate the cellular structure, resulting in

cellulose hydration and hemicellulose depolymerization. The

action mode of hydrothermal treatment of lignocellulosic

biomass was in the subcritical region of water (100–374◦C) (58).

Autohydrolysis is heat treatment with steam or liquid water

at high temperature or high pressure (55, 56). Under the

autohydrolysis, the autoionization of water will produce ions,

which leads to the depolymerization effect of hemicellulose (59).

Acetic acid is usually added during autohydrolysis to increase

the formation of hydrogen ions (23). The yield of XOS is

the high under moderately severe operating conditions (60). It

was reported that the maximum yield of XOS (55.3 wt%) was

obtained by hydrothermal treatment of pecan shells at 160◦C

for 2 h. At the same time, high temperature (220◦C) and short

time (0.5 h) were helpful in hydrolyzing XOS with high DP,

in which the yield of XOS (DP2-6) was 37.5 wt% (61). The

autohydrolysis of almond shells (200◦C, 5min) resulted in low

DP, and the concentration of XOS (xylobiose and xylotriose)

was only 3.5% (38). Small-scale (150 tons of brewery waste grain

per day) biological refineries could make profits by valuing the

waste grain produced by large breweries and applying high-solid

hydrothermal technology to produce high-value products xylitol

and XOS (62). It was also elucidated that the recovery rate of

high-purity polymeric hemicellulose withmolecular weight (21–

30 kDa) was 35–37% when high-purity hemicellulose (xylan)

was partially extracted from wood waste by alkali mediated

hydrothermal method; the separated hemicellulose could be

chemically transformed into high-value commercial products,

such as prebiotics (XOS) (63).

The main advantage of autohydrolysis method is that it

has low or no requirements for corrosive compounds and is

marked as an environmentally friendly process (36). In the past

decades, hydrothermal treatment has been widely studied as the

first step of biorefinery because of its environmentally friendly

advantages and the selectivity of dissolving hemicellulose as

oligosaccharides over other treatments (64, 65). Hydrothermal

pre-treatment is considered an ecologically friendly and

inexpensive alternative method to treat lignocellulose (66,

67). Autohydrolysis technology automatically ionizes water

into hydrogen ions, allowing hemicellulose compounds to be

released from lignocellulose, such as acetyl groups in acetic

acid. This organic acid acts as a mild catalyst during the

reaction, which is conducive to the subsequent dissolution of

other hemicellulose-derived compounds (68, 69). Therefore,

hydrothermal treatment is a technology to reduce the corrosion

effect and cost of different solvents, and has high selectivity

for hemicellulose.

Although the consumption of chemicals is low, due to

the high pressure and temperature conditions, autohydrolysis

process requires high energy consumption. The green

characteristics of autohydrolysis will also depend on the

energy used (70). It was reported that the most common

temperature range to achieve high yield and minimum

degradation of compounds was about 160–180◦C (42, 71). The

high temperature usually causes the release of many monomers

(xylose) and impurities, such as furfural and HMF produced by

sugar degradation, as well as the phenolic compounds produced

by lignin (72, 73). The acidic hydrogen ion is formed due to

the release of acetyl group in lignocellulosic biomass; acetyl

group is the catalyst for hemicellulose depolymerization (71).

The depolymerization of oligomers begins with the random

breaking of the bond of xylose, producing oligomers short

enough to be extracted from the biomass structure (74).

The main disadvantage of heat treatment is still to produce

a large number of unwanted byproducts, such as other

oligomers, monosaccharides, acetic acid, furfural, HMF, formic

acid, levulinic acid, phenolic compounds, etc., (30, 75). It was

observed that the degradation compounds released from the

mixed biomass of hydrothermal treatment, had a significant

inhibitory effect on the growth of Lactobacillus brevis. The

dissolved lignin concentration of 1 g/L inhibited the growth

of Lactobacillus brevis. After the adsorption purification step

using Amberlite XAD 16N resin, the purified XOS showed

the exact cell yield and product yield as commercial XOS

(76). In general, a separation process is required to remove
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unwanted compounds. The existence of the former compound

in XOSmixture leads to serious purification difficulties, and then

increases the production cost (56).

The release of degraded compounds depends on the

composition of biomass and process conditions. Generally

speaking, a separation process is required to remove unwanted

compounds. The presence of the former compound in the XOS

mixture leads to serious purification difficulties and consequent

increased production costs (56). Another disadvantage of using

autohydrolysis to produce XOS is that special equipment is

required due to high temperature and high pressure (23, 24).

Enzymatic hydrolysis

Figure 3 showed the xylanase hydrolysis of lignocellulose.

XOS can also be produced by enzymatic hydrolysis of xylan.

Compared with acid hydrolysis and autohydrolysis, enzymatic

degradation is an ideal XOS production method because it

has specificity and the least byproducts. In addition, enzymatic

hydrolysis does not require any special equipment. The current

commercial process uses an enzyme process, which has mild

operating conditions, and does not use toxic chemicals, so

enzymatic hydrolysis is more in line with the viewpoint of

biodegradation process. In addition, the use of xylanase is

efficient and specific, allowing higher control of DP and reducing

the production of unwanted xylose and other byproducts (77).

Enzymatic hydrolysis is usually used for the extraction

of XOS due to the mild enzymatic hydrolysis conditions

and high product quality (78). However, the isomerization

of lignocellulosic materials will be seriously affected by the

structure of composite lignin-hemicellulose. Therefore, it is

essential to destroy the composite structure to expose more

hemicellulose to improve the extraction efficiency. Physical

and chemical pre-treatment technology have been used before

enzymatic hydrolysis. In addition, the source of materials and

xylanase have an impact on enzymatic hydrolysis.

Physical pre-treatment

Physical pre-treatment mainly includes the hydrothermal

method, steam explosion method, ultrasonic method, and

microwave method.

Steam explosion is instantaneous blasting under high

temperature and high pressure. The hemicellulose recovery of

corn cob after steam explosion at 196◦C for 5min was 22.8%

(79). After a steam explosion at 204◦C for 4min and 180◦C for

30min, the yield of XOS in wheat straw was 8.9 and 13.9/100 g

(72, 80). Steam explosion was also applied to the pre-treatment

of rice husk, and the final output of XOS was 17.35 mg/mL xylan

(81). In addition, after the steam explosion, 40% of xylan was

degraded into XOS, and the degree of polymerization of steam

explosion hydrolysates had good prebiotic properties (82).

The hydrothermal method processes materials in high-

temperature or high-pressure hot water. It was reported that the

xylan yield of wheat straw reached 56.2 g/kg after hydrothermal

pre-treatment at 180◦C for 40min (39). After hydrothermal pre-

treatment at 190◦C, 1.8 MPa for 13min, the extraction rate

of xylan from corncob was 18% (6). The extraction rate of

xylan was 23.82/100 g from dry corn straw subjected to non-

isothermal hydrothermal pre-treatment (83). The extraction of

XOS from corn fiber by hydrothermal pre-treatment at 160◦C

was also reported (84).

Ultrasonic and microwave had been applied to the pre-

treatment of lignocellulose materials. Under 121◦C ultrasonic

pre-treatment, 39% of xylan in corncob was released, which

was higher than the conventional extraction method (34%), and

the extraction time shortened from 24 h to 43min (85). After

microwave pre-treatment at 185◦C for 10min, the recovery

rate of xylan was higher than that of high-pressure steam pre-

treatment, because microwave pre-treatment was easy to control

the degree of reaction (86).

The results showed that physical pre-treatment was helpful

to the release of xylan and XOS. The steam explosion can

significantly improve the release of XOS, which has the

advantages of simple operation, no pollution, low energy

consumption, and a short production cycle. Therefore, the

steam explosion is a promising pre-treatment method for XOS

extraction in the future.

Chemical pre-treatment

Chemical pre-treatment mainly uses acid and alkali to

extract xylan from lignocellulosic materials, and the yield of

xylan varies according to the source of materials and extraction

conditions. Table 2 lists the material sources, extraction

conditions, and pre-treatment methods.

As shown in Table 2, the most commonly used chemical pre-

treatment method was alkali extraction, which mainly used 5–

24% sodium hydroxide and potassium hydroxide as extraction

solvents. However, the yield of xylan was relatively low when

alkali extraction is used alone. Auxiliary methods such as steam

and ultrasound are needed to improve the yield of xylan.

Xylan was extracted from corncob with sodium hydroxide and

methanol solvent, and the extraction rate reached 11% (89).

A similar xylan yield can be obtained when xylan is extracted

from dry corncob with 10% sodium hydroxide at 75◦C (89).

The yields of XOS were 83 and 84.5%, respectively, when

xylan were extracted from corncob and corn shells with 12%

sodium hydroxide solution with the steam pre-treatment (6, 92).

Ultrasonic assisted alkali extraction can significantly improve

the yield of XOS in corncob, and the content of related XOS can

reach 174.81 mg/g matrix (93).

Due to the low efficiency of acid extraction, acid extraction

was rarely used and was usually assisted by physical methods.

Xylan was extracted from corncob by acid electrolyte water (pH

2.0) combined with the steam explosion, and the extraction rate

was 55% (87). After pretreated corncob with dilute acid and

alkali to extract the lignin-saccharide complex, the yeild of XOS
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FIGURE 3

Schematic representation of XOS manufacture by enzymatic method.

was 5.80± 0.14mg/mL from the complex by xylanase hydrolysis

(94). According to reports, after being dissolved in 1.0MH2SO4

for 12 h, XOS were extracted from corncob by high-pressure

hydrolysis, and the maximum yield was 67.7% (95).

The alkali extraction method is greatly affected by

temperature and the extraction rate increases with the increase

of temperature. The alkali extraction method does not produce

byproducts, which is better than the acid extraction method,

but it have high requirements for equipment. Therefore, it

is suggested to use physical processes (such as steam and

ultrasonic) and chemical processes to improve the yield of xylan.

Xylanase hydrolysis

Xylanase systems include endo-xylanase and xylose releasing

enzyme exo-xylanase, or β-xylosidase, and debranching enzyme

(30, 96). For the production of XOS, only endo-xylanase are

meaningful. Based on sequence conservation, these enzymes

can be found in glycoside hydrolase families (GH) 5, 8, 10, 11,

and 43. In addition, exo-xylanase or β-xylosidase preparations

with low activities were needed to avoid xylose production

(56). Xylanases have been isolated from many different fungi

and bacteria, but most commercial xylanase hydrolysates are

currently produced by transgenic xylanase strains (97, 98).

It was reported that the main product was xylobiose

after the cauliflower stalk was hydrolyzed by natural endo-

xylanase extracted from Aspergillus niger TCC9687. The

cauliflower stalk XOS showed significantly high antioxidant

and antibacterial activities and reduced the viability of human

bone cancer MG-63 cells, both alone and in combination

with (Lactiplantibacillus plantarum, Bifidobacterium bifidum,

Lactobacillus delbrueckiissp. Helveticus); the antibacterial

components of cauliflower stalkm XOS were dihydroxybenzoic

acid and aspartic acid (99). Abdella et al. reported that after

the xylanase produced by Paecilomyces wallichii was applied to

beech xylan to produce different types of XOS; when the extract

concentration was from 0.1 to 1.5 mg/mL, the antioxidant

activity of XOS increased from 15.22 to 70.57% (100). XOS from

oil palm empty fruit bunch hemicellulose produced by xylanase

from Thermomyces cyanobacterium hydrolysis was composed

of xylotriose and xylobiose. XOS was evaluated as the substrate

of two probiotics (Lactobacillus plantarum WU-P19 makes

better use of XOS than Bifidobacterium TISTR2129) found in

the human gastrointestinal tract (101).

Table 3 lists the hydrolysis and yield of different raw
materials with endo-xylanase from different sources. It can be

seen from Table 3 that the yield of fungal xylanase is high.
It is reported that bacteria such as bacillus and streptomyces
could also produce xylanase (114). Recombinant xylanase could

also obtain a relatively high yield, but large-scale natural
production of recombinant enzyme required a highly complex

purification process, which significantly increases the cost.

Enzymatic hydrolysis of xylan could also be achieved in

situ by microbial fermentation. In this process, bacteria were

cultured to produce xylanase and secreted into the reaction

medium, where the enzyme hydrolyzes xylan to produce

XOS (115).
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TABLE 2 Material sources, conditions, and xylan yield of commonly

used chemical pre-treatment methods.

Material

sources

Extraction

method

Xylan yield References

Corn cob 12% NaOH 83% of original

xylan

(6)

Acidic electrolyte

water, pH 2.0

55% (87)

4% NaOH and

methyl alcohol

11% (88)

10% NaOH, 75◦C,

90min

20% (89)

Wheat straw 0.5 mol/L NaOH,

55◦C, 2 h

49.3% of

original xylan

(90)

Corn stalks 10% NaOH+1%

NaHBH4 , 20◦C,

10 h

54% of original

hemicellulose

(91)

Corn husks 12% NaOH, 121◦C,

0.2 MPa, steam

45min

84.60± 2.19%

of original

xylan

(92)

Xylanase hydrolysis process is relatively soft and easy to

purify. There is no apparent other production, and the color of

XOS is relatively light. XOS prepared by enzymatic hydrolysis

have good prebiotic potential and antioxidant performance. In

addition, the use of xylanase has high efficiency and specificity,

allowing higher control of DP and reducing the production of

unwanted xylose and other byproducts. At present, xylanase

hydrolysis is the primary method to produce XOS.

To sum up, the existing methods have optimized the

preparation of XOS to a certain extent and improved product

efficacy. In recent years, the industrial application of XOS has

been greatly limited due to high content of impuritie XOS; and

the product quality of XOS was not easy to control. Therefore,

the refining, separation, and purification of XOS have also

become the key to subsequent industrial application. At present,

the development of XOS has not reached its peak. As a new

generation of functional sugars, XOS have not been fully used.

These production optimizations have promoted the application

and development of XOS and laid the primary theoretical

foundation for large-scale popularization and use in the future.

XOS purification

After XOS production, undesirable compounds and

oligosaccharides were produced (116). The presence of

unwanted compounds such as glucose and xylose will increase

the calorific value of XOS and change their sweetness ability

(56). On the other hand, the prebiotic effect of XOS also seems

to depend on their purity level. It has been observed that

high-purity XOS products have a more significant impact on

biological function (57).

To remove unwanted components and obtain high-purity

XOS, subsequent purification treatment is required (28).

In particular, more components will effect the purity of

product when the autohydrolysis method is adopted to treat

lignocellulose (117).

The commonly used purification methods include

adsorption separation, solvent extraction, membrane separation,

and chromatographic separation.

Adsorption on the active solid surface is usually used in

combination with the solvent elution step to separate oligomers

from monomers and remove other unwanted pollutants.

Commonly used adsorbents for purifying XOS include activated

carbon, acid clay, bentonite, diatomite, aluminum hydroxide

oxide, titanium, silica, and porous synthetic materials (1, 56,

118). Among them, activated carbon is the most commonly used

evaluation method, whether in solution or fixed bed adsorption.

Activated carbon treatment has proven to be a viable option

for removing extract-derived, lignin-derived, and carbohydrate

degrading compounds present in XOS mixtures (119). On the

other hand, ion exchange resins are combined with different

purification strategies to remove salts, heavy metal ions, charged

organic compounds and pigments in XOS mixtures (56, 120).

Solvent extraction mainly removes the non-sugar

components from the hydrolysate. The recovery and purification

degree of the XOS mixture depend on the solvent used for

extraction. Ethanol, acetone, and isopropanol are the most

common options for refining crude XOS solutions (121–123).

In XOS production, solvent extraction is usually used to recover

hemicellulose derivatives from pre-treatment (55). In this

case, vacuum evaporation is generally used in the first stage

to remove volatile compounds and concentrate XOS solution

(56). On the other hand, organic solvent precipitation allows

the recovery of XOS or xylose while removing phenols and

extracting derived compounds.

Chromatographic separation for XOS purification produces

analytical grade high-purity components. Gel permeation

chromatography (GPC) (124), water-soluble exclusion

chromatography (SEC) (125), ion-exchange chromatography

(IEC), and centrifugal partition chromatography (CPC) are

some standard technologies for purifying XOS (126, 127), Ho

et al. used GFC to purify XOS produced by autohydrolysis of

agricultural residues. In this cases, GFC could effectively remove

high DP oligosaccharides. More importantly, GFC could

remove unwanted small molecules, such as monosaccharides,

acetic acid, and degradation compounds (furfural, HMF, and

phenol) (128).

Membrane separation is another powerful technique

commonly used for oligomer purification. Ultrafiltration

and nanofiltration based technology is the most promising

processing strategy for manufacturing high-purity and
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TABLE 3 Xylanase used for XOS production, operational conditions, and yield.

Xylanase Biomass

substrate

Xylanase ratio Operational

conditions

Hydrolysis

yield

References

Wild-Type endo-xylanase Paper mulberry pulp 125 U/g 53.8◦C, 12 h 1.23± 0.09 g/L (102)

Recombinant endo-xylanase Paper mulberry pulp 125 U/g 53.8◦C, 12 h 1.59± 0.07 g/L (102)

Cellulase-Free xylanolytic enzyme

from Bacillus firmus K-1

Corn cob 3 U/mL 50◦C, pH4.8, 4 h 44.6% (intial xylan) (103)

Endo-Xylanase from Aspergillus

niger MTCC 9687

Lauliflower stalk 20 U/g 50◦C, 5h, pH5.4 7.4 mg/mL (104)

Crude fungal xylanases from A.

flavus KUB2

Spent mushroom 20 U/g 50◦C, 5h, pH5.4 1.37–1.48 mg/mL (105)

GH10 from Caldicellulosiruptor

bescii xylanase

Rice straw xylan

Sugarcane bagasse

300 U/mL 50◦C, pH 6.0, 72 h 2.93 mg/mL

1.12 mg/mL

(106)

GH11 from Bacillus firmus K-1

xylanase

Rice straw xylan

Sugarcane bagasse

300 U/mL 50◦C, pH6.0, 72 h 1.79 mg/mL

1.10 mg/mL

(106)

Two recombinant endo-xylanase

from Streptomyces thermos-Riseus

(StXyl10, StXyl11)

Red alga dulse 0.5µg/mL

Then 2.0µg/mL

StXyl10 (50◦C, 4 h)

StXyl11(60◦C, 36 h)

95.8% (intial xylan) (107)

Crude xylanase produced with

Aureobasidium pullulans NRRL

Y−2311–1 from wheat bran

Autohydrolysis of

hazelnut shells

240 U/g 50◦C, pH 6.0, 24 h 22.5 g/L (108)

Combinations of

endo-β-(1,4)-D-xylanase enzyme

with accessory enzymes

(α-L-arabinofuranosidase,

feruloy-esterase, and

acetylxylan-esterase)

Barley straw Endo-β-(1,4)-D-xylanase

NS50030 7.2 U/mL;

α-L-arabinofuranosidase

6.3 U/mL;

feruloylesterase 0.05

U/mL, and acetylxylan

esterase 5 U/mL

50◦C, pH 4.8, 5 h 13.6 g XOS/100 g (109)

Commercial xylanase Rice husk arabinoxylan 50 U/g 50◦C, pH 5.5 24 h 64.01% (110)

Commercial xylanase Rice straw

arabinoxylan

100 U/g 50◦C, pH 5.5, 24 h 59.52% (110)

Crude xylanase from

Aureobasidium pullulans CCT

1261

Beechwood xylan 260 U/g 40◦C, pH 6.0 24 h 10.1 mg/mL (111)

Aspergillus versicolor

endo-xylanase

Xylan from sugarcane

bagasse 0.17%

substrate

65 UI/g 55◦C, 24 h 67.43% (112)

Aspergillus versicolorendoxylanase Xylan from sugarcane

leaf 0.17% substrate

65 UI/g 55◦C, 24 h 69.71% (112)

Xylanase complex fermentation by

Aspergillus niger

Sugarcane extracted

xylan

5 U/mL 55◦C, pH 5.8, 1 h 3.1 g/L (113)

concentrated oligosaccharides (55). The popularity of this

technology can be attributed to its low energy consumption

requirements, relatively easy amplification, and easy operation

variables (13, 116, 129–131). Membrane technology is currently

considered to be the most promising strategy for industrial

production of high-purity XOS. In this case, the ultrafiltration

separation of oligosaccharides from high molecular weight

compounds has low energy consumption and is easy to

operate and enlarge (128). However, its disadvantage is

that its performance is poor when small molecules must

be removed.

Meanwhile, purification strategies with different properties

are often used in combination to improve the purification of

XOS. It was reported that a combination of nanofiltration,
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solvent extraction and dual ion exchange chromatography

method could achieve 90.7% XOS purity (132).

Nutritional properties of XOS

Figure 4 showed the main nutritional properties of XOS.

XOS have many important physiological activities, especially

in regulating blood glucose, reducing blood lipids, improving

antioxidant capacity, preventing cancer, preventing dental, and

improving the structure of host intestinal flora.

Optimizing the intestinal flora

Figure 5 showed the role of XOS in regulating intestinal

flora. XOS can change the composition of intestinal

microorganisms, increase the number of probiotics and

produce healthy fatty acids. It was found that XOS from

giant awn could increase the number of Bifidobacteria,

Lactobacillus and Escherichia coli without affecting the number

of pathogenic bacteria such as Clostridium perfringens (134).

XOS extracted from corn straw also had a significant effect

on the proliferation of Lactobacillus and Bacteroides (80).

The addition of XOS during fattening period would increase

the concentration of acetic acid, linear fatty acids and short-

chain fatty acids in pig intestinal contents, and change the

composition and metabolic activity of intestinal flora (135).

The intake of XOS could significantly increase the number of

Bifidobacteria in human intestine (136). It was elucidated that

in vitro fermentation of XOS from birch could significantly

proliferated the number of Bifidobacteria, Staphylococcus,

especially Staphylococcus hominis, which could produce

bacteriostasis and inhibit corresponding pathogenic bacteria

such as Staphylococcus aureus and Helicobacter pylori (137).

Hald et al. elucidated that after ingestion of arabinoxylan,

the number of Bifidobacteria in feces increased significantly,

while the number of Lactobacillus, Clostridium, and Akmann

mucophilus did not change significantly (138).

The reason that XOS selectively proliferate beneficial

bacteria such as Bifidobacteria in the intestine is related to the

production of vitamins and immune stimulation (139). The

proliferation of Bifidobacteria in the intestine will also inhibit

the growth and reproduction of pathogenic bacteria, produce

some digestive enzymes and help the body rebuild the intestinal

flora (140). The effect of XOS on intestinal health is also reflected

in the large production of organic acids, such as short-chain

fatty acids, acetic acid, propionic acid, and butyric acid, as

well as other organic acids such as lactic acid, succinic acid,

formic acid, isobutyric acid, valeric acid, caproic acid, and

isohexanoic acid (99, 141). These organic acids play essential

roles in preventing various intestinal diseases. The increase

in acetic acid concentration was particularly significant after

FIGURE 4

Nutritional properties of XOS.

ingestion of Arabinoxylooligosaccharide (136). It was reported

that the proliferation of Bifidobacteria caused by the intake of

XOS is an essential reason for maintaining intestinal health

and preventing intestinal diseases (30). The study found that

after the intake of XOS, the number of Enterobacteriaceae and

Clostridium perfringens decreased significantly, which effectively

reduced the incidence of intestinal diseases caused by harmful

bacteria (88, 142).

XOS can selectively proliferate beneficial bacteria for

three reasons: (1) Providing energy materials for beneficial

bacteria (143). (2) Proliferating beneficial bacteria form a

microbial barrier to prevent pathogen colonization (144). (3)

XOS are fermented and utilized by Bifidobacteria and other

microorganisms in the intestine, and the organic acids produced

reduce the pH of the intestine, and most pathogenic bacteria are

suitable to grow in a neutral environment to inhibit the growth

and reproduction of pathogenic microorganisms (145).

Regulating blood sugar

XOS have unique molecular structure of β-1, 4 glycosidic

bonds so that the enzymes in the digestive tract in the body

cannot decompose them and cannot be directly absorbed and

utilized by the human body, so they do not affect the blood

glucose concentration. XOS cannot be digested and absorbed

by the animal gastrointestinal tract but can be fermented and

utilized by beneficial bacteria such as Bifidobacteria in the

intestine in the large intestine and produce a large number of

organic acids such as short-chain fatty acids (146). It was found

that type 2 diabetic patients had significantly lower blood sugar

levels after 8 weeks of XOS intake (147). The intake of 5%
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FIGURE 5

Illustration of benefits incurred by prebiotics on immune system: Stimulates growth of the beneficial bacterium in the large intestine that

prevents colonization of harmful bacteria; increases production of short-chain fatty acids (SCFA) and helps in improving bowel health that

reduces risks of colon cancer [Adopt from Slizewska et al. (133)].

XOS could significantly reduced the blood glucose of obese mice

(146). XOS from cereals could effectively improve the blood

glucose level of mammals (148).

It was reported that XOS regulated blood glucose and

lipid metabolism in mammals depending on their fermentation

process in the colon (148). Some researchers argued that XOS

could improve glucose tolerance by reducing plasma glucose

levels and enhancing insulin sensitivity (149). It was reported

that after XOS were ingested by mammals, a large amount

of propionic acid produced by the fermentation of beneficial

bacteria in the intestine could stimulate the production of

glucagon like peptide 1 (GLP-1), which stimulates the secretion

of insulin, thereby increasing the synthesis of liver glycogen and

reducing the level of plasma glucose (150).

To sum up, XOS play a regulatory role in blood

glucose levels. For people with high glucose, diabetes, or

impaired glucose tolerance, XOS intake has a positive effect

on lowering blood sugar levels, which is consistent with

most studies.

Reducing blood lipids

Many studies have shown that XOS could effectively reduce

the lipid levels of obese people. For example, it was found that

after 8 weeks of continuous intake of 4 g/d xylose, fat in patients

with type 2 diabetes decreased significantly (147). XOS could

reduce the levels of total cholesterol, low-density lipoprotein,

triglyceride, and increase the level of high-density lipoprotein in

obese mice with a high-fat diets (146). XOS could also reduce the

fat level of broilers (151).

The intake of oligosaccharides will reduce the levels of

total auxin and acylated auxin. In contrast, the reduction of

acylated auxin will reduce food intake to improve obesity and

control metabolism. It was found that the short-chain fatty acids

produced by microbial fermentation of XOS in the intestine

affect the metabolism of cholesterol, in which propionic acid

was absorbed by the intestine and entered the blood through the

portal vein to the liver to reduce the synthesis of cholesterol in

the liver and improve the sensitivity of insulin to regulate the
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body’s lipid metabolism (152). In addition, some studies have

explained the mechanism of XOS reducing blood lipid from

the perspective of bile acid. It was found that the mechanism

that XOS reduced the cholesterol level of patients with high

cholesterol was the excessive excretion of bile acids (153).

Improving antioxidant capacity

XOS also have antioxidant activity (154). The antioxidant

activities of XOS are mainly reflected in increasing the content

of non-enzymatic antioxidant substances and improving the

activity and level of antioxidant enzymes (147). It was found

that XOS could significantly reduce the levels of oxidized

glutathione (GSH) and malondialdehyde (MDA) in serum,

heart and liver of high-fat diet mice, and normal mice (146).

XOS intake could significantly increase the activity and level

of antioxidant enzymes such as SOD (superoxide dismutase),

CAT (catalase), and GSH PX (glutathione peroxidase) in the

heart of mice with a high-fat diet (155). Abasubong et al.

reported that 5% XOS (the mass fraction of 1.5%) could

significantly improve the growth performance, antioxidant

capacity, innate immunity, and hydrophilic bacilli resistance of

Sparus macrocephalus (156). XOS could increase the contents

of Lactobacillus and Bifidobacterium in mouse feces and reduce

the contents of Enterococcus, Enterobacter, and Clostridium.

The vitro antioxidant results showed that the conbination of

XOS and Lactobacillus plantarum had free radical scavenging

activity (154).

Preventing cancer

Short-chain fatty acids and other organic acids produced

by XOS fermentation in the intestine have a specific role

in preventing cancer, and their immune regulation in the

body are essential means to prevent cancer (146, 157). Studies

have shown that XOS could change the intestinal microbiota

of mice and improve the intestinal barrier (158). It was

demonstrated that XOS could reduce systemic inflammation,

increase trabecular thickness, reduce osteoclasts and active

erosive surfaces, and restore the rate of mineral deposition and

bone formation in male Wistar rats (159). Yin et al. found that

the inflammatory state and intestinal barrier of XOS-fed piglets

improved significantly (160). Many reports have reported that

the addition of oligosaccharides could reduce the expression of

TNF-α (tumor necrosis factor) and NF-κβ (proinflammatory

nuclear transcription factor protein) in the colon (161). It was

also verified the anti-inflammatory activity of wheat arabinose

oligosaccharides (162). XOS could also significantly increase

the activation potential of T cells and B cells in tumor-bearing

mice, as well as the immune ability in body fluids and cellular

mediators, and play an anti-tumor role. It was also reported

that the taking of XOS could minimize the risk of colon cancer,

produce cytotoxic effects on leukemia cells, improve the immune

system, and has a positive effect on type 2 diabetes (40, 163–165).

Beneficial bacteria can regulate immune factors and

antibodies by using organic acids produced in the process

of XOS to improve the immune function of the body

(166). Bifidobacterium can increase the number of peripheral

leukocytes so that the immune function is enhanced through

the proliferation of Bifidobacteria (154). At the same time,

XOS can increase the number of blood monocytes, serum

alkaline phosphatase activity, and lysozyme activity. As an

immune adjuvant, Bifidobacterium can recognize PP lymph

nodes, activate intestinal lymph nodes, and induce lymphocyte

outflow through lymphatic vessels; the immune system of

the body is activated through lymphatic circulation (167). In

addition, oligosaccharides directly bind to sugar receptors on the

surface of immune cells to stimulate immune cell differentiation

and increase activity; XOS can also be used as foreign antigens

to effectively and permanently stimulate the immune system

and promote the cell division and development of immune

organs (153).

Other nutritional properties of XOS

At the same time, XOS can also prevent dental caries (168).

XOS can not be decomposed by Streptococcus mutans and other

bacteria in the mouth. The absorption rate of calcium was

improved when XOS and calcium were ingested simultaneously

(161). Kobayashi et al. found that the use of acidic XOS in mice

with iron deficiency anemia significantly reduced the contents

of ferritin in the liver and iron transporter in the small intestine,

indicating that XOS could improve the body’s iron absorption

capacity and promote the body’s absorption of minerals. XOS

could promote the proliferation of beneficial bacteria in the

intestine; and the enzymes (such as phytase) produced by the

beneficial bacteria promoted the dissociation of mineral ions in

the intestine and improved the intestinal absorption rate of the

mineral (169).

Application of XOS

Figure 6 showed the different application of XOS. In the

food industry, XOS are commonly used as gelling agents,

viscosity regulators, foam stabilizers, and tablet adhesives (170).

In addition, the use of XOS as fat substitute in dairy products

improves the elasticity and hardness of low-fat cheese and

improves the storage stability of the cheese (171, 172). Except

in the food industry, XOS are also widely used in medicine,

agriculture and feed and other field because of their good

physical and chemical properties.
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FIGURE 6

Application of XOS.

Application of XOS in food

Application of XOS in baked food

XOS are widely used in baked foods because of their

excellent acid and thermal stability. The moisture retention and

water retention of XOS can change the rheological properties

of dough and control the best moisture effect to change the

taste and appearance of baked food. It was reported that the

partial substitution of 5% XOS for sucrose would not change

the physical and chemical properties of biscuits but would triple

the content of crude fiber and increase the content of dietary

fiber by 35%; and the biscuits had the functions of storage

stability and prebiotic function (173). The addition of XOS

increased the baking characteristics of biscuits, which increased

caramel flavor, darker color, and more brittle texture (174).

The addition of XOS also increased the sweetness and overall

taste intensity of biscuits, indicating that XOS play a role in

flavor enhancement in baked products. XOS have proved to be

a promising new substitute which can increase the dietary fiber

content of cereal biscuits.

Application of XOS in beverages

With the addition of XOS to orange juice, pomegranate juice,

and whey beverage, the overall sensory acceptance generally

improved (170, 175). The strawberry whey beverage with

XOS showed an inhibitory effect on the enzymes controlling

hypertension and diabetes in vitro.With the addition of XOS, the

viscosity of the beverage increased, which was attributed to the

substantial network formed by hydrogen bonding between XOS

and protein and the strong water holding capacity of XOS (176).

Application of XOS in fodder

XOS could promote the improvement of food-specific

characteristics and have been incorporated into animal feed to

improve health (20).

In poultry feed, XOS could effectively increase the number

of Lactobacillus in the ruminant intestine and improve animal

digestibility. It was elucidated that adding XOS to grain

could improve the feed conversion rate by adjusting the

nutrient digestibility and ileal morphology of laying hens, which

might be due to the increase of bacterial richness and the

change of microbial composition, especially the enrichment of

Lactobacillus and short-chain fatty acid-producing bacteria and

the decrease of Bacteroides abundance (177). The addition of

XOS to the diet had a positive effect on the growth performance,

nutrient digestibility, and SCFA ratio of broilers attacked by

coccidia (178). Ribeiro et al. studied the effect of XOS on

the performance of broilers and reported that the dietary

supplementation of XOS increased the nutritional value of the

wheat diet, and the improvement of animal performance was

accompanied by the transfer of microbial population settled in

the upper gastrointestinal tract (179).

In terms of livestock feed, the addition of 100 g/t XOS

in a grain diet could increase the height of jejunal villus, the

abundance of Lactobacillus and Bifidobacterium, as well as the

concentration of acetic acid and short-chain fatty acids, and

could significantly improve the intestinal ecosystem of Weaned

Piglets (180). The addition of XOS had a positive impact on the

growth performance, nutrient digestibility, and the proportion

of short-chain fatty acids of pigs (181). The supplement of

100 g/t XOS in the growth completion stage of pigs would

increase the relative abundance of Lactobacillus and short-chain

fatty acids and biogenic amines (135). Yin et al. elucidated that

the addition of XOS to the diet significantly enhanced the α-

diversityof the intestinal microbiota of weaned piglets (157). The

addition of XOS increased the villus height: crypt depth ratio in

jejunum of weanling piglets. The addition of XOS alone (200

mg/kg) could improve the apparent digestibility of dry matter,

nitrogen, and total energy on the 14th day, improve trypsin

activity and reduce fecal NH3 concentration. On day 14, taking

XOS reduced the number of E. coli in feces and increased the

number of Lactobacilli (182).

In terms of aquatic feed, XOS could promote the growth of

aquatic animals, reduce the content of serum cholesterol and

triglyceride, effectively control blood glucose level and enhance

the immunity of aquatic animals. It was reported that after fed

Caspian white fish with 3% XOS for 8 weeks, the antibacterial

activity and total protein level of skin mucus was significantly

improved. After taking XOS into the diet, the total number

of intestinal heterotrophic bacteria and lactic acid bacteria

increased significantly, which proved the beneficial effect of XOS

on different skin mucosal immune parameters (183). Feeding

juvenile triploid O. mykiss 5.0–10.0 g/kg XOS could increase the
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number of Lactobacillus by promoting intestinal development,

limiting intestinal injury and inflammation, and regulating the

structure of the intestinal microbial community (182). The high-

fat diet supplemented with 1–3% XOS promoted the growth of

carp fed with high-fat diet; and XOS could improve the growth,

digestive enzymes, antioxidants, and immune response of carp

fed with a high-fat diet (184). The appropriate level of XOS

supplement could improve the growth performance of grass

carp, increase the number of Lactobacillus and Bifidobacterium

and the concentration of short-chain fatty acids, improve

the growth performance of grass carp and prevent intestinal

cell apoptosis (185). It was reported that added 5% XOS to

the diet could significantly improve the growth performance,

antioxidant capacity, innate immunity, and hydrophilic bacilli

resistance of Megalobrama amblycephala (156). Adding XOS to

feed European bass (Dicentrarchusla-brax) could significantly

increase body weight and protein efficiency ratio and feed

conversion rate, improve growth, stimulate immunity, and

enhance anti-infection ability (186).

Application of XOS in medical treatment

The unique physiological activities of XOS makes them

widely used in medicine for the treatment and prevention of

a variety of diseases. In medical care, XOS can be an option

in preventing cardiovascular, tumor, and endocrine diseases.

XOS can be used as anti-tumor stabilizers, immune stimulants,

antioxidants, and drugs. XOS can also be widely added to

health care products as functional factors to assist in treating

of some human diseases. Through clinical verification, XOS

can be combined with traditional Chinese medicine extracts

or added to the formula of Western medicine to replace

some auxiliary materials such as starch and dextrin, which

can strengthen the efficacy of drugs. In addition, XOS can

also directly develop health products and enhance the body’s

physique. According to clinical trials, XOS play an important

role in treating diabetes, hypertension, hyperlipidemia, chronic

hepatitis, irritable bowel syndrome, chronic gastroenteritis,

osteoporosis, pruritus, and otitis (187). Sheu and other studies

reported that 8 weeks of XOS as a dietary supplement could

effectively improve blood glucose and lipid levels in type 2

diabetes (147). It was found that XOS was beneficial to the

reversible change of intestinal microflora in diabetic patients,

such as decreasing the growth of Enterorhabdus, Howardella,

SLackia, and so on (48). At the same time, XOS could

also reduce the OGTT-2h (2 h oral glucose tolerance test)

of prediabetic patients. It was reported that ID-HWS1000

composed of Lactobacillus and Bifidobacterium, XOS, and

dietary fiber directly improved the discomfort related to

defecation, reduced the proportion of vertebrates, increased

the proportion of Bacteroides, improved the perception of

intestinal activity in patients with functional constipation, and

produced positive changes (188). XOS supplementation could

also improve intestinal function, calcium absorption and lipid

metabolism, as well as reduce cardiovascular disease, and colon

cancer (23).

Application of XOS in agriculture

XOS were also known as plant growth regulators (189).

XOS could also be used as fertilizers to improve soil activity

and promote crop growth. When XOS were used as soil

conditioner, the number of soil microorganisms and enzyme

activity increased significantly, and the soil ecosystem was

improved (190). In XOS treatment, the content of Brassinolide

(BRS) increased significantly. Some researchers pointed out

that BRS could induce the accumulation of zeatin nucleoside

in plants to enhance photoprotection by accumulating many

cold shock proteins and effectively prevent the accumulation

of cold induced proteins (191). Finally, the resistance of plants

to low temperature increased (192). Chen et al. reported

the effect of XOS on improving salt tolerance of Chinese

cabbage (193). XOS had a force to increase root biomass

(increased by 69.5%), and the absorption of auxin also increased

significantly (194).

Other applications of XOS

It was reported that adding 3% XOS to a snakehead ball

could increase the elasticity of the fishball by 1.32 times without

changing the hardness (195). XOS were excellent food additives

and could be used as sucrose substitutes in the hydrostatic

preparation of high protein meat products. Maillard reaction of

soybean protein isolate and XOS could prepare new antioxidant

wall materials (196). Soy isolate protein and oligosaccharide

conjugate based on Maillard reaction showed excellent potential

in microencapsulation of probiotics. Neves and other studies

reported that the spray drying blue coloring agent using XOS has

shown great potential in many foods as functional ingredients,

replacing artificial blue coloring agents and combining the

prebiotic characteristics (197). XOS could induce stomatal

closure through the production of reactive oxygen species

(ROS) and nitric oxide (NO) mediated by salicylic acid signal

(198). In addition, in the cosmetics industry, the antioxidant,

moisturizing, stabilizer, and emulsifier capabilities of XOS, as

well as their ability to restore the microflora, making XOS

very attractive (20). Brazil International Flavor Association

reported that probiotics and prebiotics were one of the most

important active ingredients in the cosmetics market, which

could promote the balance of skin microbiota, improve skin

resistance, replenish water and alleviate irritation. It was
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elucidated that XOS could avoid protein denaturation during

frozen storage; shrimp soaked in XOS solution (3.0% w/v)

had better water retention, stability of myofibrillar protein,

and excellent texture characteristics (199). The mechanism

of protein stability was described by the hydrogen bond

between XOS and the polar residues of muscle protein and

by limiting the fluidity of water to avoid the growth of

ice crystals.

Conclusion

XOS are highly effective prebiotic nutritional

oligosaccharudes, which can be produced by hydrolysis of

hemicellulose, a rich component in agricultural residues rich

in xylan. At present, the preparation of XOS mainly includes

acid hydrolysis, autohydrolysis, and chemical enzyme synthesis.

Although XOS can be produced by chemical hydrolysis;

enzymatic hydrolysis has significant advantages because it

usually does not produce byproducts, which is very important

for the application of XOS. In the industrial environment, the

need for biomass pre-treatment and the relatively low efficiency

of subsequent enzymatic hydrolysis limit the yield of XOS.

Therefore, the successful production of XOS requires strict and

optimized conditions.

The existing methods optimize the preparation of XOS to

a certain extent and improve the preparation efficiency. In

recent years, the industrial application of xylan, a byproducts of

agricultural products, has been greatly limited due to its high

content of impurities, and the product quality is not easy to

control. Therefore, the refining, separation, and purification of

XOS have also become the key to their subsequent industrial

application. At present, the development of XOS has not reached

its peak, and as a new generation of functional sugars, XOS

have not been fully used. These production optimizations have

promoted the application and development of XOS and laid the

primary theoretical foundation for large-scale popularization

and use in the future.

The existing physiological activity studies of XOS are

carried out in animals and can only speculate on the

effect on human body according to the obtained data.

The actual effects need further experimental verification.

In the preparation process of XOS, the effects of

different raw materials on the structure and physiological

activity of XOS cannot be determined; further research

is needed.

XOS have an auspicious future. With the continuous in-

depth development and promotion of the health care industry,

there are more and more customers’ needs. The advantages

of XOS are less addition, good stability, and high selectivity,

which is in line with the general demand that capsules,

tablets, and other dosage forms are easier to carry and take.

These advantages are unmatched by other oligosaccharides. In

addition, as relatively new feed additive, they also have excellent

performance in bacteriostasis. XOS can further maintain the

health and productivity of animals. With many countries have

enacted laws, and more and more antibiotics are avoided

outside the scope of feed additives, including the continuous

improvement of various policies and the gradual diversification

and innovation of industrial development, there will be a

new opportunity for the sustainable development of the

XOS industry.
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