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Purpose: This study aims to meet a growing need for a fully automated, learning-
based interpretation tool for retinal images obtained remotely (e.g. teleophthalmol-
ogy) through different imaging modalities that may include imperfect (uninterpretable)
images.

Methods: A retrospective study of 1148 optical coherence tomography (OCT) and color
fundus photography (CFP) retinal images obtained using Topcon’s Maestro care unit
on 647 patients with diabetes. To identify retinal pathology, a Convolutional Neural
Network (CNN) with dual-modal inputs (i.e. CFP and OCT images) was developed. We
developed a novel alternate gradient descent algorithm to train the CNN, which allows
for the use of uninterpretable CFP/OCT images (i.e. ungradable images that do not
contain sufficient image biomarkers for the reviewer to conclude absence or presence
of retinal pathology). Specifically, a 9:1 ratio to split the training and testing dataset
was used for training and validating the CNN. Paired CFP/OCT inputs (obtained from
a single eye of a patient) were grouped as retinal pathology negative (RPN; 924 images)
in the absence of retinal pathology in both imaging modalities, or if one of the imaging
modalities was uninterpretable and the other without retinal pathology. If any imaging
modality exhibited referable retinal pathology, the corresponding CFP/OCT inputs were
deemed retinal pathology positive (RPP; 224 images) if any imaging modality exhibited
referable retinal pathology.

Results: Our approach achieved 88.60% (95% confidence interval [CI] = 82.76% to
94.43%) accuracy in identifying pathology, along with the false negative rate (FNR) of
12.28% (95% Cl = 6.26% to 18.31%), recall (sensitivity) of 87.72% (95% Cl = 81.69% to
93.74%), specificity of 89.47% (95% Cl = 83.84% to 95.11%), and area under the curve of
receiver operating characteristic (AUC-ROC) was 92.74% (95% Cl = 87.71% to 97.76%).

Conclusions: Our model can be successfully deployed in clinical practice to facilitate
automated remote retinal pathology identification.

Translational Relevance: A fully automated tool for early diagnosis of retinal pathology
might allow for earlier treatment and improved visual outcomes.

. image quality, provides an accurate and fast image
Introduction interpretation.

The coronavirus disease

This project is a part of the large initiative to
2019 (COVID-19)  perform retinal screening in patients with diabetes

pandemic has brought teleophthalmology into the during their visits to the primary care provider’s
spotlight and highlighted the need for a well-run  office. This paper focuses on our efforts to develop
remote retinal imagining model that, besides good an automated system that can efficiently process

Copyright 2021 The Authors
tvst.arvojournals.org | ISSN: 2164-2591

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. @. BY _NC_ND


mailto:majda.hadziahmetovic@duke.edu
https://doi.org/10.1167/tvst.10.6.30
http://creativecommons.org/licenses/by-nc-nd/4.0/

translational vision science & technology

Al for Retinal Pathology

retinal images obtained during these visits and identify
patients who need further ophthalmology attention.

Several groups have attempted to address this
issue by proposing automated solutions that are
either human-in-the-loop systems or operated semi-
autonomously. However, developing a fully automated
approach was challenging as a significant percentage
of uninterpretable images were present in training
and testing datasets.! > Uninterpretable images exist
due to inappropriate focus, exposure, or illumination
settings used during the image-capturing process and
do not contain sufficient image biomarkers for the
reviewer to conclude the absence or presence of retinal
pathology (i.e. ungradable).* Specifically, computer-
aided diagnosis tools developed by Usher et al.’> were
able to identify retinal pathology in a semi-automated
manner using color fundus photography (CFP)
images. However, human interaction was necessary
for the image preprocessing or feature extraction steps.
Gargeya et al.>*7-%181% improved the automation
degree, but for interpretable images only, by proposing
a one-fit-for-all preprocessing method for CFP images,
with the resulting images being processed and classified
by convolutional neural networks (CNNs). Addition-
ally, Kermany et al.”!*!15-17:20 devised CNN-based
models that can identify ophthalmic pathologies from
optical coherence tomography (OCT) scans. To further
improve the prediction performance and capture the
image features jointly across different modalities,
Yoo et al.' 13 proposed multistream CNN models
for automated diagnosis using multimodal inputs
(e.g. OCT and CFP). However, to the best of our
knowledge, no existing work can be deployed for fully
automated retinal pathology diagnosis, mostly because
uninterpretable images are excluded from training and
testing.” 2! This process requires an expert’s input to
determine ungradable images and exclude them from
the dataset. The presence of images with substandard
quality is universal and inevitable to encounter in
clinical practice.”?*?* This problem might become more
accentuated in the future with broader acceptance
of automated image capture systems with integrated
Al-based diagnosis algorithms. In such instances,
no clinician would be present on-site to fine-tune
the scanner for each patient or re-take images if the
outputs were unsatisfactory. Consequently, a substan-
tial number of ophthalmic screenings on undilated
pupils will likely contain uninterpretable images, and it
is essential to include those while designing such deep
learning (DL) models to allow for their integration
into a fully automated diagnosis system for instant and
accurate diagnoses.

The purpose of this study was to create such an
accurate DL approach for retinal image classifica-
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tion and identification of referable retinal pathology.
Our main goal was to develop a CNN model that
can automatically handle imperfect images, including
uninterpretable images, and provide high validation
accuracy and low false-negative rate to identify retinal
pathology.

Materials and Methods

Retinal Imaging

This retrospective study analyzed 1148 OCT and
CFP retinal images obtained from 647 patients with
diabetes. Images were captured by Topcon, Maestro
3D-OCT multimodality OCT/Fundus imaging device
(Topcon Inc., Tokyo, Japan). CFP had an angle of
45 degrees + 5%, or 30 degrees, on the nondi-
lated pupil. B scan horizontal range was 3-12 mm
degrees £+ 5%, with a 4x “Moving Average” oversam-
pling performed, with the averaged final image. All
eligible patients were invited to participate in the
study and verbally consented to participate in the
study by their primary care provider. The images
were taken by trained certified medical assistants
(CMAs). The study was a part of the Duke Quality
Assessment/Quality Improvement (QA/QI) project and
received institutional review broad approval from Duke
University Health System. The study complied with the
principles of the Declaration of Helsinki.

Dataset Formulation

Retinal images (OCT and CFP) were saved in JPEG
compression format with a size of 659 x 512 and
661 x 653 pixels. For each OCT volume scan, only
the central scan (i.e. the 31st B-scan out of a total of
60 B-scans in each volume scan) through the fovea was
used. The images were resized to 299 x 299 to comply
with the input dimension of the developed CNN archi-
tecture (for more details, see subsection: CNN Design).
Images were graded as previously described (Hadzi-
ahmetovic et al., JAMA Ophthalmology)** by Duke
medical retina fellows and a medical retina faculty,
and the final grading of de-identified images was done
by consensus. The images were classified as follows:
(a) uninterpretable images (if no clear identification
of macula was available due to poor positioning or
inferior exposure owing to media opacity; contain-
ing 2 OCT images and 71 CFP images), (b) retinal
pathology negative (RPN; containing 982 OCT and
952 CFP images), and (c¢) retinal pathology positive
(RPP; containing 164 OCT and 125 CFP images;
see Table 1). For each patient, there was at least one
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Table 1. Distribution of the Original Dataset, Augmented Training Set, and Testing Dataset
By Modality

OoCT CFP

Retinal Pathology Negative Retinal Pathology Positive  Uninterpretable Retinal Pathology Negative Retinal Pathology Positive  Uninterpretable

Original 982 164 2 952 125 71
Augmented training set 3189 1736 14 2839 1302 798
Testing set 73 40 1 68 32 14
By Eye

Retinal Pathology Negative Retinal Pathology Positive Total
Original 924 224 1148
Augmented training set 2601 2338 4939
Testing set 57 57 114

RPN RPN

Uninterpretable RPN

RPP RPP RPP

RPP RPP RPN

: Not Tested

1148 v Augmentation OCT
and pre-processing : = 508
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1148
Step |
Expert .
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Figure 1. Overview of the proposed CNN model design methodology. The OCT and CFP images obtained from the automated screening
system were first labeled respectively by experts (step 1), and the individual diagnoses were used to generate training labels according to
the Label Consensus Mechanism (step Il). The two types of images were augmented and pre-processed to constitute the inputs to the CNN
(step Ill), before being used, along with the obtained labels, for the CNN training (step IV).

interpretable image out of all obtained images. The and Fig. 1). To form the testing dataset, we randomly
final diagnosis used to train the CNN model was selected 57 RPN and 57 RPP eyes from the available
generated using the label consensus mechanism (LCM) data following a uniform distribution. These numbers
presented in Appendix A and Supplementary Table S1. represented about 10% of the total eyes, roughly 6%
As a result, 924 eyes were labeled as normal (i.e. RPN), and 25% of RPN and RPP eye cohorts, respectively.
whereas 224 eyes were identified as RPP (Table 1 Uninterpretable images were present in 15 eyes (1 OCT
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and 14 CFP). The remaining images were used to form
the training dataset. We specifically chose this ratio
of RPN and RPP samples to assure a well-balanced
testing dataset and guarantee that the resulting dataset
contained sufficient samples from the minority class
(i.e. RPP).

Study Design and Outcomes Measures

We propose a fully automated system that utilizes a
multimodal CNN to identify referable retinal pathol-
ogy. Additionally, we propose a backpropagation
algorithm associated with the CNN model that can
train it to minimize the impact of the input images
that do not contain sufficient biomarkers to determine
diagnoses.

Problem Formulation

Pairs of OCT and CFP scans (O, and C;) were
obtained from each eye of each patient P;, with some
of them being uniterpretable. We designed a CNN
model that takes input as (Oy, and C;) and classifies it
as “without” (i.e. RPN) and “with” (i.e. RPP) retinal
pathology. Precisely, “without pathology” corresponds
to the cases with normal OCT and CFP, and “with
retinal pathology” refers to cases where retinal pathol-
ogy can be identified in at least one of the imaging
modalities (i.e. OCT or CFP). Moreover, if either O,
or C; were uninterpretable, the outcome was derived
from the interpretable image. Finally, if both O, and Cj,
were uninterpretable, we specifically assigned the label
as retina pathology potentially present (RPPP); those
samples potentially could be selected and removed
from the dataset using a separate classification model,
as the clinicians would need to perform a further assess-
ment, and potentially redo the imaging. (A detailed
introduction of this labeling mechanism for paired
OCT/CFP inputs is in Appendix A and Supplementary
Table S1).

CNN Design

Design of CNN model was performed in three
phases: (1) expert diagnosis and label consensus (steps
I and II); (2) image augmentation and preprocessing
(step III); and (3) training with the novel backprop-
agation algorithm that can work with uninterpretable
images (step IV); illustrated in Figure 1.

Expert Diagnosis and Label Consensus (Steps | and Il)

Each OCT and CFP image was individually labeled
by the panel of retina professionals as uninterpretable,
RPN, and RPP. Then, to train the CNN model, we
determined the final diagnosis as RPN if one imaging
modality was deemed uninterpretable and other RPN
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or both were RPN. Similarly, we labeled a patient RPP
if we had at least one modality read as RPP. In the case
of both modalities being uninterpretable, we referred to
it as RPPP (Appendix A and Supplementary Table S1).

Image Augmentation and Preprocessing (Step Ill)

Bearing in mind that our dataset was limited (which
is often the case with clinical data), we augmented
the dataset by rotation, random cropping, flipping,
etc.” Given that OCT images usually come with exten-
sive background noise, which can prevent the DL-
based models from capturing the image biomarkers,?®
we applied Gaussian filters®’ for noise reduction. No
images were augmented for the validation set. However,
the OCT images were de-noised using Gaussian blur,
as in the training set. Details are introduced in
Appendix B.

CNN Model Architecture and the Back Propagation
Algorithm (Step IV)

We developed a multimodal CNN that takes as an
input OCT and CFP images jointly and classifies them
into RPN and RPP categories (Fig. 2). First, the input
OCT and CFP images were processed by two sets of
convolutional filters to obtain corresponding feature
maps. Then, the output feature maps were fed into
the global average pooling layers for dimension reduc-
tion (to derive feature vectors for both imaging modal-
ities), which was then fed into a global, fully connected
layer designed to: (1) map feature vectors to logits; and
(2) to implicitly reach a consensus between the predic-
tion outcomes (as the results from different imaging
modalities could oppose each other — e.g. pathology
does exist in one and does not in the other). Finally,
Softmax activation was applied to the output layer
to map the logits to probabilities of classifying the
inputs as RPP. To ensure that the CNN can success-
fully handle uninterpretable images presented in both
training and testing datasets, we developed an alternate
gradient descent (AGD) algorithm. This way, we could
minimize the impact of uninterpretable images on the
prediction performance implicitly without formulating
the binary classification problem as a multicategory
task (e.g. RPN, RPP, and uninterpretable).

The AGD algorithm. We first divided all the weight
parameters 6 in the CNN into three subsets 61, 6, and
63, which represent the weights for the convolutional
blocks and global average pooling layer that process
the OCT inputs (i.e. Conv_blocks_1 and Avg_pool_1
in Fig. 2), the convolutional and global average pooling
layers for the CFP modality (i.e. Conv_blocks_2 and
Avg_pool_2 in Fig. 2), and the final fully connected
layer (i.e. FC_3 in Fig. 2), respectively. The follow-
ing briefly illustrates how the AGD algorithm works
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Figure 2. The architecture of the proposed CNN model with Class Activation Mapping (CAM). The OCT and CFP modalities are first
processed with two sets of convolutional filters respectively; the resulting features are then concatenated and processed by a fully connected
layer (03) for classification. CAMs are generated using the outputs from the two global average pooling layers and weights from the fully

connected layer.

during the training of the CNN model. In each train-
ing iteration, (I) we first updated 6 by minimizing the
binary cross-entropy loss (BCEL) between the CNN
predictions corresponding to the input (O, and Cy)
samples that contain interpretable OCT images and the
labels associated with them (i.e. in this step, the uninter-
pretable images were not included while calculating the
training loss); (II) then similarly, 8, was updated by
minimizing the BCEL between the CNN predictions
corresponding to the input (O, and C;) samples with
interpretable CFP images from the training inputs and
the labels associated with them; and (III) finally, 03
was updated to minimize the BCEL between the CNN
predictions given all input (O, and C;) samples (i.e.
both interpretable and uninterpretable OCT/CFP) and
the associated labels. After step I and II, the convolu-
tional filters processing the OCT and CFP modality
(i.e. 61, and 6,) were trained toward extracting features
that can best differentiate RPN/RPP samples if the
inputs were interpretable. On the other hand, if one
modality (or both modalities) of the inputs was (were)
uninterpretable, then the features extracted by the
corresponding convolutional filters were considered
uninformative, as they were not included during the
training of 6, and 6,. In step III, the weights of the
fully connected layer 65 were optimized to capture if

the features output from 6, and 6, implies RPN, RPP,
or uninformative, as well as learn to infer the correct
predictions when the features corresponding to the
OCT and CFP modality carry inconsistent informa-
tion (e.g. one implies RPN whereas the other implies
RPP, or the other was uninformative). As a result,
the CNN was trained, using the AGD algorithm,
to implicitly handle the uninterpretable images
contained in the dual-inputs (O and C;) without
classifying them as a third class besides RPN and
RPP. The illustration of the AGD algorithm from the
mathematical perspective is provided in Appendix C
(The Python code implementing this algorithm can
be accessed from https:/github.com/gaoqitong/
Alternate-Gradient-Descent-For-Uninterpretable-
Images).

Transfer learning. Transfer learning was applied
to pretrain the convolutional blocks (i.e. 6, and 6,)
in the CNN model, as it was shown to be effec-
tive in boosting both training efficiency and valida-
tion performance.’® 3" Specifically, we used the open-
source OCT dataset containing 108,312 OCT scans
from 4 different categories: (1) choroidal neovascular-
ization (37,206 images), (2) diabetic macular edema
(DME; 11,349 images), (3) Drusen (8,617 images), and
(4) normal (51,140 images), which were provided by
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Kermany et al.>! We also used the CFP image dataset
containing 35,126 CFP images with (25,810 images)
and without diabetic retinopathy (DR) pathology
(9316 images), which are obtained from Kaggle.>?
Then, all the CFP images with DR pathology were
flipped over horizontally and vertically to balance
the number of images in the two classes, and loose
pairing** was performed to couple the OCT and CFP
modality, which then generated 100,000 “nominal”
eyes. We further labeled the OCT images that contained
any pathology as RPP and took a logical and between
the individual OCT and CFP labels to determine the
final diagnoses used to pretrain the network. Given
that these two datasets did not contain any uninter-
pretable images, we pretrained the network, as illus-
trated in Figure 2, by minimizing the cross-entropy loss
between the CNN predictions and labels for all images.
Appendix C illustrated this optimization problem from
a mathematical perspective. Although the open-source
OCT dataset did not contain all retinal pathologies
that we were interested in, the CNN model was still
trained to effectively locate the biomarkers that help
distinguish inputs as RPN and RPP, as presented in the
Results section.

Specific convolutional layer architecture and train-
ing hyperparameters. The convolutional blocks in both
the OCT and the CFP branches of the network (i.e.
the Conv_blocks_1 and Conv_blocks_2 from Fig. 2)
used the inception-v3** architecture. Furthermore, the
open-source OCT dataset that we used to pretrain the
CNN model had also been shown to attain the highest
accuracy with the inception-v3 structure.’! Specifi-
cally, during training, both OCT and CFP images
were resized to 299 x 299 to comply with the design
of the convolutional layers before feeding into the
network.?*3> After performing global average pooling
for the OCT and CFP streams, the image features (i.c.
Feature_1 and Feature_2 in Fig. 2) had the size nx1
x 1 x 2048, where n denotes the batch size. The two
feature vectors were then concatenated and reshaped
to an nx4096 vector, which was then processed by
a fully connected layer with 4096 nodes to gener-
ate prediction logits. Finally, Softmax functions were
applied to normalize the logits as probabilities of
classifying the inputs as RPN/RPP. During training,
Adam optimizer’®* was used to minimize training
losses, where the learning rate was set to be 1e-04 with
exponential decay of 0.91 in 1500 steps.

To validate our approach, we selected the follow-
ing three baseline methods to compare with our
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method: (1) training two CNN models that classifies
the OCT and CFP modality respectively into three
categories (RPN, RPP, and uninterpretable), then the
final diagnoses are determined following the LCM
illustrated in Appendix A and Supplementary Table S1;
(2) first, two classifiers are trained to classify the inter-
pretability for the OCT and CFP modality separately,
followed by two CNN models that identify the presence
of retinal pathology for interpretable OCT and CFP
images respectively, with the final diagnoses being
determined using the LCM; and (3) a two-stream
CNN model based on the state-of-the-art multimodal
ophthalmological image analysis methods developed
by Wang et al.,''"!* which uses the CNN architec-
ture that does not consider any uninterpretable images,
but is trained to minimize the cross-entropy loss with
conventional backpropagation algorithms, instead of
the AGD, as proposed in our work. In Appendix D, we
illustrated the intuition of designing Baseline A and B
and their implementation details.

Table 2 shows the performance comparison between
our approach and the baseline methods in terms of
accuracy, false-negative rate (FNR), recall (or true
positive rate), specificity (or true negative rate), and
area under the curve (AUC) of the receiver operating
characteristic (ROC) curve; FNR is defined as:

FN
TP+ FN

with FN representing the false negatives and TP refer-
ring to the true positives. We chose FNR as one of
the metrics because it evaluates the portion of the
RPP patients who are falsely identified as RPN, or, in
other words, the patients who have retinal pathology
presented but failed to be recognized by the automated
diagnosis system due to erroneous classifications. Our
approach achieved 88.60% accuracy with 95% confi-
dence interval (CI) of 82.76% to 94.43%, which outper-
forms all three baseline methods, as shown in Table 2.
We also attained an FNR of 12.28% with 95% CI of
6.26% to 18.31% (or recall of 87.72% with 95% CI
of 81.69% to 93.74%, which outperforms baseline A
and B.

To address the fact that baseline C results in a
lower FNR (and thus higher recall) than our model,
we created the accuracy-FNR plots (Fig. 3A, the blue
curve represents our approach, whereas the orange
shows baseline C) showing how the accuracy and FNR
change when different decision thresholds are applied
to the probabilities output from the CNN (which can
be interpreted as the confidence of classifying the
input samples as RPP cases).** All the thresholds are
sampled uniformly between 0.5 and 1, where the top-
right end points of both curves correspond to the

FNR = =1 — Recall, (1)



translational vision science & technology

Al for Retinal Pathology

TVST | May 2021 | Vol. 10 | No.6 | Article 30 | 7

Table2. Performance Comparison Among Our Approach, Baseline A, Baseline B, and Baseline C on the Full Testing
Dataset
Accuracy/No. (%, 95% ClI) FNR/No. (%, 95% Cl) Recall/No. (%, 95% Cl) Specificity/No. (%, 95% Cl) AUC % (95% Cl) P Values

Our approach 101 7 50 51 92.74% <0.001
(88.60%, 82.76%-94.43%) (12.28%, 6.26%-18.31%) (87.72%, 81.69%-93.74%) (89.47%, 83.84%-95.11%) (87.71%-97.76%)

Baseline A 93 19 38 55 83.58% <0.001
(81.58%, 74.46%-88.70%) (33.33%, 24.68%-41.99%) (66.67%, 58.01%-75.32%) (96.49%, 93.11%-99.87%) (76.11%-91.05%)

Baseline B 81 23 34 47 74.05% <0.001
(71.05%, 62.73%-79.38%) (40.35%, 31.34%-49.36%) (59.65%, 50.64%—-68.66%) (82.46%, 75.47%-89.44) (64.96%-83.14%)

Baseline C 91 6 51 40 87.32% <0.001

(79.82%, 72.46%-87.19%) (10.53%, 4.89%~16.16%)

(89.47%, 83.84%-95.11%)

(70.18%, 61.78%-78.57%) (80.71%-93.93%)

Performance comparison between our approach (alternate gradient descent with binary output), baseline A (2 single modal
CNNs as 3-output task), baseline B (interpretability classifiers followed by 2 single modal CNNs as 2-output task), and baseline
C (two-stream CNNs representing state-of-the-art methods for 2-modal image analysis) on the full testing dataset.’

fStatistics in italic correspond to better performance achieved by baselines than our approach, which are discussed in detail
in the Results section. Cls for accuracy, FNR, Recall and Specificity were generated following the Wilson score interval.*’ Cl for

AUC computed following Hanley et al.*®

P values generated by performing McNemar's test between the predictions and labels.

= Our Approach
1 — Baseline C
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|
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Figure 3.
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False Positive Rate

Accuracy-false negative rate (ACC-FNR) (A) curve and ROC (B) curve on the Testing Dataset. A ACC-FNR curve for our approach

and baseline C. Baseline C has lower FNR than our approach with a decision threshold of 0.5; however, our method achieves both higher
accuracy and lower FNR with a decision threshold providing optimal tradeoff between accuracy and FNR (e.g. the threshold of 0.65 as shown
by the red dot in the plot). B ROC curves for our approach and baseline methods. Our approach achieves the highest AUC compared to all

the baseline methods.

threshold of 0.5 (i.e. the samples that result in predic-
tion probability greater than 0.5 are determined as
RPP while the rest are classified as RPN) and the
bottom-left points are associated with threshold 1 (i.e.
all the inputs are classified as RPN regardless of the
presence of pathology or not). As can be observed
from Figure 3A, our method is capable of achieving
an FNR of 8.77% with 95% CI of 3.58% to 13.96%,
with an accuracy of 81.57% with 95% CI of 74.45%
to 88.69%, which outperforms baseline C concerning
both metrics given a threshold of 0.65 (shown as the red
dot in Fig. 3A). Moreover, our method attains higher
accuracy than baseline C for any decision threshold
in [0.5and, 1]. Our approach achieved a specificity

of 89.47% with 95% CI of 83.84% to 95.11%, which
outperforms baselines B and C. Note that baseline A
gives rise to a higher specificity due to missclassify-
ing RPP samples as RPN, which is indicated by the
very high FNR (33.33%, 95% CI 24.68% to 41.99%)
and the relatively low AUC (83.58%, 95% CI 76.11%
to 91.05%). Finally, our approach reached an AUC of
92.74% with 95% CI of 87.71% to 97.76%, which is
higher than all the baseline methods, as captured by
the ROC curves shown in Figure 3B. Consequently,
our approach achieved satisfactory performance evalu-
ated through the five metrics and was able to balance
between accuracy and FNR flexibly by selecting appro-
priate decision thresholds.
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Table 3. Performance Comparison Among Our Approach, Baseline A, Baseline B, and Baseline C on the Dataset

Containing Only Interpretable Images

Accuracy/No. (%, 95% ClI) FNR/No. (%, 95% Cl) Recall/No. (%, 95% Cl) Specificity/No. (%, 95% Cl) AUC % (95% Cl) P Values

Our approach 69 7 35 34 93.85% 0.00766
(88.46%, 81.37%-95.55%)  (16.67%, 8.40%-24.94%)  (83.33%, 75.06%-91.60%) (94.44%, 89.36%-99.53%) (88.39%-99.31%)

Baseline A 59 17 25 34 79.89% <0.001
(75.64%, 66.11%-85.17%) (40.48%, 29.58%-51.37%) (59.52%, 48.63%-70.42%) (94.44%, 89.36%-99.53%) (71.00%-88.79%)

Baseline B 65 10 32 33 89.48% <0.001
(83.33%, 75.06%-91.60%) (23.81%, 14.36%-33.26%) (76.19%, 66.74%—-85.64%) (91.67%, 85.53%-97.80%) (81.88%-97.09%)

Baseline C 68 6 36 32 90.21% 0.00443

(87.18%, 79.76%-94.60%) (14.29%, 6.52%-22.05%)

(85.71%, 77.95%-93.48%)

(88.89%, 81.91%-95.86%) (83.31%-97.12%)

Performance comparison between our approach (alternate gradient descent with binary output), baseline A (2 single modal
CNNs as 3-output task), baseline B (interpretability classifiers followed by 2 single modal CNNs as 2-output task), and baseline
C (two-stream CNNs representing state-of-the-art methods for 2-modal image analysis) on the dataset containing only inter-

pretable images.

To evaluate the impact of the uninterpretable
images on prediction performance, we evaluated our
model by excluding them from the testing dataset
(i.e. each eye with at least one uninterpretable image
was excluded; Table 3). Performance of our model
did not change when evaluated on interpretable
images only. On the other hand, baseline B and
C methods’ performances increased dramatically in
this setting, as expected, because both methods were
not designed to process the uninterpretable inputs.
Finally, baseline A had slightly decreased accuracy
and recall, likely due to the higher FNR of the
baseline A model. All of this could be observed by
comparing the changes in the FNR between Tables
2 and 3, where the number of false negative samples
barely decreased when the uninterpretable samples
were excluded. In other words, for baselines B and
C, by removing uninterpretable images, the classifi-
cation performance improved, as those images lead
to decreasing recall (or increasing FNR), while the
opposite was true for baseline A. As presented,
the uninterpretable images negatively impacted the
baseline methods while having a minimal impact on our
approach.

We further validated our model by generating
class activation maps (CAMs), which can visualize
how much “attention” the CNN model is paying
to each pixel of the input images (see Fig. 2).
We followed the procedure proposed by Zhou et
al.,>® where the weights of the fully connected layer
(i.e. FC_3 in Fig. 2) and the image features gener-
ated from the global average pooling layers (i.e.
Avg_pool_1 and Avg_pool_2 in Fig. 2) were used
to generate attention values associated with all pixels
in the input images from both imaging modalities.
This evaluates to what extend each pixel is weighted
while the CNN model generates predictions. The
higher values correspond to the stronger attention,

whereas they correspond lower to weaker attention (see
Fig. 1).

There is an unmet need for automated imaging
and diagnosis systems for identifying retinal pathol-
ogy. This limitation of the current healthcare model
has been emphasized during the COVID-19 pandemic,
especially because ophthalmology has been one of the
hardest hit specialties.’” Additionally, early recogni-
tion of sight-threatening retinal diseases might offer
timely treatment, potentially improve visual outcomes,
and reduce healthcare costs. Moreover, with improved
triage, clinician effort, and clinic time might be better
spent on other activities providing improved refer-
ral accuracy and more efficient use of ophthalmic
resources.*® 4!

This paper introduces a CNN-based approach
that enables fully automated retinal image classifica-
tion into present or absent retinal pathology. Similar
existing methods cannot be applied autonomously
as they have not been developed while considering
uninterpretable images, which are frequently encoun-
tered during eye screening,’>’"!° and thus cannot
handle them well. By addressing these limitations, our
approach facilitates the development of automated
retinal diagnosis systems, where a healthcare worker
does not need to evaluate the quality of the images
(in order for some to be retaken) before they are
submitted for the analysis. This system can be
deployed either in the clinics for triage or during
remote screening (e.g. teleophthalmology) without
involving physical interactions between patients and
physicians.

Herein, we presented a CNN model that takes
OCT and CFP images as dual-modal inputs and
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predicts if the corresponding eye has retinal pathol-
ogy (e.g. DR, DME, and age-related macular degen-
eration [AMD]). Our model was able to process
imperfect/uninterpretable images resulting from the
patient’s poor positioning during the screening or
inappropriate parameters>>%3 (e.g. focus, exposure, and
illumination). Inputs obtained from uninterpretable
images were utilized during the training through a
novel backpropagation algorithm that can minimize
the impact from images that do not contain suffi-
cient image biomarkers to be determined as RPN/RPP
during the training process. We created a fully
automated retinal pathology diagnosis system (i.c.
that requires no human interaction). To train and
validate our model, we collected 1148 pairs of CFP
and OCT images from 674 patients, where each pair
pertains to a single eye of a patient. We used a
9:1 ratio to split the training and testing dataset.
Finally, we attained a validation accuracy of 88.6%,
recall/sensitivity of 87.7%, specificity of 89.5%, and
AUC for ROC of 0.93. We presented the case,
which only considers the dual-modal inputs (OCT
and CFP); regardless, the proposed approach can be
further extended to include other imaging modalities
(e.g. fundus autofluorescence). Moreover, we observed
that the performance of baseline methods could be
negatively impacted when uninterpretable images are
used for testing. On the other hand, the performance
of our approach was not affected when evaluated
with either full testing dataset or interpretable images
only.

Significant work related to this topic was done by
Yoo et al.,'” Wang et al.,'' Vaghefi et al.,!> and Xu
et al.'® Specifically, in the Yoo method® pretrained
VGG-19* was used to convert input OCT and CFP
images into feature vectors, which were then classi-
fied as AMD and non-AMD by random forests.
In this work, the pretrained CNN was applied for
feature extraction without fine-tuning and poten-
tially could have led to unsatisfactory performance.*?
Precisely, most of the pretrained models were trained
with standard datasets (e.g. ImageNet*) that do
not contain ophthalmic images and the resulting
models were potentially not optimized for analy-
sis of OCT or CFP inputs. The other mentioned
methods proposed CNN models for the multimodal
identification of retinal diseases. Wang et al.!' and
Xu et al.'® developed two-stream CNNs to jointly
analyze the OCT and CFP images. First, each
modality was processed by the corresponding stream
through convolutional filters and pooling layers for
feature extraction using ResNet-18% or ResNet-
50% architectures. Then, the two streams’ output
features were concatenated and fed into a fully
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connected layer for classification. Slightly differ-
ent CNN architecture was applied in the Vaghefi'?
method. Each single-modal stream consisted of a few
customized convolutional layers for initial processing,
together with the outputs across streams that were
combined through max-pooling followed by Inception-
ResNet-V2% for further processing and classification.
Despite being ground-breaking, these methods neither
evaluate nor handle uninterpretable images, making
them unsuitable for remote retinal image assessments
where uninterpretable and low-quality images regularly
occur.

To capture and generalize the ideas behind these
four methods and emphasize the importance of
uninterpretable image utilization, we combined them
in the baseline C learning approach and compared it
to our model. We concluded that although baseline
C achieved slightly lower FNR, it attained 9.3% less
accuracy than our method when the presented decision
thresholds were used in our model (see Table 2).
However, when the decision thresholds in our model
were adjusted, our approach achieved both lower FNR
and higher accuracy than baseline C, but with slightly
lower accuracy than with our initial decision threshold
—this highlights that by controlling decision thresholds,
we were able to make a tradeoff between accuracy and
FNR.

Furthermore, this underlined the importance of
taking into account uninterpretable images during
the training phase and showed that our AGD
algorithm and the obtained CNN model could effec-
tively handle uninterpretable images. In addition, we
designed baseline A and B models to evaluate the
prediction performance when the AGD backpropaga-
tion algorithm was not used, and the input images
were classified into three categories (i.e. RPN, RPP,
and uninterpretable), as opposed to the two-class
problem addressed by our model trained by the AGD
algorithm. Comparing these two methods to ours
showed that our method had higher accuracy and lower
FNR. The improved performance of our method and
baseline C compared to baseline A and B methods
confirm the strength of multimodal analysis, where the
CNN models can effectively capture the correlation
among different imaging modalities and make accurate
predictions.

Finally, FNR is an important factor to consider
while validating different image interpretation models
because it is crucial not to miss pathology that
can have serious consequences. As shown in the
ACC-FNR Curve in Figure 3A, our CNN based
approach allowed the users to balance the trade-
off between accuracy and FNR by customizing
the decision thresholds (i.e. a threshold around
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0.5 can be applied for attaining higher accuracy,
whereas a threshold greater than 0.5 leads to
lower FNR).

Conclusion

We have developed a fully automated retinal image
interpretation system that outperformed other exist-
ing computational models. Our multimodal input
approach used two inputs (CFP and OCT) to process
and identify the presence of retinal pathology, but it
is not limited to only these imaging modalities. The
novel backpropagation algorithm that we proposed
was able to utilize low-quality or uninterpretable
images in the decision making process (about 6% of
all photographs), and proved that it was minimally
affected by it.

This approach has limitations, and we will be
addressing them as part of our future research. First,
we can potentially improve the prediction perfor-
mance with a dataset containing more balanced labels.
Given the FNR of 12.28%, the CNN model may
still classify RPP images as RPN. This is highlighted
by the fact that regardless of the augmentation, the
effective sample size in the RPP group is outnum-
bered by the effective sample size in the RPN group.
Second, although the dataset contains a fairly suffi-
cient number of uninterpretable CFP images, a limited
number of uninterpretable OCT images was avail-
able. This leads to unequal distribution and may
potentially influence the final outcome if the dataset
contains a higher number of uninterpretable CFP
images. Third, our dataset did not contain the samples
where both imaging modalities were uninterpretable;
thus, we could not demonstrate the model’s perfor-
mance in that setting. However, the implicit binary
classification mechanism (i.e. the AGD algorithm) did
not hinder this analysis if such data were available in
the dataset. Specifically, the CNN model could still be
trained to classify the inputs into two categories (i.e.
(1) RPN and (ii)) RPP or RPPP). The latter (i.e. RPP
and RPPP) samples could be grouped into one class
because both should be referred further. Moreover,
the CNN model (see Fig. 2) could identify RPPP
samples as the only difference between processing two
uninterpretable modalities and one (or zero) uninter-
pretable modality was the fully connected layer 63
needed to learn to map uninformative features gener-
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ated by both convolutional streams (i.e. 6, and 65)
to its corresponding label while the other feature
was uninformative. Given that the AGD algorithm
would not interfere with this process during train-
ing, we expect that the fully connected layer can
learn from such samples and inference properly; thus,
our approach could process the inputs constituted by
two uninterpretable modalities. On the other hand, if
one prefers to refer the RPPP cases separately from
the RPP cases (i.e. classify them into two separate
classes), an additional classification model can be
introduced to identify the RPPP samples from the
dataset before our approach is applied. Finally, our
model does not identify specific retinal pathology
(e.g. DR, AMD, and DME) but instead classifies the
images as retina pathology present or absent. The
main focus of our future work will be resolving this
challenge.
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