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Abstract

Background: Lysophosphatidic acid-supplemented culture medium significantly increases the oocyte maturation
rate in vitro. However, potential targets and pathways involved remain unknown.

Methods: A total of 43 women, who underwent cesarean section and aged between 18 and 35 years with good
health, were included in this study. Immature oocytes were obtained and cultured with 10 µM lysophosphatidic
acid. After culture, oocyte maturation was assessed and oocytes and cumulus cells were collected for RNA
sequencing. Hierarchical indexing for spliced alignment of transcripts 2 method was used to align clean reads to
the human genome. The featureCounts and edgeR package were used to calculate gene expression and analyze
differences between groups respectively. ClusterProfiler program was used to perform Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes analysis.

Results: Oocyte maturation rate increased significantly following 48 h culture with lysophosphatidic acid. In
cumulus cells, Gene Ontology analysis revealed the top 20 items enriched by upregulated genes and
downregulated genes respectively; Kyoto Encyclopedia of Genes and Genomes analysis showed that upregulated
genes in the treatment group were enriched in TNF signaling and insulin secretion pathways and downregulated
genes were enriched in TNF signaling and cell adhesion molecules. In oocytes, Gene Ontology analysis revealed the
top 20 items enriched by upregulated genes and downregulated genes respectively; Kyoto Encyclopedia of Genes
and Genomes analysis showed that upregulated genes in the treatment group were enriched in MAPK signaling,
gap junction, and cell cycle pathways and downregulated genes were enriched in MAPK signaling, estrogen
signaling, RAP1 signaling, and gap junction pathways.

Conclusions: Lysophosphatidic acid in culture medium enhances human oocyte maturation in vitro and the
identified some potential pathways may associate with oocyte maturation.
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Introduction
The source of oocytes is the key issue for assisted repro-
ductive technologies [1]. There are different ways to ob-
tain in vivo matured oocytes for infertility treatment.
Normally, women are given ovarian stimulation to re-
trieve mature oocytes [2]. However, ovarian stimulations
with exogenous gonadotropin are accompanied by direct
and indirect side-effects, including life-threatening ovar-
ian hyper-stimulation syndrome. Therefore, mild ovarian
stimulation protocols are promoted not only for safety
but also their efficiency in developing assisted reproduct-
ive technologies [3].
One option to avoid ovarian hyper-stimulation syn-

drome is to retrieve immature oocytes followed by
in vitro maturation (IVM) [4]. Several thousands of
healthy babies have been born following IVM for women
who were infertile with polycystic ovary syndrome [5].
IVM may also play an important role in fertility preser-
vation for women before cancer treatment, because cell
toxic cancer treatments may cause the loss ovarian func-
tion [6].
Earlier studies indicated that immature oocytes can be

retrieved during cesarean section and the obtained im-
mature oocytes can be matured in vitro [7]. Those im-
mature oocytes may be used for in vitro studies and
potentially preserved for fertility preservation [8]. Al-
though studies have reported that the quality of in vitro
matured oocytes is affected by different culture media
and supplements, it is still unclear how some factors in
the culture medium enhance oocyte maturation [9, 10].
Lysophosphatidic acid (LPA) is a membrane phospho-

lipid metabolite with growth factor- and hormone-like
effects, and it is present in the human follicular fluid at a
concentration of 10–25 µM [11]. Numerous studies have
shown that LPA promotes oocyte maturation in vitro, as
well fertilization and embryonic development in animals,
such as cattle, pig and mouse [12–14]. However, there is
no study with LPA in the culture medium on human im-
mature oocytes matured in vitro.
Cumulus–oocyte complex (COC) is the unit that asso-

ciated with growth and maturation of mammalian oo-
cytes, and is believed to be the site of LPA synthesis and
action [15]. In this study, we investigated the effect of
LPA in the culture medium on human immature oocyte,
and the expression profiles of cumulus cells (CCs) and
oocytes. We aimed to reveal important signaling path-
ways and molecules by which LPA stimulates oocyte
maturation in vitro.

Materials and methods
Patients
The inclusion criteria were as follows: women who
underwent cesarean section in Shanghai Tenth People’s
Hospital between November 1st, 2016 and March 31st,

2018; were aged between 18 and 35 years with good
health; had not received any medication during preg-
nancy. Patients were randomly assigned to the control
group and LPA treatment group. The enrolled patients
were given their informed consent to be included in the
study, which received the approval of the Ethics Review
Committee of Shanghai Tenth People’s Hospital (No.
SHSY-IEC-1.0/16 − 03/01).

IVM culture media
The control group culture medium comprised of 75
mIU/mL follicle-stimulating hormone (Livzon Co., Zhu-
hai, China), 75 mIU/mL luteinizing hormone (Livzon
Co., Zhuhai, China), and 10 ng/mL human epidermal
growth factor (Sigma, St. Louis, MO, USA). The LPA
treatment group culture medium contained of 75 mIU/
mL follicle-stimulating hormone, 75 mIU/mL luteinizing
hormone, 10 ng/mL human epidermal growth factor,
and 10 µM LPA (Sigma, St. Louis, MO, USA).

Acquisition and culture of immature oocytes
Solutions (5 % serum substitute supplement in physio-
logical saline ) used to preserve COCs temporarily were
pre-warmed to 37 °C and 1 mL was drawn into 5-ml syr-
inge. At the conclusion of Caesarean Section operation
and once the uterus was sutured, the pelvis was wiped
clean and dry. The visible antral follicles were aspirated
using a 5-mL syringe connected with 20 G needle. The
syringes were transferred to the laboratory, and follicular
fluid was poured to Petri dishes to look for COCs. COCs
with at least three layers of tightly packed CCs with
homogeneous oocyte cytoplasm were transferred to cul-
ture medium for maturation in culture. COCs from each
patient were randomly allocated to one of the two
groups: control group and LPA treatment group. COCs
were cultured in a two-well dish; the inner well con-
tained 1 mL of IVM medium, and the outer-well con-
tained 2 mL IVM medium. COCs were cultured in an
incubator containing 5 % CO2 and 5 % O2 at 37 °C. Fol-
lowing 24 h of culture, the COCs were denuded from
the CCs and assessed for maturity.
For denuding of COCs, they were placed into hyal-

uronidase solution (80 units/mL) (Irvine Scientific, Santa
Ana, CA, USA) for 1 min and pipetted for less than 30 s
before COCs were transferred to a petri dish that was
contained pre-warmed (37 °C) Sydney IVF Gamete buf-
fer. COCs were pipetted repeatedly to remove the sur-
rounding CCs in order to assess the oocytes maturity.
The mature oocyte (metaphase-II) was identified via the
extrusion of the first polar body. If they were mature,
the oocytes will be vitrified and kept at -196 °C; if they
were not mature (GV or MI stage), the immature oo-
cytes will be put back into the incubator for further cul-
ture till 48 h and then re-assessed its maturity at the end

Xie et al. Reproductive Biology and Endocrinology           (2021) 19:83 Page 2 of 8



of culture. Six mature COCs from three women were
donated for molecular analysis and the denuded CCs
and mature oocytes were collected separately.

RNA extraction, library preparation, and sequencing
A Smart-Seq2 library was prepared as previously de-
scribed [16]. Briefly, we performed single-cell sorting,
cell lysis, reverse transcription, and cDNA synthesis. The
library was constructed using an Illumina Nextera kit
and size-selected using AMPure XP beads and examined
via quantitative PCR for sequencing. A NovaSeq 6000
System (Illumina, San Diego, CA, USA) was used for se-
quencing with a PE150 read length. The data were de-
posited at the National Center for Biotechnology
Information with an assigned No. PRJNA678410.

Expression profile analysis
Clean reads were obtained using the Cutadapt software
(http://journal.embnet.org/index.php/embnetjournal/
article/view/200) to remove reads containing adaptors
and low-quality reads (over 50 % of reads with Q
values ≤ 30). HISAT2 was used to align the clean reads
to the human genome. The featureCounts program was
used to calculate gene expression, and the edgeR pack-
age was used to analyze differences between control and
LPA group. Genes with p < 0.05 and |log2FoldChange|
values > 1 were defined as differentially expressed genes.

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis
The clusterProfiler program was used to perform GO
analysis, KEGG analysis and select false discovery rates
of < 0.05 to determine pathways enriched by differen-
tially expressed genes (p < 0.05).

Results
Effect of LPA treatment on human immature oocyte
maturation in vitro
A total of 155 immature oocytes were obtained. After
48 h of culture, there were 65 out of 74 oocytes in the
LPA treatment group and 61 out of 81 oocytes in the
control group become mature. The maturation rate was
significantly higher (P < 0.05) in the LPA treatment
group (87.8 %) compared to that of the control group
(75.3 %) (Fig. 1).

LPA treatment altered the expression profiles in the CCs
and oocytes
There were significant differences in expression profiles
in the control and LPA treatment groups. In the CCs,
259 genes were upregulated and 237 genes were down-
regulated in the LPA treatment group compared to the
control group. In the oocytes, 128 genes were upregu-
lated and 128 genes were downregulated in the LPA
treatment group compared to the control group. Heat-
maps clearly showed that LPA treatment and control
groups were classified into different clusters (Fig. 2 A
and B).

LPA treatment led to differences in the enrichment of
functional items between cumulus cells and oocytes
In the CCs, differentially upregulated and downregulated
genes were enriched by GO. The top 20 GO-derived
items enriched by upregulated genes that affected BPs
were involved in the import, secretion, localization, and
transport of proteins and in the biosynthesis and regula-
tion of chemokines, and those that affected the CCs

Fig. 1 Maturity rate in the control group and LPA group after 24 and 48 h*Indicates significantly different between group (P < 0.05). LPA,
Lysophosphatidic acid
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were associated with extracellular substances and com-
ponents related to the cell periphery and plasma mem-
brane (Fig. 3 A). In contrast, the top 20 GO-derived
items enriched by downregulated genes that affected BPs
were involved in the mitotic cell cycle and androgen me-
tabolism, and those that affected the CCs were involved

in the cell periphery and transmembrane transporter
complexes (Fig. 3B).

In oocytes, differentially upregulated and downregu-
lated genes were enriched by GO. The top 20 GO-
derived items enriched by upregulated genes that

Fig. 2 Venn diagram and heatmap of cumulus cells and oocytes between LPA-treated and control groups. A) VENN diagrams of differentially
expressed genes between control and O-10 µM groups and C-10 µM and control groups. Control group is the group without LPA treatment. O-
10 µM group is the group of oocytes treated with LPA at a concentration of 10 µM. C-10 µM group is the group of cumulus cells treated with
LPA at a concentration of 10 µM. B) Heatmap of differentially expressed genes between C-Control group vs. C-10 µM, in which A-0-C-11, A-0-C-12
and A-0-C-13 were cumulus cells without LPA and A-10-C-11, A-10-C-12 and A-10-C-13 were cumulus cells treated with 10 µM of LPA. C
Heatmap of differentially expressed genes between O-Control group vs. O-10 µM, in which A-0-O-11, A-0-O-12 and A-0-O-13 were oocytes
without LPA and A-10-O-11, A-10-O-12 and A-10-O-13 were oocytes treated with 10 µM of LPA. LPA, Lysophosphatidic acid
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affected BPs were involved in biosynthetic processes and
cell-cell adhesion, and those that affected the CCs were
involved with the sperm connecting piece and the cell-
cell junction (Fig. 3 C). In contrast, the downregulated
genes that affected BPs were involved in cell differenti-
ation, dGMP metabolism, and dGDP biosynthesis, and
those that affected the CCs were associated with cell
periphery (Fig. 3D).
KEGG pathway analysis showed that the upregulated

genes in the CCs in the LPA treatment group were
enriched in TNF signaling and insulin secretion path-
ways (Fig. 4 A), and pathways enriched by downregu-
lated genes included TNF signaling pathway and cell
adhesion molecules pathway (Fig. 4 A). The TNF signal-
ing pathway was enriched by both the upregulation and
downregulation of certain differentially expressed genes.
In the oocytes, the upregulated genes in the LPA treat-

ment group were enriched in MAPK signaling, gap junc-
tion, and cell cycle pathways (Fig. 4B). The
downregulated genes in the LPA treatment were
enriched in MAPK signaling, estrogen signaling, RAP1
signaling, and gap junction pathways. MAPK signaling
and gap junction pathways were enriched by both upreg-
ulated and downregulated genes (Fig. 4B).

Discussion
We studied the effects of LPA on maturation of human
immature oocytes and the changes in the gene expres-
sion profiles in the CCs and oocytes during in vitro cul-
ture. LPA increases oocyte maturation rate and there
were significant differences in the gene expression pro-
file between LPA treatment and control groups.
It has been known that LPA is present in the human

follicular fluid at a concentration of 10–25 µM [11]. In
our study, we chosed 10 µM of LPA as the final concen-
tration in the culture medium based on previous studied
[17]. Studies have shown that SMAD4 plays an import-
ant role during the development of oocytes from small
antral follicles (1–3 mm in diameter) to large antral folli-
cles (3–7 mm in diameter) [17]. In a study by Li et al.,
the litter size was reduced in mice lacking Smad4 com-
pared to the control mice [18]. In the present study, the
expression of this gene was upregulated in oocytes
treated with LPA, indicating it may involve in the
process of oocyte maturation in vitro.
The biosynthetic function of ribosomes is a critical

factor for the development of embryos [19]. In this
study, upregulated genes enriched the GO-derived items
BP, CC, and MF, which are related to ribosome entry in

Fig. 3 Top20 GO items enriched from differentially expressed genes in the O-10µM and C-10 µM group. O-10 µM group is the oocytes group
treated by 10 µM of LPA and C-10 µM group is the cumulus cells treated with 10 µM of LPA. A) Top20 GO items enriched from upregulated
genes in the C-10 µM group; B) Top20 GO items enriched from downregulated genes in the C-10 µM group; C) Top20 GO items enriched from
upregulated genes in the O-10 µM group; D) Top20 GO items enriched from downregulated genes in the O-10 µM group. LPA, Lysophosphatidic
acid; GO, Gene Ontology
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the LPA-treated cumulus cells. This implies that LPA
treatment may stimulate the oocyte maturation in vitro.
Interleukin 6 can mediate tyrosine kinase receptor A to
regulate cumulus expansion, and interleukin 6 knockout
likewise reduces cumulus expansion [20]. Insulin-like
growth factor 1 enables CCs to synthesize and accumu-
late hyaluronic acid, thereby promoting CC expansion
[21]. Interleukin 6 and insulin-like growth factor 1
enriched eight items related to the import, secretion,
localization, and transport of proteins, as well as the bio-
synthesis and regulation of chemokines, indicating that
interleukin 6 and insulin-like growth factor 1 were key
to the promotion of human oocyte maturation by LPA.
Studies by Gebhardt et al. have shown that high levels

of PTGS2 expression are related to the rate of live birth

[22]. Moreover, high levels of PTGS2 expression in the
CCs surrounding mature oocytes are related to high-
quality embryos and embryo sacs [23]. In the present
study, PTGS2 expression decreased in the CCs of LPA
treatment group compared to that in the control group,
which suggested that PTGS2 negatively regulated the de-
velopment of LPA-treated oocytes. However, the specific
function of PTGS2 and the mechanism by which it acts
require further investigation.
KEGG pathway enrichment analysis revealed upregu-

lated and downregulated genes in the CCs that enrich
the TNF signaling pathway, and the CCs can release sol-
uble TNF-α to promote oocyte aging [24]. In our study,
the upregulated genes in the CCs enriched the insulin
secretion pathway. Insulin plays a central role in

Fig. 4 KEGG analysis of differentially expressed genes in the O-10 µM group and C-10 µM group. O-10 µM group is the oocytes treated with 10
µM of LPA and C-10 µM group is the cumulus cells treated with 10 µM of LPA. A) KEGG analysis of upregulated and downregulated genes in the
C-10 µM group; B) KEGG analysis of upregulated and downregulated genes in the O-10 µM group. LPA, Lysophosphatidic acid; KEGG, Kyoto
Encyclopedia of Genes and Genomes
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polycystic ovary syndrome, and it engages with the
insulin-like growth factor 1 receptor to enhance steroid
production in ovaries and adrenal glands [25]. Downreg-
ulated differentially expressed genes enrich signaling
pathways related to cell adhesion molecules and AMPK.
In the CCs, the downregulation of cell adhesion mole-
cules may cause polycystic ovary syndrome [26].
Among the top 20 GO-derived items enriched by up-

regulated genes in the oocytes of the LPA-treated group,
five were related to biosynthetic processes and one was
related to cell-cell adhesion. Both PLEK and PRKG1
enriched these six items. The expression of PLEK may
promote cell growth and development [27], and PRKG1
may be related to early life adversity [28]. The present
results suggested that PLEK and PRKG1 were important
for the maturation and development of oocytes in the
culture medium supplemented with LPA, but there have
not been any reports on these two genes regarding hu-
man oocyte maturation. We found that 47 downregu-
lated genes enriched CC items related to the cell
periphery; it is interesting to note that chromosomes
separate during cell division at the cell periphery [29].
Thus, our results indicated that LPA may affect cell
division.
In the oocytes, both upregulated and downregulated

genes enriched items related to the MAPK signaling
pathway and the gap junction. MAPK signaling pathway
regulates the development of oocytes [30]. During the
development of COCs, the gap junction pathway medi-
ates material exchange between oocytes and CCs [31].
Downregulated genes enriched the estrogen signaling
pathway and the RAP1 signaling pathway. Estrogen af-
fects the physiological development of women and plays
an important role in the maturation of oocytes [32]. The
RAP1 signaling pathway in oocytes involves multiple cel-
lular processes, including secretion, cell adhesion, and
intercellular junction formation, and regulates oocyte
maturation and embryonic development [33].
Lysophosphatidic acid receptor (LPAR) is a G-protein

coupled receptor family, which includes LPAR1, LPAR2,
LPAR3, LPAR4, LPAR5 and LPAR6. Since LPA exercises
its actions via LPARs, we further investigated the expres-
sion of LPARs. LPAR1, LPAR4, LPAR5 and LPAR6 were
upregulated while LPAR2 was downregulated in the
CCs. LPAR1 and LPAR6 were upregulated in ooctyes
while LPAR2 and LPAR5 were downregulated in oo-
cytes. The results implied that LPAR4 might play a role
in LPA-stimulated the CCs but not in LPA-stimulated
oocytes. LPARs’ expression pattern in our study was dif-
ferent from that in mouse [34]. Their exact roles in
LPA-stimulated COCs deserve further studies.
There are limits in our study. Due to the limited num-

ber of participants and available immature oocytes, we
had a relatively small number of the CCs and oocytes

for RNA sequencing. If possible in clinics, we will in-
crease the sample size in future studies.

Conclusions
Oocyte maturation is promoted by LPA in the culture
medium and identified some potential targets and path-
ways associated with oocyte maturation in vitro. Further
study is required to understand its mechanism in order
to apply for clinical significance.
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