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Differences in the serum 
metabolome profile of dairy 
cows according to the BHB 
concentration revealed by proton 
nuclear magnetic resonance 
spectroscopy (1H‑NMR)
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The mobilization of body reserves during the transition from pregnancy to lactation might 
predispose dairy cows to develop metabolic disorders such as subclinical ketosis or hyperketonemia. 
These conditions are not easily identifiable and are frequently related to other diseases that cause 
economic loss. The aim of this study was to evaluate the serum metabolome differences according 
to the β-hydroxybutyrate (BHB) concentration. Forty-nine Holstein Friesian dairy cows were 
enrolled between 15 and 30 days in milk. According to their serum BHB concentration, the animals 
were divided into three groups: Group 0 (G0; 12 healthy animals; BHB ≤ 0.50 mmol/L); Group 1 
(G1; 19 healthy animals; 0.51 ≤ BHB < 1.0 mmol/L); and Group 2 (G2; 18 hyperketonemic animals; 
BHB ≥ 1.0 mmol/L). Animal data and biochemical parameters were examined with one-way ANOVA, 
and metabolite significant differences were examined by t-tests. Fifty-seven metabolites were 
identified in the serum samples. Thirteen metabolites showed significant effects and seemed to be 
related to the mobilization of body reserves, lipids, amino acid and carbohydrate metabolism, and 
ruminal fermentation. 

During the transition period, the higher nutrient demands for fetal growth and milk production cause impor-
tant metabolic adjustments to support energy requirements1,2. In parallel, a reduction in dry matter intake is 
established (DMI), leading to a negative energy balance (NEB)3. The main body reserves mobilized to support 
energy requirements and glucose synthesis are muscular and adipose tissues4. Nonesterified fatty acids (NEFA) 
are derived from the mobilization of adipose tissue and follow four different energy production pathways in 
the liver: (a) complete oxidation via the tricarboxylic acid cycle (TCA); (b) incomplete oxidation to generate 
ketone bodies and energy; (c) export from the liver in the form of very low-density lipoprotein (VLDL) or (d) 
esterification to triacylglycerols and accumulation within hepatocytes5,6.

However, the liver cannot metabolize the entire amount of NEFA derived from reserve deployment, gener-
ating an excess of ketone bodies (β-hydroxybutyrate (BHB), acetoacetate and acetone). This makes dairy cows 
more susceptible to metabolic diseases such as ketosis7. Ketosis is characterized by an increase in ketone bodies 
in the blood, urine and milk, which often occurs during early lactation8. The β-hydroxybutyrate concentration is 
used for diagnosis in high-yielding dairy cows, with a cutoff of blood BHB above 1.0–1.4 mmol/L for subclinical 
ketosis or hyperketonemia without clinical signs9–11. The presence of this disease is associated with economic 
losses due to the risk of abomasum dislocation, reproduction disorders, infectious disease, reduction in milk 
production and a higher risk of culling animals9,11.

OPEN

1Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 
16, 35020  Legnaro, Italy. 2Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, 
Italy. 3College of Food Science and Technology, Southwest Minzu University, Chengdu, Sichuan, China. 4These 
authors contributed equally: Anastasia Lisuzzo and Luca Laghi. *email: enrico.fiore@unipd.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-06507-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2525  | https://doi.org/10.1038/s41598-022-06507-x

www.nature.com/scientificreports/

Metabolomics is an analytical approach that aims to simultaneously measure the entire metabolite profile of a 
biologic sample12. The metabolites represent the final product of cellular processes in response to environmental 
changes13, so their evaluation could offer a close and complete view of how dairy cows react to metabolic stress 
in the transition period14. Among the analytical tools used for metabolomics investigations, proton nuclear 
magnetic resonance spectroscopy (1H-NMR) requires minimal sample preparation and provides robust and 
highly reproducible information12, which compensates for its lower sensitivity in comparison to other analyti-
cal platforms. Serum is a common biological fluid used in this type of analysis because it is easy to sample and 
minimizes animal welfare problems. Moreover, it can provide metabolites from all organs15 to associate them 
with metabolic disease16.

Progressive changes in the metabolomic status of animals during hyperketonemia are measurable. The aim 
of this study was to evaluate the serum metabolome analyzed using 1H-NMR in dairy cows with different levels 
of BHB.

Results
Main characteristics.  The serum BHB and NEFA values presented significant differences among each of 
the groups analyzed (Table 1). In detail, the G1-G0 difference in BHB was 22% of the G2-G0 difference. Focus-
ing on NEFA, Groups G0, G1 and G2 showed mean values of 0.23, 0.34 and 0.62 mEq/L, respectively, so that the 
G1-G0 difference was 35.9% of the G2-G0 difference.

Serum metabolome profile and robust principal component analysis (rPCA).  In the serum 
metabolome, fifty-seven metabolites were identified (Table 2). Among the identified metabolites, thirteen were 
significantly different between Groups G0 and G2 according to univariate analysis: glutamate, proline, serine, 
aspartate, isovalerate, and choline showed a significant reduction, whereas 3-hydroxybutyrate, 3-hydroxyisobu-
tyrate, acetate, succinate, 2,3-butanediol, methanol, and methylsuccinate showed a significant increase. The cal-
culated rPCA model is shown in Panels A–C of Fig. 1. The first principal component (PC1) of its scoreplot, 
accounting for 66.8% of all of the samples’ variance explained, nicely summarizes the overall differences between 
samples of Group G0, with low PC1 scores, and samples from Group G2, with high PC1 scores. The loading 
plot showed that the molecules mostly representative of the G0 group were choline, glutamate, proline, and 
aspartate, while molecules mostly representative of the G2 samples were 3-hydroxyisobutyrate, 2,3-butanediol, 
methylsuccinate and methanol. When samples pertaining to Group G1 were projected in this 12 molecules’ 
space (Fig. 1D,E), they appeared, along PC1, between Groups G0 and G2, with their distance from G0 being 
36.3% of the G0–G2 distance.

In addition to the 13 significantly different metabolites, 11 seemed to show trends toward significance: lysine, 
alanine, arginine, formate, pyruvate, and dimethylsulfone were reduced, whereas isoleucine, valine, ethanol, 
trimethylamine-N-oxide (TMAO), and acetone were increased. To define the overall underlying structure, a 
rPCA model was built through the two-step procedure mentioned above (Supplementary Fig. S1). Samples 
G0 appeared at low scores along PC1, which represented 56.1% of all of the samples’ variance explained by the 
model, while samples G2 appeared toward positive values. The molecules mostly representative of the former 
were dimethyl sulfone, myo-inositol and pyruvate, while those mostly representative of sample G2 were valine 
and isoleucine. Samples G1, projected over this model, were superimposed with those from Group G0. Interest-
ingly, while samples G2 were not different from samples G0 when the 11 molecules were observed singularly, 
the difference became significant when their overall trend was observed by rPCA.

Over representation analysis (ORA).  An ORA was used to gain information about the metabolic altera-
tions that were possibly responsible for changes in the metabolome profile (Table 3). This highlighted that lipid 
metabolism was significantly (p = 0.016) altered by hyperketonemia. In fact, among the 7 molecules that could 
be referred to as the metabolism of lipids, 4 appeared to be significantly different between Groups G0 and G2. 
Studying lipid metabolism in deeper detail, the synthesis of phosphatidylserine seemed to be peculiarly overrep-
resented, with each of the two molecules observed (choline and serine) significantly altered. Another metabolic 
pathway influenced by hyperketonemia was glycosaminoglycan metabolism.

Table 1.   Least square means and standard error of the mean (SEM) of main characteristics for each group. 
BHB β-hydroxybutyrate, NEFA  nonesterified fatty acid, DIM days in milk, BCS  body condition score, NS  not 
significant. a-c Mean values in the same row which differ significantly (p value < 0.05).

Parameters G0 G1 G2 SEM p value

BHB (mmol/L) 0.41c 0.61b 1.43a 0.14  < 0.0001

NEFA (mEq/L) 0.23c 0.34b 0.62a 0.08  < 0.01

Glucose (mg/dL) 59.50 63.00 56.50 3.01 NS

DIM (days) 25.80 21.40 21.30 3.44 NS

BCS 2.75 2.75 2.88 0.06 NS

Parity 2.67 2.80 3.00 0.53 NS

Milk yield (kg/day) 28.30 31.30 26.70 2.44 NS
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Class Metabolite G0 G1 G2 SEM p value

Amino acids and derivates

Glutamate 49.80a 45.00ab 40.50b 1.61 0.001

Proline 21.80a 21.00a 18.70b 0.70 0.009

Serine 20.80a 18.20ab 15.80b 1.17 0.007

Aspartate 3.17a 2.68ab 2.12b 0.24 0.003

Lysine 13.90 12.80 12.10 0.60 TS

Isoleucine 21.50 22.50 24.50 1.02 TS

Valine 44.50 46.20 52.10 2.53 TS

Alanine 60.50 57.50 52.30 3.33 TS

Arginine 54.10 53.60 43.20 4.61 TS

Leucine 26.30 24.90 28.60 1.44 NS

Dimethylglycine 0.19 0.18 0.25 0.03 NS

Glycine 118 109 107 7.41 NS

Asparagine 10.74 10.59 9.99 0.59 NS

Glutamine 50.80 54.70 55.30 2.79 NS

Histidine 16.20 14.90 15.90 0.83 NS

Methionine 4.13 4.34 4.18 0.30 NS

Threonine 19.80 19.20 19.60 1.49 NS

Betaine 6.82 8.11 6.30 0.58 NS

Phenylalanine 8.00 7.56 7.31 0.60 NS

Tyrosine 7.75 7.33 6.69 0.45 NS

Creatine 56.30 59.60 58.00 2.69 NS

Creatinine 7.69 9.02 7.84 0.64 NS

Taurine 13.40 12.10 10.90 0.93 NS

3-Methylhistidine 3.97 3.89 4.06 0.29 NS

Sarcosine 0.56 0.57 0.51 0.03 NS

N6-acetyl-lysine 5.87 6.19 5.29 0.39 NS

2-Aminobutyrate 9.58 9.40 9.29 0.65 NS

Organic acids

3-Hydroxyisobutyrate 3.88a 5.56ab 7.52b 0.53  < 0.0001

Acetate 170a 238ab 284b 28.13 0.008

Succinate 1.82a 1.78a 2.75b 0.26 0.028

Formate 12.31 10.24 9.28 0.86 TS

Pyruvate 5.11 4.97 4.14 0.36 TS

Propionate 3.39 4.03 4.23 0.76 NS

Lactate 223 170 185 29 NS

Citrate 25.60 27.60 24.40 2.69 NS

Fumarate 0.79 0.75 0.76 0.06 NS

2-Hydroxybutyrate 6.33 5.68 6.82 0.79 NS

Alcohols

2,3-Butanediol 0.99a 1.47ab 3.25b 0.55 0.003

Methanol 3.02a 4.83ab 9.40b 1.76 0.033

Ethanol 3.36 4.01 16.80 5.48 TS

Glycerol 12.50 12.00 13.60 1.91 NS

myo-Inositol 7.81 6.96 5.46 0.80 NS

Carbohydrates

Glucose 943 1009 867 31.73 NS

Mannose 8.51 9.04 7.65 0.67 NS

Lactose 11.00 11.40 12.10 1.74 NS

Gluconate 42.70 28.40 41.80 7.67 NS

Amine and derivates
TMAO 13.00 19.00 18.90 2.30 TS

Dimethylamine 0.79 0.86 0.94 0.13 NS

Fatty acids
Isovalerate 7.60a 6.74ab 6.26b 0.23 0.001

Methylsuccinate 0.71a 0.80a 1.19b 0.12 0.008

Ketone bodies
3-Hydroxybutyrate 51.30a 74.80ab 188.10b 25.67  < 0.0001

Acetone 3.91 6.25 54.10 16.83 TS

Sulfone Dimethyl sulfone 11.35 9.72 6.74 1.28 TS

Vitamin Choline 2.03a 1.83ab 1.23b 0.18 0.043

Imidazole Allantoin 16.50 18.30 15.00 1.11 NS

Nucleoside Uridine 4.92 4.46 4.86 0.38 NS

Guanidine Methylguanidine 1.06 1.00 0.94 0.05 NS
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Discussion
During the transition period, cows develop NEB status due to a rapid increase in energy demand after the 
partum, high consumption of glucose by the mammary gland and a corresponding reduction of its availability, 
possibly causing hypoglycemia17. In response to this condition, cows undergo an increase in gluconeogenesis18.

The main glucogenic substrates are propionic acid, lactic acid, glycerol and glucogenic amino acids14. These 
substrates are used because sugars and starches are metabolized during ruminal fermentation, while they are 
common sources of glucose in monogastric species19. A deficiency of glucogenic substrates is an important risk 
factor for the pathogenesis of ketosis14. This disease often occurs between the second and seventh weeks post-
partum in dairy cows, and subclinical ketosis or hyperketonemia is frequently observed20. A better knowledge 
of healthy and pathologic animals’ metabolome profiles could be useful to understand metabolic alterations 
associated with BHB increments9,21.

In agreement with previous investigations10, samples from Group G2 showed NEFA values significantly 
higher than those from Group G0, confirming the excessive lipid mobilization in bovines during peripartum. 
An excess of circulating NEFA can induce BHB production through incomplete fatty acid oxidation5,7. Oxidation 
of NEFA may lead to an increase in reactive oxygen species (ROS) in mitochondria due to the respiratory chain. 
Therefore, the greater concentration of NEFA and BHB may suggest a state of oxidative stress. In addition, NEFA 
may positively influence ROS production in neutrophils further increasing oxidative stress and influencing the 
immune response22–24. More interestingly, Group G1 showed NEFA values between those of G0 and G2, which 
were significantly different from both groups. This confirms that cows identified as healthy but with an increment 
of ketone bodies are indeed switching to a diseased status; consequently, they would need proper management 

Table 2.   Mean values and standard error of the mean (SEM) of metabolite concentrations expressed in 
µmol/L and their p value corrected by the Bonferroni method. NS not significant, TS trend to significance 
(0.05 ≤ p value ≤ 0.10). a,b Showed significant differences within rows.

Figure 1.   rPCA model built on the space constituted by the concentration of the significant metabolites listed 
in Table 2 for Groups G0 and G2. In the scoreplot (A), samples from Groups G0 and G2 are represented with 
black squares and green triangles, respectively. The wide, empty circles represent the median of each sample 
group. The position of the samples along PC1 is summarized in the boxplot (B). The loading plot (C) reports the 
significant correlation between the concentration of each substance and its importance over PC 1 (p < 0.05). The 
G1 group is represented as red circles in scoreplot (D) and boxplot (E).

Table 3.   Overrepresentation analysis (ORA) based on the metabolites significantly different between healthy 
(G0) and hyperketonemic (G2) animals.

Pathway name (reactome’s code) p value Significantly different metabolites observed Total molecules observed

Metabolism of lipids (556833) 0.016 4 (3-hydroxybutyrate, acetate, choline, serine) 7 (3-hydroxybutyrate, acetate, choline, serine, formate, glycerol, myo-
inositol)

Synthesis of phosphatidylserine (1483101) 0.031 2 (choline, serine) 2 (choline, serine)

Glycosaminoglycan metabolism (1630316) 0.031 2 (acetate, aspartate) 2 (acetate, aspartate)
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and to be managed separately from healthy animals. However, studies focusing on better management of animals 
enrolled in the G1 group have not yet been conducted to authors’ knowledge.

In agreement with the literature11, in our study, the mobilization of body reserves was represented by an 
increase in the ketone bodies BHB and acetone in the G2 group, even if only the former was significant, due 
to a high variance in the latter. BHB is a product derived from muscular amino acid degradation or it can be 
synthesized from acetyl-CoA. It can be used as an energy source for other tissues, such as the brain and heart11. 
According to Zhang et al. (2017), it can influence the inflammatory response by reducing macrophage function 
and the production of proinflammatory cytokines.

Ketone bodies can be synthesized from ketogenic amino acids (lysine and leucine) and glucogenic and 
ketogenic amino acids (isoleucine)25,26. However, while isoleucine tended to increase from G0 to G2, lysine 
tended to show the opposite trend, in agreement with Sun et al. (2014) and Wang et al. (2016). These findings 
may suggest that lysine could be one of the first amino acids utilized as an energy supply. In addition, in humans, 
high levels of branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) have been found to be con-
nected to obesity and diabetes, with reports that an increase in BCAAs can lead to insulin resistance and, on 
the other hand, that higher insulin concentrations can promote protein synthesis27. In our study, the increase 
in BCAA concentrations (isoleucine and valine) in hyperketonemic cows could suggest that hyperketonemic 
cows may develop progressive insulin resistance proportionally to the BHB concentration. In a recent study on 
dairy cows, a single-dose duodenal infusion of leucine was not effective in stimulating an insulin response28. 
However, this study examined only six cows in late lactation and evaluated only the response to leucine, which 
was not significant in our study. Further investigation may therefore be necessary.

Methanol, which was significantly more concentrated in the G2 group, could be derived from methionine 
metabolism26 or from methane during the methane metabolism pathway. However, methionine does not exhibit 
concentration changes that would suggest an alteration in its metabolism. Methane is produced during ruminal 
microbial fermentation and is positively related to the mean retention time of particulates and liquid in the 
rumen29. The significant increase that we observed for methanol allows us to speculate that methane was more 
concentrated in the rumen, produced from other metabolites. As a first confirmation, Yanibada et al. (2020) 
found in the plasma of dairy cows that dimethylsulfone and formate are inversely related to methane ruminal 
production. A second confirmation comes from acetate, a fatty acid produced during ruminal fermentation30, 
which was significantly increased in Group G2. This fatty acid is positively related to methanogenesis31 and can 
be used by animals for energetic production when bound to coenzyme A32. Furthermore, we should consider 
that all groups were fed the same total mixed ration (TMR) with no differences in the diet administered.

The increase in methanol can also be related to the increase in ethanol concentration because ethanol can 
inhibit methanol utilization by microorganisms33. Ethanol is a product of anaerobic fermentation in the rumen 
by yeast and bacteria34 that can act as an agonist of the GABA receptor with a consequential inhibitory effect. 
This metabolite can be used by ruminants for energetic production through its conversion to acetate35.

The serum concentration of 2,3-butanediol, significantly higher in Group G2, agrees with the observations 
by36, who described this metabolite as produced from 2-butanone through acetoin in several ketoacidotic con-
ditions. In humans, 3-hydroxyisobutyrate serum levels were also found to be directly correlated with the level 
of ketoacidosis37. Experiments on rats suggested that under ketoacidotic conditions, this molecule is produced 
from valine37. Overall, the increment of methanol, acetate, ethanol, 2,3-butanediol, and 3-hydroxyisobutyrate 
and the reduction of dimethylsulfone and formate seem to suggest a pathologic increase in ruminal fermenta-
tion in hyperketonemic cows.

Choline may be consumed along the metabolic pathway toward glycine synthesis and converted to betaine 
and then to dimethylglycine. In our study, we observed all of these metabolites, but only choline appeared to be 
significantly altered by the levels of BHB or hyperketonemia. A more likely fate of choline is therefore its conver-
sion to TMAO, which in our study showed a trend toward an increase and a connection with hyperketonemia. 
According to Xu et al. (2016), TMAO is a marker of oxidative stress because it reduces glycolysis and enhances 
β-oxidation of fatty acids. As an alternative involvement of choline in lipid metabolism, Sun et al. (2014) noticed 
that choline supports fatty acid transport and reduces the risk of hepatic lipidosis. The significant reduction 
in choline may therefore suggest an alteration of lipid transport with an enhanced risk of developing hepatic 
lipidosis.

The above pieces of information taken together (NEFA, BHB, choline, and TMAO) could reinforce the idea 
of oxidative stress due to an enhancement of β-oxidation of fatty acids, and it could, in turn, explain the high 
risk of hepatic lipidosis in the hyperketonemic group.

Methylsuccinate, significantly increased in Group G2, has been previously related to ketotic conditions38, 
probably in relation to acyl-CoA dehydrogenase activity in the β-oxidation of fatty acids39. In accordance with 
the studies of40 and41, high values of methylsuccinate in urine can be related to genetic disorders such as acyl-
CoA dehydrogenase deficiencies. Methylsuccinate is a metabolite related to succinate, an intermediate of TCA, 
also significantly increased in Group G2.

In addition, isovaleryl-CoA dehydrogenase is a branched-chain dehydrogenase42, which degrades isovaleryl-
CoA during the leucine cycle. In the next step, the biotin-dependent enzyme methylcrotonyl-CoA carboxylase 
(MCC) completes the degradation of isovaleryl-CoA to acetoacetate and acetyl-CoA43. Furthermore, other 
biotin-independent pathways may be involved in leucine catabolism, particularly MCC, which is not available, 
but they require high energy43. Isovaleryl-CoA can be converted into isovalerate, a branched-chain saturated 
fatty acid. In our study, the isovalerate concentration was significantly decreased in the G2 group, with a trend 
opposite to that of acetate, as reported recently44.

This could suggest that isovaleryl-CoA was metabolized by other pathways that can be biotin-independent, 
with a loss of energy. As previously reported by45, the use of biotin can improve dry matter intake, milk yield, 



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2525  | https://doi.org/10.1038/s41598-022-06507-x

www.nature.com/scientificreports/

and body energy metabolism due to the gluconeogenesis pathway. Furthermore, biotin supplementation may 
be useful to improve isovaleryl-CoA metabolism for energy production.

Alanine and serine are glucogenic amino acid substrates for pyruvate synthesis46. In our study, alanine showed 
a tendency toward significance, and the change in the serine concentration was significant. The tendency of these 
metabolites was a progressive decrease with increasing BHB concentration. Furthermore, serine is an important 
regulator of glutathione synthesis and it is involved in oxidative stress management47. The reduction in serine 
may suggest an inability of the cows to handle a possible oxidative stress state in the early lactation period.

Pyruvate and its precursors alanine and serine showed an inverse relationship with the BHB concentration. 
Alanine represents one of the major resources for gluconeogenesis48. Overall, this seems to suggest a progressive 
involvement of pyruvate in gluconeogenesis, with a reduction in its concentration, due to the lack of different 
substrates in Group G2 compared to Group G0.

The first intermediate of TCA is oxaloacetate, which can be used for pyruvate synthesis. Aspartate is a pre-
cursor of oxaloacetate46. Although oxaloacetate was not identified in our study, aspartate showed a significant 
reduction in the G2 group. This finding may suggest a possible reduction in oxaloacetate in the hyperketonemic 
group due to the decrease in precursors involved in its synthesis.

Glutamate, proline, and arginine are glucogenic amino acids leading to α-ketoglutarate synthesis46. All of these 
amino acids are related to glutamate production49. Furthermore, proline and arginine are linked in the metabolic 
pathway of arginine and proline metabolism. In our study, proline and arginine concentrations decreased in G2. 
The progressive reduction in proline concentration was in agreement with the study of Wang et al.16 on ketotic 
cows. Proline and its products are components of collagen biosynthesis, which contributes to structure, strength 
and tissue integrity50. Furthermore, proline has been found to act as a weak agonist of the glycine receptor and 
both N-methyl-d-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors. Arginine is a urea cycle 
amino acid51 that participates in nerve signal transduction, and its reduction is related to ketosis17. The reduced 
concentration of these metabolites during the glucogenic process could suggest an influence of the urea cycle, 
signal transduction and recovery from the inflammatory process in hyperketonemic cows.

Isoleucine and valine can be used to synthesize succinyl-CoA and succinate, two other intermediates of TCA​
46. As previously mentioned, succinate showed a significant increase in G2. Higher concentrations of succinyl-
CoA led to a block of citrate synthase and α-ketoglutarate dehydrogenase52. The following step is the oxidation of 
succinate to fumarate through succinate dehydrogenase53. This context could lead to a reduction in succinyl-CoA 
production, an increase in succinate synthesis and its utilization for TCA. However, fumarate concentrations did 
not show significant changes in the G2 group, as did the succinate concentration, which was fumarate’s precur-
sor in TCA. This result suggests that there was a block in the oxidation of succinate. Succinate dehydrogenase 
is an enzyme involved in TCA and in the electron transport chain, which is comprised of iron-sulfur protein 
and flavoprotein (FAD) subunits52,53. A block of this enzyme may be due to reduced levels of minerals or altered 
concentrations of FAD. Furthermore, acyl-CoA-dehydrogenases involved in fatty acid oxidation contain FAD39. 
Further studies specifically focused on this step of TCA may be advantageous to analyze this aspect.

The overrepresentation analysis, applied to the metabolites overall identified and to those significantly differ-
ent between Groups G0 and G2, highlighted lipid metabolism as significantly (p = 0.016) altered by ketosis. In 
fact, among the 11 molecules that could be involved in the metabolism of lipids, 4 appeared to be significantly 
different between Groups G0 and G2. Studying lipid metabolism in greater detail, the synthesis of phosphati-
dylserine seemed to be particularly represented, with each of the two molecules observed to be significantly 
altered. Phosphatidylserine is synthesized by facilitating the exchange of l-serine with the choline head group 
in phosphatidylcholine and with the ethanolamine head group in phosphatidylethanolamine.

Furthermore, glycosaminoglycan metabolism was influenced in the hyperketonemic group. Glycosamino-
glycans (GAGs) are long, unbranched polysaccharides containing a repeated disaccharide unit comprised of 
a hexosamine. GAGs are located primarily in the extracellular matrix (ECM) and on cell membranes. GAGs 
participate in many important signaling events, such as neuronal growth, inflammation and development54.

Conclusion
Metabolomic analysis through 1H-NMR is a useful tool to achieve knowledge about metabolic profiling related 
to serum β-hydroxybutyrate modifications during the transition period in dairy cows. The metabolic state of our 
hyperketonemic cows suggests (1) a mobilization of body resources; (2) increased anaerobic fermentation; (3) 
alteration of lipid metabolism; and (4) a potential oxidative stress state. Furthermore, this metabolic profiling 
proposes the lack of glucogenic substrates and potential alteration of the electron transport chain are involved in 
ketosis in dairy cows. These findings indicate a possible alteration of inflammatory and healing processes. This 
study demonstrates that the metabolomic approach can be considered a significant means to achieve knowledge 
about dairy cow diseases and their pathogenesis.

Methods
The Ethics Statement was approved by the Animal Care and Use Committee of the University of Padua (ID 
number 91/2019—“BovineOmics” Projects). Animal care and procedures were conducted in accordance with the 
Guide for the Care and Use of Laboratory Animals and Directive 2010/63/EU for animal experiments (National 
law: D.L. 26/2014). This study was carried out in compliance with the ARRIVE guidelines. Informed consent 
was obtained from the owners for handling the animals and for the clinical activity of the Veterinary Teaching 
Hospital, University of Padua.

Animals.  Forty-nine Holstein Friesian dairy cows between 15 and 30 days in milk were enrolled from a sin-
gle high-yielding dairy farm located in the province of Padua (Italy). These animals were selected among dairy 
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cows used for the experimental design of Fiore et al.10. The farm had 600 dairy cows and 400 lactating animals, 
with a mean production of approximately 10.000 kg/cow/lactation. All animals had a dry period of approxi-
mately 60 days, with no streaming-up. The same TMR was used for all enrolled animals (Table 4).

A clinical visit was performed for each animal by veterinarians at the University of Padua. Animals with 
signs of clinical disease (metritis, retained placenta, abomasal displacement, milk fever, lameness, or mastitis) 
on the day of sampling or between parturition and the day of sampling were not accepted for this study. Data 
about parity, days in milk (DIM), milk yield and body condition score (BCS) with a scale of 1 to 5 points55 were 
recorded. The animals did not show a BCS > 3.5 at parturition or on the day of sampling.

Experimental design.  A cross-sectional experimental design was used. Blood sampling was carried out 
in the late morning on the day of enrollment during the clinical examination. Samples were collected from the 
coccygeal vein with a vacutainer system for each enrolled cow. The samples were stored in Venosafe tubes (9 mL; 
Terumo Venosafe, Leuvel, Belgium) containing Clot Activator.

The Venosafe tubes were refrigerated at 4 °C and transported in a portable freezer (CoolFreeze CFX65 W 
professional, Dometic, Stockholm, Sweden—minimum temperature −22 °C) at the same constant temperature 
to the laboratory of the Department of Animal Medicine, Production and Health (MAPS) of the University 
of Padua (Italy) within 1 h of blood sampling. The samples were centrifuged at 3000 rpm for 10 min (Heraeus 
Labofouge 400, Thermo Scientific, Milan, Italy). Two aliquots of serum were obtained from each cow and were 
placed in 1.5 mL Eppendorf tubes. One aliquot was stored at −20 °C for biochemical analysis and the other was 
stored at −80 °C for metabolomic evaluations.

Blood analysis and group division.  The biochemical analysis was performed using an automatic clini-
cal chemistry analyzer (BT3500 Biotecnica instruments SPA, Rome, Italy). The serum BHB concentration 
was measured using β-hydroxybutyrate enzymatic kinetics (Randox, Milan, Italy; BHB, mmol/L); NEFA were 
assessed through the NEFA RX Monza test colorimetric method (Randox, Milan, Italy; NEFA, mEq/L). The 
glucose concentration was measured using a colorimetric method (Biotecnica Instruments SPA, Rome, Italy).

According to the serum BHB concentration, the animals were divided into three groups (Table 1): Group 0 
(G0; 12 healthy animals with 4 primiparous, 2 secondiparous, and 6 pluriparous; BHB ≤ 0.50 mmol/L); Group 
1 (G1; 19 healthy animals with 5 primiparous, 3 secondiparous, and 11 pluriparous; 0.51 ≤ BHB < 1.0 mmol/L); 
and Group 2 (G2; 18 hyperketonemic animals with 2 primiparous, 2 secondiparous, and 14 pluriparous; 
BHB ≥ 1.0 mmol/L). The BHB in the G2 group ranged from 1.00 mmol/L as the minimum value to 2.77 mmol/L 
as the maximum value.

Metabolomic analysis.  The metabolomics investigation was carried out through an NMR analysis solu-
tion with 10 mM 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) in D2O set at pH 7.00 ± 0.02 by 
means of 1 M phosphate buffer containing 2 mM NaN3. TSP was used as an NMR chemical-shift reference, while 
NaN3 avoided microbial proliferation, as suggested by56.

Serum samples were prepared for 1H-NMR by thawing and centrifuging 1 mL of each sample for 15 min at 
18,630g and 4 °C. The supernatant (700 μL) was added to 100 μL of NMR analysis solution. Finally, each sample 
was centrifuged as previously mentioned.

1H-NMR spectra were recorded at 298 K with an AVANCE III spectrometer (Bruker, Milan, Italy) operating 
at a frequency of 600.13 MHz, equipped with the software Topspin 3.5. According to56, the signals from broad 
resonances originating from large molecules were suppressed by a CPMG filter comprised of 400 echoes with 

Table 4.   Total mixed ratio (TMR) and feedstuffs used for all groups (G0, G1, and G2).

Chemical composition of TMR Dry matter (%) Feedstuff Dry matter (%)

Crude protein (CP) 15.2 Alfalfa haylage 27.4

Protein digestible (PD) 12.1 Alfalfa hay 21.2

Protein digested in the small intestine when rumen-fermentable nitrogen is 
limiting (PDIN) 11.2 Cottonseed meal 7.5

Protein digested in the small intestine when rumen-fermentable energy is 
limiting (PDIE) 11.3 Concentrate mix: 43.9

Dietary protein undegraded in the rumen but truly digestible in the small 
intestine (PDIA) 5.2 Corn 41.3

Neutral detergent fiber (NDF) 31.3 Barley 19.3

Acid detergent fiber (ADF) 18.8 Wheat 16.4

Acid detergent lignin (ADL) 2.7 Soybean meal 8.0

Ether extract (EE) 4.6 Molasses 8.0

Ashes (ASH) 7.4 Sodium bicarbonate 2.8

Starch (ST) 24.6 Vitamin D 0.06

Nonstructural carbohydrates (NSC) 41.4 Vitamin A 0.06

Calcium (Ca) 0.8 Vitamin E 0.03

Phosphorus (P) 0.4 Mineral salts 1.0
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a τ of 400 μs and a 180° pulse of 24 μs for a total filter of 330 ms. The water residual signal was suppressed by 
means of a presaturation technique. This setting employed the cpmgpr1d sequence, part of the standard pulse 
sequence library. Each spectrum was acquired by summing 256 transients using 32 K data points over a 7184 Hz 
spectral window, with an acquisition time of 2.28 s and a relaxation delay of 5 s.

The spectral phase was manually adjusted in Topspin, while the subsequent adjustments were performed in 
R computational language by means of a script developed in-house57. After the removal of the residual water 
signal, the1H-NMR spectra were baseline-corrected by means of peak detection, according to the “rolling ball” 
principle58, implemented in the baseline R package59. The signals were assigned by comparing their chemical 
shift and multiplicity with the Chenomx software library (Chenomx Inc., Canada, ver. 8.3).

The molecules of the first serum sample analyzed were quantified by means of an external standard by taking 
advantage of the principle of reciprocity60. Differences in water content among samples were then taken into 
consideration by probabilistic quotient normalization61. Molecule quantification was performed by means of 
rectangular integration, considering one of the corresponding signals free from interferences.

Statistical analysis.  Statistical analysis was conducted with R software ver. 4.0.3 computational language57. 
Differences among the main characteristics (NEFA, glucose, BCS, DIM, parity, and milk yield) of the groups 
were tested through one-way ANOVA using the group as a fixed factor (p value < 0.05).

The concentration of each serum metabolite not normally distributed was normalized by Box and Cox 
transformation62. An initial comparison assessing the interactions of parity and DIMs versus groups was per-
formed with a linear mixed model. However, no significant results were found, so it was decided to use only 
group as a fixed effect. Comparisons between the extreme groups (G0 vs. G2) were then made by t-tests, consid-
ering p=0.05 as the limit of significance. A post hoc pairwise comparison among metabolite concentrations was 
performed using Bonferroni correction. A t-test was also used to evaluate differences between the G0-G1 and 
G1-G2 groups. A trend for significance was considered for metabolites with 0.05 ≤ p value ≤ 0.10.

Robust principal component analysis (rPCA)63 was employed on centered and scaled data of significant 
metabolites as a means to summarize the structure of the data. rPCA was performed through the PcaHubert 
algorithm, implemented in the “rrcov” package. First, the algorithm detects outlying samples by computing their 
distance from the others along and orthogonally to the PCA plane. The optimal number of principal components 
(PCs) is finally determined. The rPCA model is summarized by a score plot and a correlation plot. The score 
plot shows the overall structure of the data by showing the samples in the PC space. The second plot shows the 
molecules that mostly determine the structure of the data by reporting the correlations between the concentra-
tion of each molecule and the PCs.

Through the MetaboAnalyst (ver. 5.0) web-based application64, the databases of PubChem (https://​pubch​
em.​ncbi.​nlm.​nih.​gov/), Human Metabolome Database (HMDB; https://​hmdb.​ca/​metab​olites/) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG; https://​www.​genome.​jp/​kegg/) were consulted to obtain a functional 
interpretation of the metabolites.

Metabolic pathways overrepresentation analysis (ORA) was performed by Fisher’s exact test and by employing 
Reactome (https://​react​ome.​org) as a pathways’ database.

Data availability
The data presented in this study are available by sending an email to the corresponding author.
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