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Abstract: As the basis of animal reproductive activity, normal spermatogenesis directly determines
the efficiency of livestock production. An in-depth understanding of spermatogenesis will greatly
facilitate animal breeding efforts and male infertility treatment. With the continuous development and
application of gene editing technologies, they have become valuable tools to study the mechanism of
spermatogenesis. Gene editing technologies have provided us with a better understanding of the
functions and potential mechanisms of action of factors that regulate spermatogenesis. This review
summarizes the applications of gene editing technologies, especially CRISPR/Cas9, in deepening our
understanding of the function of spermatogenesis-related genes and disease treatment. The problems
of gene editing technologies in the field of spermatogenesis research are also discussed.
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1. Introduction

The world population is gradually expanding. Already, projections have been made
that the world population will increase to 9–10 billion by 2050, and the future demand for
cereals and animal products will increase to unprecedented levels [1,2]. The demand for
animal products is closely related to improvements in animal breeds. With the improve-
ments in people’s living standards and changes in diet structure, the quality of animal
products will also be directly related to economic development and people’s quality of
life. In recent years, the importance of animal husbandry has been reconsidered by peo-
ple all over the world, and the impact of animal husbandry on the quality of food and
the health of people has been increasingly emphasized. Accordingly, people have put
forward higher requirements for livestock breeds. It is well known that the proportion of
livestock production value in the total agricultural output objectively reflects the social
development and economic development of a country or region. The genetic quality of
livestock breeds or populations plays a dominant role in many factors affecting livestock
production efficiency. As a result, animal breeding has once again entered the limelight in
a high-profile way. Through innovative efforts to improve livestock farming production
efficiency, sustainability, and product quality and profitability, animal breeding will greatly
contribute to economic and consumer benefits. Recently, significant progress has been
made in livestock production through reproductive biotechnology, as seen in simultaneous
estrus, semen cryopreservation, and artificial insemination [3]. The rapid developments
in molecular biology technology have made it possible to manipulate the genetic material
of animals at the molecular level, which in turn has laid the foundation for the molecular
breeding of animals.

As a necessary part of sexual reproduction, gametogenesis is the basic guarantee for
the continuation of life, reproduction and the completion of evolution. Infertility affects
approximately 15% of human couples globally [4]. Effective animal breeding efforts and
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the expansion of good breeding stock also depend greatly on the quantity and quality of
gametes. For decades, one of the main avenues for breeding efforts has been the selective
use of sperm from desirable male animals [5]. Precise knowledge of the potential regulatory
factors and mechanisms of various aspects of spermatogenesis is important for innovations
in animal breeding technology. The extensive application of functional data analysis
techniques such as genomics, epigenomics, transcriptomics, proteomics and metabolomics
has allowed researchers to better understand the physiological mechanisms that underlie
the differences in male fertility [6]. Technological innovations are driving researchers to
understand spermatogenesis in a stepwise manner, and the complex molecular mechanisms
of spermatogenesis are constantly being explored.

Gene editing technologies can already be described as one of the most important
technological advances of the 21st century. Technological innovations from transcription
activator-like effector nuclease (TALEN) to CRISPR/Cas9 to prime editing have greatly
advanced the development of gene editing technologies and research in the field of gene
editing. Although there are still biosafety and ethical issues, it must be said that the
emergence of transgenic farm animals and gene-edited animal models has further improved
animal production and human health [7,8]. Animal transgenic technology and gene editing
technology have broad application prospects in improving the breeding efficiency and
disease resistance of livestock and manufacturing bioreactors [9–11]. The development
and widespread application of these technologies are helping us to better understand the
molecular mechanisms of spermatogenesis and thus to better develop new animal breeds
and conserve excellent germplasm resources.

2. Spermatogenesis in Brief

Spermatogenesis is a complex biological process based on the cellular transformation
of stem cells [12]. Spermatogenesis can be divided into three main stages: the mitotic
proliferation of spermatogonia, the meiotic replication of spermatocytes, and the transfor-
mation of spermatocytes into spermatozoa [13]. The entire process of spermatogenesis is
accomplished in the seminiferous tubules (STs). As the functional unit of the testis, STs
consist of a combination of basement membrane, Sertoli cells (SCs) and germ cells (GCs) in
various stages of maturation. Spermatogonia begin meiosis and transition to spermatocytes
at the basement membrane. Among them, the spermatogonial stem cells (SSCs) located on
the basement membrane can both self-renew to maintain a constant number of themselves
and differentiate directionally to produce spermatocytes [14]. Because of their pluripotency,
the quantity and quality of SSCs are directly related to the health and stability of the entire
GC lineage. During the differentiation process of the next spermatogenic stage, GCs are
transferred from the basement membrane into the lumen of the STs.

Within STs, there is a complex intercellular communication dialog between GCs and
SCs, which together constitute the seminiferous epithelium [15]. SCs, a special group of
nondividing cells, are active during the reproductive lifespan of animals and periodically
change in terms of morphology and gene expression. The widely known spermatogenesis
epithelial cycle is initiated by SCs and maintained by SC–GC cooperation [16]. In addition,
the number of SCs directly affects sperm production [17,18]. Therefore, SCs have been
considered indispensable conductors of spermatogenesis [19].

The STs are surrounded by a large amount of peritubular tissue, consisting of per-
itubular myoid cells (PTCs), fibrocyte-like adventitial cells and collagen matrix [20]. A
large amount of interstitial tissue fills in the space between the STs in the testis. This
interstitial tissue is a loose connective tissue rich in blood vessels and nerves and contains
Leydig cells (LCs), macrophages, various immune cells, and some fibroblasts. In addition,
a great deal of cellular communication occurs between LCs and SCs or other cells [21,22].
Together, the structural integrity of these tissues and the interplay of cells ensure that
spermatogenesis occurs properly. In addition, the regulation of spermatogenesis requires
the participation of hormones, paracrine factors, transcription factors, epigenetic regulators,
and other substances together with multiple cells [20]. This process requires each factor to
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send the appropriate regulatory signals to GCs correctly and punctually at each stage of
GC development.

3. A Brief Overview of CRISPR/Cas Technology

The defense mechanism of cutting foreign invading viral nucleic acids in clustered
regularly interspaced short palindromic repeats (CRISPR) showed researchers its potential
to edit genes after being first discovered in 1987 [23]. As a result, CRISPR/Cas, a gene
editing technology derived from bacterial or archaeal acquired immunity, was created.

CRISPR/Cas is a technology for RNA-directed modification of target sequences by
Cas proteins, consisting mainly of CRISPR clusters, leading sequences (leaders), repeating
sequence regions (tracers), and a set of conserved CRISPR-associated genes (Cas genes) [24].
In previous gene editing processes, the construction of DNA-binding structural domains of
artificial nuclease-mediated zinc finger nucleases (ZFN) and TALEN required the execution
of a protein fusion process. CRISPR/Cas technology utilizes sequence-specific small
guide RNA (sgRNA) designed to act as DNA-binding structural domains instead of the
protein fusion process. Therefore, CRISPR/Cas, known as the third-generation gene
editing technology, is more efficient, simple, accessible, and widely used compared to ZFN
and TALEN.

The revolutionary CRISPR/Cas system, CRISPR/Cas9, was universally recognized
and widely used by researchers immediately after its advent in 2013. CRISPR/Cas9 has
opened the door to a large number of applications for manipulation in almost all organisms,
making it easier to achieve gene deletion, insertion, and substitution (Figure 1). However,
CRISPR/Cas9 still suffers from defects and limitations such as too large components and
high off-target rates. Therefore, a large number of Cas9 homologs have been mined and
CRISPR/Cas9 itself is being upgraded (Figure 2).

The currently known CRISPR-Cas systems can be divided into two broad classes [25].
One class of CRISPR-Cas systems (types I, III, and IV) function with multi-subunit effector
complexes. The other class of CRISPR-Cas systems (types II, V, VI) function using only a
single multidomain effector protein.

The hallmark protein of the type I system is Cas3. It has a nuclease and a decapping
enzyme structural domain that plays an important role in degrading exogenous DNA
recognized by the multi-protein-crRNA complex cascade. The hallmark protein of the type
II system is Cas9. Heterologous recombination of CRISPR/Cas9 system in mammalian
cells can effectively accomplish gene editing [26]. Through the continuous exploration
by researchers, CRISPR/Cas9 has been gradually upgraded from the classical system to
base editing (Figure 2A,B) and prime editing (Figure 2C). This makes the application of
CRISPR/Cas9 more extensive and the operations that can be realized more abundant and
precise. The hallmark protein of the type III system is Cas10, which assembles into a
cascade-like interference complex for target search and destruction. The hallmark protein
of the type IV system is Csf1, an uncharacterized protein that has been proposed to form
part of a cascade-like complex [27]. The hallmark protein of the type V system is Cpf1
(Figure 2D). Proteins such as C2c1 or C2c3 that contain an endonuclease structural domain
similar to Cpf1 are also classified as effector proteins of the type V system [28]. In addition,
the CRISPR/Cas14 system discovered in 2018 also falls into this type (Figure 2F). With the
advent of the CRISPR/Cas14 system, cleavage of targeted single-stranded DNA (ssDNA)
became a reality. The type VI system is a Cas13-based RNA targeting system (Figure 2E).
Abudayyeh et al. have confirmed the high efficiency and specificity of single CRISPR RNA
(crRNA)-guided Cas13-targeted specific RNA knockdown in mammalian cells [29].

With the successive discovery of Cas proteins, the CRISPR/Cas system can edit
DNA, but also has more functions such as editing RNA and single- and double-stranded
nucleotides. This extends the editing scope of the CRISPR/Cas system while extending
its applications in biomedicine, agriculture, forestry or other fields [30,31]. CRISPR/Cas
technology allows us to see more possibilities in all fields of scientific research.
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Figure 1. The mechanism of CRISPR/Cas9 mediated genome engineering.

Figure 2. Schematic summary of CRISPR/Cas systems used for genome editing.

4. CRISPR/Cas9: An In-Depth Exploration of Functional Genes for Spermatogenesis

With development and upgrading, gene editing technologies have become very in-
tuitive in helping us understand more about key genes and proteins in spermatogenesis
through the easy construction of cellular or animal models. The advent of a large number
of animal models, particularly mouse models, has led to a renewed understanding of the
role of these genes and proteins in spermatogenesis. A significant number of genes have
been found to be critical for spermatogenesis and male fertility, but many genes that we
thought were associated with spermatogenesis have been shown to be dispensable.

The most widely used gene editing technology in the field of spermatogenesis re-
search is currently the CRISPR/Cas9 system. A database search revealed that more than
100 related studies have been reported since 2015, and 55 genes have been further con-
firmed to be relevant to male GC proliferation, sperm head and tail formation, or sperm
motility (Table 1).
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Table 1. Genes related to spermatogenesis unearthed by gene editing technology.

Gene Species Techniques Used for
Function Analysis Fertility Phenotype/Clinical Symptoms References

Akap4 Mus musculus KO 1 Male infertility Abnormal sperm morphology and
reduced motility [32]

Amh Danio rerio KO -
Dysregulation of germ cell

development and the
over-proliferation of spermatogonia

[33]

Armc2 M. musculus KO Male infertility Multiple morphological abnormalities
of the flagella [34]

Asb17 M. musculus KO Fertile Oligospermia and a disorganized
ES junction [35]

Bcorl1 M. musculus KO Male infertility
Impaired sperm viability and

abnormal mitochondrial structure of
sperm cells

[36]

Cabs1 M. musculus KO Significantly
impaired fertility

Defective sperm flagellum
differentiation and abnormal sperm

tail structure
[37]

Ccdc63 M. musculus KO Male infertility Shortened flagella [38]

Cct6b M. musculus KO -

No differences in development,
fertility, appearance, testis weight, or

sperm counts. Nuclear base
bending abnormality

[39]

Cdc14a M. musculus KO Significantly
impaired fertility

Low sperm count, impaired sperm
motility and high percentage of

morphologically abnormal sperm
[40]

Cib4 M. musculus KO Male infertility
Impaired haploid differentiation and
absence of elongated spermatozoa in

the epididymal tail
[41]

Cmtm4 M. musculus KO Significantly
impaired fertility

Decreased sperm count, decreased
epididymal sperm motility, increased

percentage of abnormal backward
bending of sperm head and bending

of sperm mid-section

[42]

CSR-
1a Caenorhabditis elegans KI 2/KO -

A transgenerational loss of
sperm-based fertility in

hermaphrodites
[43]

Cyp11c1 Danio rerio KO -

Exhibits female secondary sexual
characteristics, severe deficiency of
androgens and cortisol, impaired

spermatogenesis and characteristic
reproductive behavior, disturbed

arrangement of spermatogenic
tubules, and abnormal differentiation

of spermatogonia.

[44]

Ddx4 M. musculus cKO 3(Cre-loxP) -
Spermatogonia developed and
became arrested at the round

spermatid stage
[45]

Defb23/26/42 R. norvegicus KO

No clear phenotype
for single knockout,

but 23/26 or
23/26/42 combined
knockout is infertile.

Impaired sperm motility, the sperm
showed precocious capacitation and

increased spontaneous
acrosome reaction.

[46]

Dmrt1 Danio rerio KO -
Severe testicular developmental
defects and gradual loss of all

Vasa-positive germ cells
[33]

Dmrt6 Oreochromis
mossambicus KO - Fewer spermatocytes [47]

Dnah17 M. musculus KO -
Asthenozoospermia, abnormal sperm

flagellar morphology and low
sperm activity.

[48,49]

Dpy19l2 M. musculus KO (NA) 9 Male infertility
The NDL facing the acrosome, the
acro-plaxome, caudal descent and
acrosome spreading are defective.

[50]

Ephb2 M. musculus KO (SSCs) 7 - Proliferation and stem cell activity
are impaired. [51]
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Table 1. Cont.

Gene Species Techniques Used for
Function Analysis Fertility Phenotype/Clinical Symptoms References

Fam170a M. musculus KO Significantly
impaired fertility

Abnormal spermiation, abnormal
head morphology, and reduced

progressive sperm motility.
[52]

Fto M. musculus KO (spermatogonia) - Chromosome instability and
G2/M arrest [53]

Gh1 Danio rerio Point mutation - Delayed spermatogenesis [54]

HIF-1α R. norvegicus KD 4 -

The distribution of germ cells was
disordered and apoptosis of

spermatogenic cells
increased significantly.

[55,56]

Hsf5 Danio rerio KO Male infertility
Reduced sperm count, increased
sperm head size, and abnormal

tail architecture
[57]

Hydin M. musculus
Biallelic mutations (ESCs) -

Hydin-disrupted sperm obtained
from the chimeric mice possessed

short tails and were immotile, but it
can produce viable pups.

[58]

KO (NA) - Die within 3 weeks before sexual
maturation due to hydrocephaly. [58]

Igf3 Oreochromis niloticus KO Male infertility

The proliferation and differentiation
of spermatogonia are severely

inhibited at the beginning of meiosis,
and semen volume and sperm count

are drastically reduced.

[59]

Lipocalin8 M. musculus
KO Normal fertility

There was no significant effect on the
morphological appearance of the

testes but epididymal sperm
maturation defects.

[60]

cKI 5 Normal fertility - [61]

Mct8 R. norvegicus KO Fertile, lower
fertilization rate

Serum THs (T3 and T4) level were
significantly increased, growth delay
along with thyroid dysfunction, testis

maldevelopment and
impaired spermiogenesis.

[62]

Meig1 M. musculus Y68 point mutation Male infertility

The sperm count is significantly
reduced, and a few developed sperm

fail to move and exhibit a variety
of abnormalities.

[63]

Pick1 M. musculus KO (NA) Male infertility

Fragmentation of acrosomes in the
early stages of spermiogenesis,

round-headed sperm, reduced sperm
count, and severely impaired

sperm motility.

[64]

Pmfbp1 Bombyx mori Point mutation Male infertility Defects in the development of
eupyrene sperm bundles [65]

Prss55 M. musculus KO/DKO 6 Male infertility

Impaired migration from the uterus to
the oviduct and impaired ability to

bind the zona pellucida (ZP)
of oocytes

[66]

Rln3a Oreochromis niloticus KO Significantly
impaired fertility

Hypogonadism, sperm deformation
and a significant decrease in

sperm motility.
[67]

Rnf216 M. musculus KO

Male mice are sterile
and females are

capable of
reproduction.

Smaller testes, defective meiosis, and
reduced number of germ cells. [68,69]

Sox30
Oreochromis niloticus KO Significantly

impaired fertility
Abnormal spermiogenesis, reduction

of sperm motility [70]

M. musculus cKO (Cre-loxP) Male infertility

Stagnant germ cell development,
abnormal acrosome and axon

development and complete cessation
of spermatogenesis.

[71]

Spata16 M. musculus
851G→A/R284Q
point mutation Fertile - [72]
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Table 1. Cont.

Gene Species Techniques Used for
Function Analysis Fertility Phenotype/Clinical Symptoms References

781-bp deletion Male infertility
Spermio-genic arrest, with impaired
differentiation of round spermatids

into the mature sperm.
[72]

Spata3 M. musculus KO
Normal fertility with

reduced in vitro
fertility

Acrosome defects and excessive lipid
droplet residues in the cytoplasm. [73]

Spatc1l M. musculus KO Male infertility Separation of sperm head from tail [74]

Ssmem1 M. musculus KO Male infertility

Globozoospermia, loss of sperm
motility and abnormal localization of

Golgi at steps eight and nine of
spermatid development.

[75]

Sun3 M. musculus KO Male infertility Reduced sperm counts and a
globozoospermia-like phenotype. [76]

Tcfl5 M. musculus KO Male infertility
Sperm cells and spermatozoa of
Tcfl5+/- mice (infertility) have

been abnormal.
[77]

Tle6 M. musculus KO (spermatogonia,
CRISPR/Cas9, Tet-on) 8 - Spermatogonia proliferation and cell

cycle are inhibited. [78]

Tmprss12 M. musculus KO Male infertility

Normal spermatogenesis and sperm
morphology, but ejaculated

spermatozoa failed to migrate from
the uterus to the oviduct.

[79]

Tsga10 M. musculus KO Male infertility
Disordered mitochondrial sheath

formation and reduced
sperm motility.

[80]

Tssk3 M. musculus KO Male infertility Reduced sperm count and
abnormal morphology. [81]

Ttc21a M. musculus Frameshift mutation Male infertility (78%)

The motility and progressive motility
of spermatozoa were significantly

reduced. Morphological abnormalities
of sperm. The structural abnormalities

of the connecting piece during
spermiogenesis and multiple

structural defects of the flagella.

[82]

Ythdf2 M. musculus KO (spermatogonia) - Cell proliferation, cell adhesion and
cell spread were inhibited. [83]

Zfp628 M. musculus KO Male infertility
Post-meiotic germ cell arrest at the

round spermatid stage in the
seminiferous tubules of the testis.

[84]

Zfy1/Zfy2 M. musculus
KO Normal fertility -

[85,86]

DKO Infertility
Abnormal sperm morphology,

fertilization failure and early embryo
development failure.

Zmym3 M. musculus KO Male infertility Abnormal spindle assembly at
mid-meiotic division. [87]

1700102P08Rik M. musculus KO Male infertility

Smaller testes and epididymis,
stagnation of spermatogenesis at the

spermatocyte stage, absence of
spermatozoa in the epididymis, and

apoptosis of testicular cells.

[88]

1 KO: CRISPR/Cas9-mediated knockout; 2 KI: CRISPR/Cas9-mediated knock-in; 3 cKO: CRISPR/Cas9-mediated
conditional knockout; 4 KD: CRISPR/Cas9-mediated knockdown; 5 cKI: CRISPR/Cas9-mediated conditional
knock-in; 6 DKO: CRISPR/Cas9-mediated double knockout; 7 The corresponding cells on which gene editing
was performed are indicated in parentheses; 8 The corresponding cells on which gene editing was performed are
indicated in parentheses; 9 NA: The technique of mediated gene knockout is unknown or not mentioned in the
original article.

4.1. Spermatogenesis Associated 16 (Spata16)

The protein SPATA16, encoded by Spata16, is also known as NYD-SP12. SPATA16 was
first identified and characterized as a novel testis-specific protein in 2003. Min Xu et al.
found that Spata16 mRNA expression levels were 30-fold higher in human adult testes
than in fetal testes, and they speculated that SPATA16 may be involved in spermatogenesis
through its role in the Golgi apparatus [89]. Subsequent studies have confirmed that Spata16
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is closely associated with acrosome formation and that its pathogenic mutations can cause
globozoospermia and male infertility [90–92].

Based on a mutation (851G→A, R284Q) localized in the fourth exon of Spata16 found
in patients with globozoospermia, Yoshitaka Fujihara et al. successfully constructed the
corresponding point mutation mouse model Spata16pm/pm by CRISPR/Cas9 [72]. Inter-
estingly, this mutant mouse has normal reproductive capacity, which may be because the
mutation does not affect the splicing of the fourth intron in Spata16pm/pm mice. However,
the sperm of Spata16−781/−781 mutant mice stalled and exhibited sterility after the deletion
of 781 bp around the fourth exon of mouse Spata16 with CRISPR/Cas9. This suggests
that the C-terminus of the fourth exon of Spata16 encoding the TPR structural domain is
essential for male fertility. Furthermore, the Spata16 mutation produces a different phe-
notype in humans and mice. The same mutation causes globozoospermia in humans but
spermatogenic arrest in mice. Thus, the mechanism of Spata16 in spermatogenesis requires
further studies for elucidation.

4.2. Doublesex and Mab-3 Related Transcription Factor 1 (Dmrt1)

As the first sex differentiation gene identified and the only one that is evolutionar-
ily conserved among mammalian species, Dmrt1 plays a key role in sex determination,
differentiation and development by controlling testicular development and male GC prolif-
eration [93–95]. Dmrt1 is specifically expressed in testes and is very dynamically expressed
in somatic cells and GCs [96,97]. Human Dmrt1 is linked to sex determination because of
chromosome 9, where it is located. The deletion of the distal short arm of chromosome
9 was found to be associated with 46, XY gonadal hypoplasia and XY sex reversal in a
large number of clinical cases [98–100]. The findings of these clinical trials and studies
support in a stepwise manner that Dmrt1 deficiency is directly associated with disorders of
sexual development. Subsequently, Shinseog Kim et al. identified the different functions
of Dmrt1 in GCs versus supporting cells by conditional gene targeting. Their study con-
firmed the multiple roles of Dmrt1 in controlling the remodeling and differentiation of the
juvenile testis [101]. It can be said that Dmrt1 is required for the establishment of postnatal
spermatogenesis and the maintenance of the pool of progenitor cells that participate in
adult spermatogenesis. In addition, Dmrt1 is involved in regulating the self-renewal of
SSCs and maintaining their pluripotency [102–104]. The progressive exploration of Dmrt1
function has made researchers more certain that understanding Dmrt1 will likely help
enable artificial manipulation of spermatogenesis.

Gene editing technology has made it possible to determine the function of Dmrt1
in more detail. CRISPR/Cas9-mediated Dmrt1 mutation animal models were first imple-
mented in tilapia. A distinct phenotype was observed for the G0 generation of Dmrt1
mutant tilapia constructed by Minghui Li et al., and this phenotype was consistent with the
gonadal phenotype induced by TALENs [105]. Qiaohong Lin et al. successfully generated
Dmrt1 mutant zebrafish by CRISPR/Cas9 [33]. The deletion of Dmrt1 caused defective
testicular development. The differentiation of GCs of all types was severely impaired, and
their number was drastically reduced. GC-associated and testicular somatic-cell-associated
genes were also differentially dysregulated due to Dmrt1 deletion. All these results support
the hypothesis that Dmrt1 is involved in regulating testicular development and male GC
proliferation. By constructing a joint study in Amh mutant zebrafish, Qiaohong Lin et al.
also found that Amh and Dmrt1 synergistically maintain spermatogenesis by regulating
male GC self-renewal and differentiation [33]. The construction of other Dmrt1-deficient
models, such as mouse and chicken models, has allowed us to further define the critical
role of Dmrt1 in sex determination and spermatogenesis [106].

4.3. Dpy-19-like 2 (Dpy19l2)

Similar to Spata16 and Pick1, Dpy19l2 is the third gene in which defects have been
identified to be closely associated with globozoospermia [107]. Dpy19l2, located in the inner
nuclear membrane, actively participates in the attachment process of the acrosome to the
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nuclear envelope [108,109]. A homozygous deletion of Dpy19l2 blocks sperm head elonga-
tion and acrosome formation, leading to male infertility [110]. Afterward, the discovery of
various novel point mutations, nonsense mutations and missense mutations of Dpy19l2 fur-
ther deepened the understanding of Dpy19l2 mutation-induced globozoospermia [111–113].
Yueshuai Guo et al. revealed a large number of differentially expressed proteins between
the sperm of Dpy19l2-deficient human globozoospermia and those of normozoospermia
by tandem mass (TMT) quantitative proteomics analysis [114]. This finding implies that
pathogenic mutations in Dpy19l2 induce aberrant expression of many unknown factors.
There are also many mechanisms that we do not yet understand that work together to
cause globozoospermia. With the discovery of FAM209, the first protein that interacts
with DPY19L2, our knowledge of the in vivo mechanism of action of DPY19L2 has become
even richer. Studies have confirmed that the FAM209-DPY19L2 complex maintains normal
acrosome biogenesis and spermatogenesis [115]. In addition, the use of intracytoplasmic
sperm injection (ICSI) and calcium carrier assisted oocyte activation (AOA) has made it
possible to cure infertility caused by Dpy19l2 dysfunction [116,117].

4.4. Testis Specific 10 (Tsga10)

Tsga10 was first identified and characterized in 2001 by M H Modarressi et al. [118].
Tsga10 is a testis-specific expressed gene consisting of 19 exons. Modarressi et al. then
found that the Tsga10-encoded sperm cell protein is processed into fibrous sheath protein in
mature sperm [119]. Therefore, Tsga10 is considered to be an important regulatory gene for
the formation of the fibrous sheath of the sperm tail. As research on acephalic spermatozoa
syndrome continues to advance, Tsga10 has been identified as one of the candidate genes
for the syndrome [120]. Loss-of-function mutations or deletions in Tsga10 directly cause
acephalic spermatozoa syndrome [121–123]. To further analyze the function of Tsga10,
Geng Luo et al. constructed Tsga10+/− mice by CRISPR/Cas9 [80]. Tsga10+/− mice showed
disturbed mitochondrial sheath formation, significantly low sperm motility, and male
sterility. This finding further defines the role of Tsga10 in spermatogenesis. Rezvan Asgari
et al. further found that abnormal spermatogenesis due to the deletion of Tsga10 may be
associated with autophagy [124]. Reduced Tsga10 expression attenuated its inhibition of
HIF-1, leading to diminished autophagy and the overproduction of reactive oxygen species
(ROS) and resulting in impaired sperm maturation.

5. CRISPR/Cas9: Potential New Tools for Treating Abnormal Spermatogenesis and
Male Infertility

The successful gene editing of mouse SSCs using TALEN or CRISPR/Cas9 indicates
that gene editing technologies will become an important tool for studying spermatogenesis
and revealing the mechanism of the development of spermatogenesis abnormalities. In
addition to advancing basic research, the combination of gene editing technologies and SSC
transplantation technology makes it possible to produce transgenic animals more rapidly
and to better achieve the conservation of good animal breeds. However, the complexity
and inefficiency of traditional gene editing technologies have limited the success rate of
editing SSCs. The creation of CRISPR/Cas9 has greatly solved this problem.

Yuxuan Wu et al. provided the first theoretical justification for the use of CRISPR/Cas9
to correct genetic defects in 2013 [125]. Two years later, they once again used CRISPR/Cas9
to efficiently edit Crygc in mouse SSCs and successfully completed the repair and correc-
tion of genetic defects in mice [126]. The correction of SSCs by CRISPR/Cas9-mediated
homology-directed repair (HDR) has led to a new therapeutic direction for male infertility
caused by GC genetic defects. The point mutation in the SSCs of Kitw/Kitwv mice was
subsequently corrected by Xiaoyu Li et al. via CRISPR/Cas9 in vitro [127]. After being
transplanted back into the testis, the repaired SSCs successfully restored the natural fertility
of the mice. Xianyu Zhang et al. also attempted to establish a SSC transplant recipient
mouse model to achieve more effective SSC transplantation [128]. Although the Etv5−/−

mice that were successfully constructed could adopt and support foreign SSCs and produce
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donor-derived sperm, the efficiency of this process was very low. The quantity and quality
of sperm produced by Etv5−/− mice were not ideal. It can thus be seen that research is
still needed to further refine the protocol of SSC transplantation to construct transgenic
animals. There is no denying that the application of gene editing technologies has allowed
researchers to delve further into the complex and mysterious process of spermatogenesis.
Gene editing technologies have also opened up new avenues of development in the medical,
biomedical and agricultural fields.

6. Perspectives

As an interdisciplinary field involving histology, embryology, molecular biology,
genetics, etc., the study of spermatogenesis is one of the research hotspots in the field of
reproductive biology. The regulatory roles of DNA and RNA methylation modifications,
histone modifications, noncoding RNAs, exosomes, hormones, and various testicular
somatic cells during spermatogenesis have been discovered in a stepwise manner [129–133].
With the rapid innovation and optimization of gene editing technology, more key factors in
the process of spermatogenesis have been identified. From the initial systemic knockout to
the target-specific knockout, researchers can better understand the spermatogenesis process.
The successive emergence of novel Cas proteins such as Cas12, Cas13, Cas14, etc. has
also expanded and extended the editing scope and practical applications of CRISPR/Cas
technology. This will allow CRISPR/Cas technology to play a greater driving role in the
field of spermatogenesis. However, most of the existing research on spermatogenesis is
still carried out by gene knockout using the CRISPR/Cas9 system to construct animal
models. Studies evaluating gene function by phenotypes such as fecundity, sperm count,
and sperm motility in knockout animals still account for a disproportionate number of
studies. At the same time, many mechanisms involved in the process of spermatogenesis
are still unknown, which also leads to the fact that, although the current gene editing
technology has promoted research in spermatogenesis, the exploration of deeper molecular
mechanisms of spermatogenesis is still lacking.

In spermatogenesis studies, most of the existing animal models are fish or mouse
knockout models, which may be due to the easier handling and lower cost of fish and mice.
However, there is a lack of an accepted and complete system of phenotypic evaluation
indicators for the models. Single-gene knockout animal models exploring the presence
or absence of reproductive disorders have limitations for our deeper understanding of
spermatogenesis. Morphologically normal sperm produced by knockout animals may
also have some recessive abnormalities leading to infertility. Therefore, visual indicators
such as sperm viability, sperm count, and testicular histomorphology alone can no longer
meet the needs of existing research. The need for a more in-depth evaluation of animal
models constructed by gene editing is urging researchers to explore the underlying causes
of spermatogenesis rather than making the crude assumption that a particular gene or
protein is important or unimportant.

Although the use of mice as research subjects can reveal universal mechanisms in
mammals, these studies are still at a stage where they can provide only a theoretical
basis for practical animal breeding work. At this point in time, very little research has
been carried out on livestock and poultry. This fact suggests that the mechanisms of
spermatogenesis are not as clear-cut as we thought and that there are still many problems
that need to be solved in the practical application of gene editing technology in production.
Therefore, more research in livestock and poultry is needed in the future. A comprehensive
and systematic analysis of the mechanisms underlying the various biological processes
involved in spermatogenesis will facilitate the development of animal breeding, as well as
developmental and reproductive biology.

In addition, the combination of gene editing and SSC transplantation offers new ideas
for the treatment of male infertility, but further research is needed to establish the optimum
transplantation process [128]. However, in the absence of extensive basic research and
clinical trials, this therapeutic idea can be only a new direction. There is still a long way to
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go until gene editing becomes a safe, effective and controllable tool for treatment. Ethical
issues also limit the use of gene editing technologies to some extent. In conclusion, there
is still much space to be explored in both gene editing and spermatogenesis research.
However, it is undeniable that gene editing already holds great promise for the research
and treatment of human infertility and the acceleration of animal breeding processes.
Meanwhile, in-depth research on spermatogenesis will provide new strategies for the
diagnosis and treatment of male reproductive system diseases and the conservation of rare
and endangered animal germplasm resources.
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