
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(7):3870-3884 | https://dx.doi.org/10.21037/jtd-23-906

Original Article

Analysis of the role of glucose metabolism-related genes in 
dilated cardiomyopathy based on bioinformatics

Keping Chen1, Yan Shi2, Haijie Zhu1

1Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, China; 2Operating Room, Affiliated Hospital of Jiangnan University, 

Wuxi, China

Contributions: (I) Conception and design: K Chen; (II) Administrative support: H Zhu; (III) Provision of study materials or patients: Y Shi; (IV) 

Collection and assembly of data: H Zhu; (V) Data analysis and interpretation: K Chen; (VI) Manuscript writing: All authors; (VII) Final approval of 

manuscript: All authors.

Correspondence to: Haijie Zhu, MM. Department of Emergency, Affiliated Hospital of Jiangnan University, Binhu District, 1000 Hefeng Road, Wuxi 

214000, China. Email: zhuhj19880910@163.com.

Background: Dilated cardiomyopathy (DCM) is a prevalent condition with diverse etiologies, including 
viral infection, autoimmune response, and genetic factors. Despite the crucial role of energy metabolism in 
cardiac function, therapeutic targets for key genes in DCM’s energy metabolism remain scarce.
Methods: Our study employed the GSE79962 and GSE42955 datasets from the Gene Expression Omnibus 
(GEO) database for myocardial tissue sample collection and target gene identification via differential gene 
expression screening. Using various R packages, GSEA software, and the STRING database, we conducted 
data analysis, gene set enrichment, and protein-protein interaction predictions. The least absolute shrinkage 
and selection operator (LASSO) and Support Vector Machine (SVM) algorithms aided in feature gene 
selection, while the predictive model’s efficiency was evaluated via the receiver operating characteristic (ROC) 
curve analysis. We used the non-negative matrix factorization (NMF) method for molecular typing and 
the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm for 
predicting immune cell infiltration.
Results: The DLAT and LDHA genes may regulate the immune microenvironment of DCM by 
influencing activated dendritic cells, activated mast cells, and M0 macrophages, respectively. The BPGM, 
DLAT, PGM2, ADH1A, ADH1C, LDHA, and PFKM genes may regulate m6A methylation in DCM by 
affecting the ZC3H13, ALKBH5, RBMX, HNRNPC, METTL3, and YTHDC1 genes. Further regulatory 
mechanism analysis suggested that PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, and ADH1C could 
be involved in the development of cardiomyopathy by regulating the Toll-like receptor signaling pathway.
Conclusions: PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, and ADH1C may serve as potential 
targets for guiding the diagnosis, treatment, and follow-up of DCM.
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Introduction

Dilated cardiomyopathy (DCM) is an idiopathic primary 
myocardial disease. It is characterized by the enlargement 
of the left or right ventricle or both, accompanied by 
impaired ventricular systolic function. It may or may not 

be accompanied by congestive heart failure (1). Despite 
extensive research efforts, there are still significant 
knowledge gaps and limitations in our understanding of 
DCM, particularly regarding its underlying mechanisms 
and the lack of clinical indicators for diagnosis, prevention, 
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and monitoring (2). Currently, there is no specific therapy 
for DCM, and most patients are treated with beta blockers, 
ACE inhibitors, mineralocorticoid receptor antagonists, 
and SLG2 inhibitors to slow disease progression. However, 
the long-term prognosis remains poor with these 
treatments. At present, there is insufficient research into 
the pathogenesis of DCM, and there is also a lack of clinical 
indicators for the diagnosis, prevention, and monitoring 
of DCM. At present, there is insufficient research on the 
pathogenesis of DCM, and there is also a lack of clinical 
indicators for the diagnosis, prevention, and monitoring 
of DCM (3). Therefore, there is an urgent need to explore 
novel approaches to improve our understanding of DCM 
pathogenesis and identify potential molecular markers that 
can aid in diagnosis and guide effective treatment strategies.

The heart is a highly energy-consuming organ, which 
needs to consume a large amount of adenosine triphosphate 
(ATP) every day to complete cardiac pump function. Energy 
metabolism is mainly divided into glucose metabolism and 
fatty acid metabolism (4,5). Fatty acid oxidation accounts for 
about 70% of ATP produced by cardiac aerobic metabolism. 
However, the ability of the heart to synthesize and store 
fatty acids is limited, and its fatty acid supply mainly comes 
from plasma free fatty acids (FFA), lipoprotein lipase (LPL), 
and endogenous triacylglycerol (TAG). The glycogen 

reserve in the heart is low, and the glucose in glucose 
metabolism mainly comes from exogenous glucose. Glucose 
enters the cell via the insulin-dependent glucose transporter 
1/4 (GLUT1/4) on the surface of cardiomyocytes. 
Theoretically, disorders of myocardial energy metabolism 
occur to varying degrees in all types of cardiac disease, but 
whether alterations in myocardial energy metabolism led to 
corresponding cardiac disease and whether disorders of fatty 
acid metabolism or glucose metabolism alone correspond to 
a specific type of cardiac disease need to be further explored. 
At present, study has shown that the key genes of glycolysis 
may be useful indicators to predict the prognosis of patients 
with liver cancer and guide clinical treatment (6).

Advances in bioinformatics technology and the 
availability of vast amounts of information on disease 
characteristics have given researchers a new framework 
for understanding the biology of diseases in the dimension 
of big data. Increasingly sophisticated machine learning 
algorithms, e.g., the non-negative matrix factorization 
(NMF) algorithm (7), least absolute shrinkage and selection 
operator (LASSO) regression algorithm (8), and the SVM 
method (9). These algorithms have been widely used in 
the screening, diagnosis, prognosis, and molecular target 
screening of a variety of diseases (10-12). The application of 
these bioinformatics techniques and machine algorithms can 
select the relevant factors in disease prevention, diagnosis, 
treatment, and monitoring using massive data sets, which 
greatly improves the efficiency of research on diseases (13). 
Previous study has reported the use of Gene Expression 
Omnibus (GEO) database combined with weighted gene 
coexpression network analysis (WGCNA) and the cell-
type identification by estimating relative subsets of RNA 
transcripts (CIBERSORT) method to reveal regulatory 
relationships in DCM (14). Study has shown that miR-129-
5p may regulate DCM by targeting ASPORIN gene through 
extracellular matrix (ECM) signaling pathway. Macrophage 
infiltration may participate in ECM remodeling and 
eventually lead to DCM (15).

In light of the aforementioned gaps in our understanding 
of DCM and the potential of glycolytic genes as molecular 
markers, this study aims to investigate the role of glycolysis 
in the occurrence and development of DCM and its 
underlying molecular regulatory mechanisms. Specifically, 
we will focus on eight signature glycolytic genes (PFKM, 
DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A,  and 
ADH1C) to explore their potential clinical significance 
in predicting DCM prognosis and guiding treatment 
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strategies.
By employing a combination of bioinformatics 

technology and machine algorithms, our study seeks to 
contribute to a better understanding of DCM pathogenesis 
and provide insights into the development of effective 
diagnostic and therapeutic approaches. We present 
this article in accordance with the STREGA reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-906/rc).

Methods

Data sources

The GSE79962 (16) and GSE42955 (17) datasets were 
downloaded from the Gene Expression Omnibus (GEO) 
database. GSE42955 included 5 normal myocardial tissues 
and 12 DCM tissues. GSE79962 contained 11 normal 
myocardial tissues and 9 DCM tissues. The normal tissues 
and DCM samples of the 2 data sets were corrected in 
batches by the SVA program package (Bioconductor) 
and merged (18) to obtain a merged GEO-GSE79962 
+ GSE42955 (Merge) data set for subsequent analysis, 
including 16 normal myocardial tissues and 21 DCM tissues. 
A total of 23,306 genes were finally annotated in the GEO-
Merge data set. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Differentially expressed gene (DEGs) screening

DEGs were screened in normal myocardial tissue and DCM 
tissue with the “limma” package in R software (The R 
Foundation for Statistical Computing), and the DEGs were 
defined with |log2FC (fold change)| >0.05 and P<0.05 as 
the screening criteria. The “ggplot2” software package in 
R was used to draw the volcano map of the DEGs of the 
GEO-GSE79962 + GSE42955 data set, and the “pheatmap” 
package of the R language was used to draw the heat map of 
the DEGs of the GEO-GSE79962 + GSE42955 data set.

Protein-protein interaction network and Gene Set 
Enrichment Analysis (GSEA)

GSEA software (version 4.2.2, Broad Institute, USA) was 
used to perform GSEA for all differential genes between 
DCM tissues and normal controls in the GEO-GSE79962 
+ GSE42955 data set. Biocarta Glycolysis Pathway, Go 
Glycolytic Process, Hallmark Glycolysis, Kegg Glycolysis 

Gluconeogenesis, and Reactome Glycolysis from the 
Molecular Signatures Database (MSigDB) were used as 
reference gene sets for Gene Ontology (GO) analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis in visual analysis. The Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) 
online database was used to predict the differentially 
expressed protein interactions, and the effective binding 
fraction was set to >0.7. 

Calculation and screening of the characteristic glycolytic 
genes

In this study, the LASSO algorithm and SVM algorithm 
were combined to preselect the features of glycolytic DEGs, 
the receiver operating characteristic (ROC) curve of the 
model was drawn, and the area under the ROC curve (AUC) 
was calculated to evaluate the prediction efficiency of the 
model. The “Glmnet” package in R was used for LASSO 
regression analysis of the characteristic DEGs (19,20). 
LASSO combines feature selection and model building by 
adding penalty constraints to the algorithm. In the case 
of α=1, the appropriate λ value was selected through 10-
fold cross validation. In the 10-fold cross validation, the 
gene combination with the smallest root-mean-square 
error and the highest accuracy was selected as the best gene 
combination (21). The recursive feature elimination (RFE) 
method was used to optimize and screen the feature set. 
The SVM method (9) was used to train the model, along 
with the linear fitting method. The 5-fold cross validation 
method (22) was used to randomly divide the samples into 
5 parts: 4 parts were used as training sets to build SVM 
models, and 1 part was used for prediction sets to calculate 
accuracy. The above procedure was repeated 5 times until 
each forecast set was predicted only once as a forecast set. 

Molecular typing of DCM samples

Non-negative matrix factorization (NMF) aims to 
decompose a nonnegative matrix into 2 nonnegative 
matrices (23), which has good interpretability and numerical 
results. This method has been widely used to classify 
gene expression profile data (24,25). In this study, the 
NMF molecular typing model was constructed using the 
“Consensus ClusterPlus” analysis package in R. The NMF 
hierarchical clustering was performed using the adjusted 
and unified data set, with the number of clusters k values 
ranging from 2 to 9 (26).

https://jtd.amegroups.com/article/view/10.21037/jtd-23-906/rc
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Predicting different percentages of immune cell infiltration 
in DCM samples

The CIBERSORT algorithm is a machine learning 
method based on linear support vector regression (SVR) 
and is highly robust to noise (27). The CIBERSORT 
deconvolution algorithm was used to analyze the infiltration 
of immune cells as well as the simulation calculation of the 
transcriptional feature matrix including 22 kinds of immune 
cells such as T cells, B cells, and natural killer (NK) cells (27).  
For accurate results, the number of simulations was set at 
1,000, and the Kruskal-Wallis rank sum test was used for 
subsequent analysis of data at P<0.05.

To analyze the various types of immune cell correlations, 
Pearson correlation coefficients between different immune 
cells were calculated in the data of plausible samples 
screened by the CIBERSORT deconvolution algorithm 
on the basis of P<0.05, and the rank sum test was used to 
compare the differences between the two groups.

Statistical analysis

The data from GEO are merged using Perl software (Perl 
Foundation, USA). GSEA analysis with false discovery rate 
(FDR) <0.1, standardized enrichment fraction (normalized 
enrichment score, NES) >1 and P<0.05 for significant 
differences. Other statistical methods are described in the 
above materials and methods.

Results

Glycolysis involvement in the development of DCM

In order to clarify the role of glycolysis in DCM, the GEO-
GSE79962 + GSE42955 data set was used to verify the 
enrichment degree of glycolytic genes in DCM. Our study 
has shown that, compared with normal myocardial tissues, 
glycolysis-related pathways were downregulated in DCM 
tissues (Figure 1A), and glycolysis gluconeogenesis was most 
significantly decreased (Figure 1B). These results suggested 
that glycolysis gluconeogenesis might be involved in the 
development of DCM.

Subsequently, in order to further investigate the role 
of glycolysis in DCM, 62 genes related to glycolysis 
gluconeogenesis signaling pathway were extracted from the 
MSigDB website (Table S1). Firstly, the STRING website 
was used to construct a protein-protein interaction network 

for these 62 DEGs. The study showed that GPI, ALDOA, 
ALDOB, ALDOC, PKLR, PKM, TPI1, ENO1, LDHA, and 
ENO2 were the key node genes (Figure 1C,1D). Based on 
this, our conclusions suggest that glycolysis decreases in 
DCM, which may be related to the progression of DCM.

Identification and analysis of DEGs in glycolysis

To clarify the differentially expressed genes of glycolysis 
in DCM, 62 genes related to Glycolysis Gluconeogenesis 
signaling pathway extracted from MSigDB website were 
used for differentially expressed gene analysis by applying 
GEO-Merge dataset, with |logFC| >0.5 and P<0.05 
as the differentially expressed gene screening criteria. 
The study showed that 169 genes were differentially 
expressed in DCM compared with normal cardiac tissue. 
Through the intersection of genes related to the glycolysis 
gluconeogenesis signaling pathway, 11 glycolytic DEGs 
were obtained in this study, and all had a low expression in 
DCM. These were PFKM, DLAT, ACSS2, PKLR, ENO1, 
PGM2, LDHA, BPGM, ADH1A, ADH1C, and ADH1B 
genes (Figure 2A,2B). Based on this, 11 glycolytic-related 
genes that may play an important role in the development 
of DCM were screened by bioinformatics analysis.

Screening of DEGs in glycolysis

To further focus on factors with clinical translational 
potential, we performed signature gene analysis on these 
11 glycolytic-related genes. We combined the LASSO 
algorithm and SVM algorithm to analyze these 11 
glycolytic-related genes. Results showed that the LASSO 
algorithm obtained 8 candidate feature genes (PFKM, 
DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, and 
ADH1C) (Figure 3A). The SVM algorithm obtained 11 
candidate feature genes (PFKM, DLAT, ACSS2, PKLR, 
ENO1, PGM2, LDHA, BPGM, ADH1A, ADH1C, and 
ADH1B genes) (Figure 3B). The intersection of the  
2 algorithms was conducted to obtain 8 candidate feature 
genes (Figure 3C), which were the PFKM, DLAT, PKLR, 
PGM2, LDHA, BPGM, ADH1A, and ADH1C genes. 
Further AUC analysis of these 8 alternative feature factors 
indicated AUC values for PFKM, DLAT, PKLR, PGM2, 
LDHA, BPGM, ADH1A, and ADH1C of 0.700, 0.777, 
0.711, 0.711, 0.741, 0.783, 0.839, and 0.810, respectively 
(Figure 3D). Based on this, we focused on 8 genes from the 

https://cdn.amegroups.cn/static/public/JTD-23-906-Supplementary.pdf
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11 glycolytic genes.

Establishment of molecular classification of DCM

Traditional disease diagnosis relies on pathology (28); 
however, pathology has difficulty in discerning the 
biological nature of tumors. Different diseases show 
different biological characteristics, which may be related to 

the different molecular composition and expression of the 
lesions. New disease typing methods based on molecular 
typing can provide global characteristics of the disease 
gene level, greatly deepen our understanding of molecular 
pathological information, and assume an important role in 
clinical practice. Therefore, in order to verify whether the 
8 feature genes obtained by the above-described screening 
had clinical transformation potential, we used these 8 
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feature genes combined with the GEO-Merge dataset to 
study the molecular typing of DCM.

According to the enrichment scores of 8 genes, we 
used K-means consistent clustering to cluster 21 samples 
of DCM. However, stable clustering results could not be 
obtained when k=2−9 (Figure 4A-4D); that is, samples of 
DCM could not be classified based on these 8 characteristic 
genes, suggesting that these 8 genes do not have a clinical 
staging effect, and their mechanism of action needs to be 
further studied.

Effect of the LDHA and ADH1C on the immune 
microenvironment of DCM

We used the GEO-Merge dataset to compare immune 
cell infiltration in normal and DCM tissues. Compared 
with normal myocardial tissues, regulatory T cells (Tregs), 
activated dendritic cells, and activated mast cells were 

downregulated in DCM tissues (Figure 5A, red), while M0 
macrophages were upregulated in DCM tissues (Figure 5A, 
blue). These results suggest that activated dendritic cells, 
activated mast cells, and M0 macrophages may be involved 
in the immune injury of DCM.

Next, the 8 characteristic glycolytic genes were compared 
with the immune cells (Tregs, activated dendritic cells, 
activated mast cells, and M0 macrophages) for correlation 
analysis. The results showed that DLAT was moderately 
positively correlated with activated dendritic cells (R=0.41; 
Figure 5B), while M0 macrophages were moderately 
positively correlated with DLAT (R=0.40; Figure 5C). 
There was a moderate positive correlation between LDHA 
and activated mast cells (R=0.47; Figure 5D). Moreover, 
our results also suggested that the LDHA and ADH1C 
genes were correlated with the presence of other immune 
cells to varying degrees (Figure 5E). These data suggest 
that DLAT and LDHA may influence the progression of 
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Figure 3 Screening of differentially expressed genes in glycolysis with a machine algorithm. (A) Eight glycolytic differentially expressed 
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DCM through their expression correlation with activated 
dendritic cells, activated mast cells, and M0 macrophages. 
However, the association here does not imply causality, and 
further research is required to confirm the role of DLAT 
and LDHA in regulating these immune cell subpopulations.

BPGM, DLAT, PGM2, ADH1A, ADH1C, LDHA, and 
PFKM genes affected m6A methylation in DCM

First, we used the GEO-Merge data set to compare the 
differential expression of m6A methylation-related genes 
between normal myocardial tissues and DCM tissues. Our 
study showed that METTL3, ZC3H13, YTHDC1, HNRNPC, 
RBMX, and ALKBH5 were differentially expressed in 
DCM tissues compared with normal myocardial tissues  

(Figure 6A). The expressions of METTL3, ZC3H13, 
YTHDC1, and HNRNPC genes were significantly decreased 
in DCM, while the expressions of RBMX and ALKBH5 
were significantly increased in DCM (Figure 6B). 

Further correlation analysis verified that BPGM, DLAT, 
and PGM2 were moderately negatively correlated with 
the ZC3H13 gene (R<−0.4) (Figure 6C); the LDHA and 
HNRNPC genes were moderately negatively correlated 
(R<−0.4) (Figure 6C); ADH1C was moderately negatively 
correlated with the METTL3 gene (R<−0.4) (Figure 6C). 
Similarly, BPGM was moderately positively correlated 
with the ALKBH5 gene (R>0.4) (Figure 6D), while BPGM 
and PFKM were moderately positively correlated with the 
RBMX gene (R>0.4) (Figure 6D). These results suggest 
that the BPGM, DLAT, PGM2, ADH1A, ADH1C, LDHA, 

A B

C D

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.0

0.8

0.6

0.4

0.2

0.0

2        3        4         5        6        7        8        9

R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r 
C

D
F 

cu
rv

e

C
D

F

0.0         0.2         0.4         0.6         0.8         1.0

2
3
4
5
6
7
8
9

1
2
3

1
2

Consensus matrix k=2

Delta area Consensus CDF

K Consensus index

Consensus matrix k=3

Figure 4 K-means consensus clustering based on the 8 glycolytic differentially expressed genes. (A) Consistency matrix when k=2. (B) 
Consistency matrix when k=3. (C) Cumulative distribution function when k=2–9. (D) Plot of correlation coefficient as a function of K value. 
CDF, cumulative distribution function.



Chen et al. Glucose metabolism genes in DCM3878

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(7):3870-3884 | https://dx.doi.org/10.21037/jtd-23-906

A

B C D

E

0.4

0.3

0.2

0.1

0.0

0.15

0.10

0.05

0.00

0.04

0.03

0.02

0.01

0.00

−0.01

0.075

0.050

0.025

0.000

0.15

0.10

0.05

0.00

0.03

0.02

0.01

0.00

−0.01

0.10

0.05

0.00

0.08

0.06

0.04

0.02

0.00

0.20

0.15

0.10

0.05

0.00

5.0            5.4            5.8           6.2 5.0           5.4            5.8           6.2 10.5            11.0            11.5            12.0

10.5            11.0            11.5            12.0

10.5            11.0            11.5            12.0 3.5             4.0              4.5

10.5            11.0            11.5           12.0 10.5            11.0            11.5            12.0

DLAT expression

R=0.41, P=0.013

P=0.504
P=0.820

B ce
lls

 na
ive

B ce
lls

 m
em

or
y

Plas
m

a c
ell

s

T 
ce

lls
 C

D8

T 
ce

lls
 C

D4 n
aiv

e

NK ce
lls

 re
sti

ng

T 
ce

lls
 C

D4 m
em

or
y r

es
tin

g

NK ce
lls

 ac
tiv

at
ed

Den
drit

ic 
ce

lls
 re

sti
ng

Den
drit

ic 
ce

lls
 ac

tiv
at

ed

T 
ce

lls
 C

D4 m
em

or
y a

ct
iva

te
d

M
on

oc
yte

s

M
as

t c
ell

s r
es

tin
g

T 
ce

lls
 fo

llic
ula

r h
elp

er

M
ac

ro
pha

ge
s M

0

M
as

t c
ell

s a
ct

iva
te

d

T 
ce

lls
 re

gu
lat

or
y (

Tre
gs

)

M
ac

ro
pha

ge
s M

1

Eos
ino

phil
s

T 
ce

lls
 g

am
m

a d
elt

a

M
ac

ro
pha

ge
s M

2

Neu
tro

phil
s

P=0.456

P=0.294

Fr
ac

tio
n

D
en

dr
iti

c 
ce

lls
 a

ct
iv

at
ed

M
ac

ro
ph

ag
es

 M
O

M
as

t e
lls

 a
ct

iv
at

ed
T 

ce
lls

 C
D

4 
m

em
or

y 
re

st
in

g

N
K

 c
el

ls
 re

st
in

g
M

ac
ro

ph
ag

es
 M

2

M
on

oc
yt

es
T 

ce
lls

 fo
lli

cu
la

r 
he

lp
er

P=0.964

P=0.535

P=0.654

P=0.724

P=0.221

P=0.360

P=0.794

P=0.827

P=0.005

P=0.241
P=0.294

P=0.751

P=0.685

P=0.876

P=0.761

Con
DCM

P=0.034

P=0.039

P=0.046

R=0.43, P=0.0079

R=−0.42, P=0.0089 R=−0.42, P=0.0095

R=0.44, P=0.0062 R=0.49, P=0.0021

R=0.40, P=0.017 R=0.47, P=0.003

DLAT expression LDHA expression

LDHA expression

LDHA expression ADH1C expression

LDHA expression LDHA expression

Figure 5 Correlation analysis between the PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, and ADH1C genes and immune cells. (A) 
Differential analysis of immune cells in the GEO-GSE79962 + GSE42955 data set (normal myocardial tissue vs. dilated cardiomyopathy 
tissue). (B) There was a moderate positive correlation between DLAT and activated dendritic cells (R=0.41). (C) M0 macrophages were 
moderately positively correlated with DLAT. (D) There was a moderate positive correlation between LDHA and activated mast cells (R=0.47). 
(E) Correlation analysis of the LDHA and ADH1C genes with other immune cells. Con, Control group; DCM, dilated cardiomyopathy.



Journal of Thoracic Disease, Vol 15, No 7 July 2023 3879

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(7):3870-3884 | https://dx.doi.org/10.21037/jtd-23-906

A

B

C D

2
1
0
−1
−2

Type

** *** ** *** *

Type
Con
DCM

Type Con DCM

G
en

e 
ex

pr
es

si
on

10

8

6

4

0.1
0.2
0.3
0.4
0.5

abs (cor) abs (cor)

P value P value

0.1
0.2
0.3
0.4
0.5

0
0.2
0.4
0.6
0.8

1

−0.6  −0.4   −0.2    0.0     0.2     0.4     0.6 
Correlation coefficient Correlation coefficient

−0.6   −0.4   −0.2    0.0     0.2     0.4     0.6 

0
0.2
0.4
0.6
0.8

1

0.015

0.015

0.004

0.003

0.003

0.002

0.001

ADH1A

PGM2

BPGM

DLAT

PGM2

ADH1C

LDHA

PFKM

BPGM

BPGM

DLAT

RBMX

RBMX

ALKBH5

ALKBH5

METTL3

YTHDC1

ZC3H13

ZC3H13

ZC3H13

YTHDC1

HNRNPC

<0.001

<0.001

0.010

0.029

RBMX**

ALKBH5**

ZC3H13***

HNRNPC*

METTL3**

YTHDC1*

M
ETT

L3

M
ETT

L1
4

M
ETT

L1
6

YTH
DF1

IG
FB

P2

RBM
15

B
FM

R1

IG
F2

BP1

ZC3H
13

YTH
DF3

RBM
X

YTH
DC1

HNRNPA
2B

1

ALK
BH5

W
TA

P

YTH
DF2

IG
FB

P3

CBLL
1

LR
PPRC

FT
O

RBM
15

HNRNPC

ELA
VL1

YTH
DC2

IG
FB

P1

Figure 6 Correlation analysis between the PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, and ADH1C genes and m6A methylation. 
(A) Heat map analysis of m6A-methylated differentially expressed genes in the GEO-GSE79962 + GSE42955 data set (normal myocardial 
tissue vs. dilated cardiomyopathy tissue). (B) Histogram analysis of m6A-methylated differentially expressed genes in the GEO-GSE79962 
+ GSE42955 data set (normal myocardial tissue vs. dilated cardiomyopathy tissue). (C,D) Correlation analysis of the PFKM, DLAT, PGM2, 
LDHA, BPGM, ADH1A, and ADH1C genes with the m6A methylation-related genes. (C) Negative correlation. (D) Positive correlation. *, 
P<0.05; **, P<0.01; ***, P<0.001. Con, Control group; DCM, dilated cardiomyopathy.



Chen et al. Glucose metabolism genes in DCM3880

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(7):3870-3884 | https://dx.doi.org/10.21037/jtd-23-906

and PFKM genes have interactions with m6A methylation-
related genes, and such interactions may indirectly influence 
the m6A methylation levels in DCM, thereby affecting the 
progression of DCM. However, further research is needed 
to investigate the precise relationship between these genes 
and m6A methylation.

Identification and verification of the regulatory 
mechanisms of 8 characteristic glycolytic genes

We used the GEO-Merge data set to study the regulatory 
mechanism of 8 characteristic glycolytic genes in DCM. 
First, we performed GSEA analysis on these 8 genes, 
which were revealed to be enriched in 366 pathways 
(Table S2). Furthermore, after the enrichment pathways 

of each gene were intersected, we found Toll-like receptor 
signaling pathway, complement and coagulation cascades, 
cytokine receptor interaction, FC gamma R-Mediated 
phagocytosis, hematopoietic cell lineage, and systemic 
lupus erythematosus to be the common pathways of the 
8 characteristic genes (Figure 7A, down). This suggests 
that these signaling pathways may be involved in the 
development of cardiomyopathy, and targeting key factors 
in these pathways may slow down the progression of DCM.

Next, we focused on the Toll-like receptor signaling 
pathway, because there is little research on the relationship 
between the Toll-like receptor signaling pathway and 
DCM, and it may thus be a therapeutic target for DCM. 
Therefore, in order to find a clear target and regulatory 
mechanism, we analyzed the effects of the PFKM, DLAT, 
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PKLR, PGM2, LDHA, BPGM, ADH1A, and ADH1C 
genes on TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7 
and TLR8. The results showed that TLR1 and TLR8 were 
each correlated with 5 glycolytic genes (Figure 7B); TLR2, 
TLR4, and TLR6 were each correlated with 4 glycolytic 
characteristic genes (Figure 7B); and TLR3, TLR5, and 
TLR7 were each correlated with 2 glycolytic characteristic 
genes (Figure 7B). Based on the above, our data revealed 
that the PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, 
ADH1A, and ADH1C genes may be involved in the 
development of DCM by regulating the Toll-like receptor 
signaling pathway.

Discussion

The treatment of DCM primarily involves comprehensive 
management, which includes the combined application of 
medication, surgical interventions, cardiac rehabilitation, 
lifestyle management, and supportive therapies (29). 
Although this can improve the patient’s condition, there are 
still problems such as poor prognosis, which may be caused 
by its onset. Due to insufficient molecular mechanism 
research and a lack of molecular markers for clinical 
diagnosis, treatment, and prognosis, effective monitoring 
and intervention in the early stage of the disease remains 
elusive. Therefore, it is extremely important to identify 
the early diagnostic biomarkers that can help detect and 
possibly prevent the occurrence of DCM (30,31). 

Cardiac  diseases  are  c losely  re lated to energy 
metabolism, and changes in myocardial energy metabolism 
occur in various cardiac diseases, such as myocardial 
hypertrophy (32,33), ischemic heart disease (34,35), diabetes  
mellitus (36), and heart failure (37). Theoretically speaking, 
various degrees of myocardial energy metabolism disorders 
may occur in any type of heart disease, but whether the 
changes in myocardial energy metabolism correspond to a 
given type of heart disease still needs to be further explored. 
Therefore, in-depth study of the relationship between 
changes in myocardial energy metabolism and myocardial 
diseases is conducive to providing new therapeutic concepts 
for myocardial diseases from the perspective of energy 
metabolism.

At present, there is literature supporting the notion 
that serum metabolites can be used as biomarkers in 
DCM. In one study, researchers found that metabolites 
including lactate, succinate, and malate were elevated in 
patients with DCM (38). In another study, researchers 
measured 149 metabolites in 273 plasma and urine samples 

from patients with DCM at different disease stages and 
found that acylcarnitines, sialic acids, and glutamate were 
associated with DCM severity (39). However, human 
DCM metabolomics study have only been performed on 
biological fluids, such as serum, plasma, or urine, in part 
because blood is noninvasive and readily available, but the 
local biochemical information of DCM cannot be easily 
ascertained. Therefore, tissue analysis from DCM lesions 
may be the most powerful method to study the pathogenesis 
of DCM, as this can obtain clear biochemical information 
about the disease mechanism (40).

Based on this, this study took glucose metabolism and 
the DCM gene chip as the entry point. We identified 
the low expression of glycolysis in DCM tissues through 
GSEA, which suggested that the glycolysis process was 
inhibited in DCM tissues. Then, using the GEOGSE79962 
+ GSE42955 data set, we found 11 differentially expressed 
glycolytic-related genes (all genes were downregulated) in 
DCM tissues, indicating potential roles of these genes in 
the pathogenesis of DCM. However, these findings need 
to be validated through further experimental research and 
longitudinal data.

Based on this, this study took glucose metabolism and 
the DCM gene chip as the entry point. We identified 
the low expression of glycolysis in DCM tissues through 
GSEA, which suggested that the glycolysis process was 
inhibited in DCM tissues. Then, using the GEOGSE79962 
+ GSE42955 dataset, we found 11 differentially expressed 
glycolytic-related genes (all genes were downregulated) 
DCM tissues, suggesting that these genes may be involved 
in the regulation of the progression of DCM and thus may 
be used as new targets to guide clinical diagnosis, treatment, 
and prognosis.

In order to screen new targets of DCM, the LASSO 
algorithm and SVM algorithm were used to analyze these 
11 glycolytic-related genes. This had the advantage of 
increasing the efficiency of target screening. Through the 
machine algorithm, 8 characteristic glycolytic genes with 
high correlation with DCM and differential expression in 
DCM were finally screened in this study. Moreover, further 
analysis of the diagnostic effect of these 8 characteristic 
genes also reached above 0.7, indicating that they have a 
good clinical translation potential.

In the next step, in order to have a more intuitive 
understanding of the clinical significance of these 8 
characteristic factors and to analyze how these 8 characteristic 
factors affect DCM, we conducted a series of analyses.

First, we used these 8 characteristic factors to perform 
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molecular typing of DCM (NMF algorithm). However, this 
study showed that DCM could not be typed molecularly 
based on the expression levels of these 8 genes, which 
indicated the limitations of taking the 8 characteristic 
factors as a whole to conduct a diagnosis of DCM. 

Second, our study analyzed the immune infiltration 
pattern of DCM. By utilizing bioinformatics tools such 
as CIBERSORT, we assessed the relative proportions of 
different types of immune cells in the myocardial tissue of 
DCM patients (15). We found that immune factors may 
be involved in the occurrence and development of DCM 
and DLAT and LDHA may affect the course of DCM by 
regulating the distribution of immune cells. 

By analyzing the immune infiltration characteristics 
of DCM, we can gain a deeper understanding of the 
disease’s pathogenesis and progression. This information 
may help guide future research and development of 
immunotherapeutic strategies for DCM. For instance, 
modulating immune system activity or designing drugs 
targeting specific immune cell types may bring new 
breakthroughs in the treatment of DCM.

Third, studies have shown that m6A methylation plays 
an important regulatory role in heart failure (41,42), 
myocardial hypertrophy (43,44), atherosclerosis (45), 
ischemic cardiomyopathy (46,47), and other cardiovascular 
diseases. In this study, we applied the GEO-Merge dataset 
to compare the differential expression of m6A methylation-
related genes in normal and DCM tissues. It was found that 
METTL3, ZC3H13, YTHDC1, HNRNPC and RBMX genes 
were significantly decreased in expression in DCM; while 
RBMX and ALKBH5 were significantly increased in DCM, 
suggesting that they may be involved in the progression of 
DCM. Next, in this study, the correlation between the 8 
characteristic factors and m6A methylation-related genes 
was analyzed. The conclusion of our study showed that 7 
glycolytic characteristic factors were correlated with 6 m6A 
methylation-related genes, which also indicated that these 
characteristic factors could affect the expression of m6A 
methylation in local tissues of DCM.

In order to explain the regulatory mechanism of the 8 
characteristic glycolytic genes, enrichment analysis of the 
selected 8 key genes was carried out. GSEA analysis method 
avoids the problem of threshold setting in the traditional 
enrichment analysis method, and the whole genome data 
are included in enrichment analysis. In this study, 8 key 
genes were enriched in 6 common pathways. Furthermore, 
we focused on the Toll-like receptor signaling pathway 
because its mechanism of action in DCM remains poorly 

explained. Through correlation analysis with key factors of 
Toll-like receptor signaling pathway, our data revealed that 
the PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, 
and ADH1C genes may be involved in the development 
of cardiomyopathy by regulating the Toll-like receptor 
signaling pathway.

The results of this study have the potential to aid in the 
development of therapeutic strategies against DCM. Firstly, 
we identified core genes closely associated with DCM, 
which may serve as potential therapeutic targets. By gaining 
a deeper understanding of the functions and interactions of 
these genes, we can explore drugs or interventions that may 
modulate these genes, thereby providing new strategies for 
the treatment of DCM.

Additionally, this study lays the foundation for future 
clinical research. For instance, in the development of new 
drugs targeting DCM, the identified core genes can serve 
as biomarkers for evaluating drug efficacy. By monitoring 
changes in the expression of these core genes before and 
after drug treatment, we can assess a patient’s response to 
therapy, enabling personalized treatment.

Conclusions

In this study, we identified 8 signature glycolytic genes 
in DCM and elucidated their functions and mechanisms. 
The genes PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, 
ADH1A, and ADH1C appear to be novel biomarkers of 
DCM. Future studies are needed to elucidate the biological 
processes involved in the regulation of these glycolytic 
signature genes and their respective roles in the initiation 
and progression of DCM.
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