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Here we describe single-cell corrected long-read sequencing 
(scCOLOR-seq), which enables error correction of barcode 
and unique molecular identifier oligonucleotide sequences 
and permits standalone cDNA nanopore sequencing of single 
cells. Barcodes and unique molecular identifiers are synthe-
sized using dimeric nucleotide building blocks that allow error 
detection. We illustrate the use of the method for evaluating 
barcode assignment accuracy, differential isoform usage in 
myeloma cell lines, and fusion transcript detection in a sar-
coma cell line.

Long-read sequencing technologies such as PacBio 
single-molecule real-time (SMRT) sequencing1 or Oxford Nanopore 
sequencing2 enable the sequencing of full-length transcripts. The 
application of PacBio SMRT to single-cell sequencing has been 
hindered by a low sequencing capacity (four million reads per flow 
cell), which means that a single run can report on only 40–133 cells 
at a comparable read depth to short-read approaches, or on thou-
sands of cells by sacrificing quantitative information3. Zeng et al.4 
have improved the platform for single-cell sequencing workflows by 
concatenating multiple full-length cDNAs into a single insert. This 
approach led to a return of 10 million reads from a single SMRT cell, 
providing eight times more data output than the standard PacBio 
sequencing protocol. Alternatively, nanopore sequencing provides 
up to 250 million reads per PromethION flow cell, but its main draw-
back is its high error rate compared with both PacBio long-read and 
Illumina short-read sequencing (5–15% compared with less than 
1%)5. To overcome the low base-calling accuracy of Oxford Nanopore 
sequencing, here we describe single-cell corrected long-read 
sequencing (scCOLOR-seq), in which the barcode and unique 
molecular identifier (UMI) regions of the oligonucleotide-barcoded 
RNA-capture microbeads are synthesized using homodimeric nucle-
oside phosphoramidite building blocks (Supplementary Fig. 1),  
which provides a means for sequencing-error detection and correc-
tion of the barcode and UMI (Fig. 1a).

To correctly assign barcodes to cells, a computational strategy 
was developed in which barcodes were identified in a two-pass 
assignment method (Fig. 1b and Supplementary Fig. 2). First, bar-
codes without errors were identified on the basis of nucleotide pair 
complementarity across the full length of the barcode. Next, these 
accurate barcodes were used as a guide to correct the remaining 
erroneous barcodes. Using simulated data, we show that this strat-
egy is capable of correcting erroneous barcodes with a high sequenc-
ing error rate, with 96% of barcodes recovered with a barcode  

sequencing error rate of up to 10% (Fig. 1c). In single-cell sequenc-
ing, UMIs allow the deduplication of single transcripts that are 
detected multiple times in sequencing, arising from PCR copies pro-
duced during library preparation. The directional network-based 
method first proposed by UMI-tools6 was modified to correct for 
UMI sequence duplication (Fig. 1d and Supplementary Fig. 3). 
Using simulated data, we show that the dimer-synthesized UMIs 
can be used to deduplicate UMIs even with a sequencing error rate 
above 10% (Fig. 1e,f and Supplementary Fig. 4).

scCOLOR-seq was validated using human HEK293T and mouse 
3T3 single-cell Drop-seq libraries from approximately 1,200 cells (at 
a 50:50 mouse:human cell ratio), followed by Illumina short-read 
sequencing. Overall, 68% of all reads show complete dinucleotide 
block complementarity across the full barcode sequence. This 
suggests that the theoretical base-calling accuracy for the bar-
code should be 98.4%, which aligns with the reported accuracy of 
Illumina sequencing. The dimer-correction approach was evaluated 
by measuring the proportion of human, mouse and mixed spe-
cies cells identified following increased edit distances (that is, the 
Levenshtein distance) between the error-sequenced and the accu-
rately sequenced barcodes (Supplementary Fig. 5). An edit distance 
of 4 was found to result in accurate assignment of both mouse and 
human reads (Supplementary Fig. 6), enabling the recovery of an 
extra 8% of total reads. Although further reads could be recov-
ered using an edit distance of 5, this was obtained at the expense of 
increased numbers of mixed species cells (Supplementary Fig. 5i).

Application of scCOLOR-seq to nanopore sequencing identified 
the presence of a poly(A) sequence in 40% (range, 24–62%) of all 
nanopore sequencing reads and detected 12.9% (range, 9–15%) of 
these reads with dual nucleotide complementarity across the full 
barcode sequence (Supplementary Fig. 7). This suggests that the 
theoretical base-calling accuracy of single-cell nanopore sequenc-
ing should be 91.8%. However, barcodes were observed to often 
contain more than one error per barcode, which has the effect of 
reducing the overall measurable base-calling accuracy to 86% 
(Supplementary Fig. 8). Naive collapsing of barcodes and UMIs 
sequenced into single-base sequences without error correction led 
to only 81 recovered cells (Supplementary Fig. 9). The dimer cor-
rection approach using an edit distance of 6 led to the recovery of 
54% (range, 43%–68%) of barcodes containing sequencing errors  
(Fig. 2a,b and Supplementary Fig. 7c). Increasing the edit distance to 
7 increased recovery to 82% (range, 79.8%–83.6%), at the expense of 
slightly increased numbers of mixed cells (Supplementary Fig. 10).  
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However, filtering on the basis of at least the presence of 200 fea-
tures per cell removed a substantial proportion of mixed cells 
(Supplementary Fig. 11). Cells were then projected into two 
dimensions using uniform manifold approximation and projec-
tion (UMAP) and a clear separation of the mouse and human cell 
populations was observed, with 1,077 cells recovered using an edit 
distance of 6 and 1,064 cells recovered using an edit distance of 7 
(Supplementary Fig. 10).

scCOLOR-seq was applied to a mixture (1:1:1 ratio) of human 
NCI-H929, JJN3 and DF15 myeloma cell lines and approximately 
500 cells were sequenced using a MinION flow cell and 1,200 cells 
sequenced using a PromethION flow cell. After filtering with a 
minimum of 200 features per cell (Supplementary Figs. 12, 13), we 
show that nanopore sequencing can resolve the different myeloma 
cell types at both the gene level (Fig. 2c and Supplementary Fig. 14)  
and the transcript level (Fig. 2d and Supplementary Fig. 14b–f). 
There was also a good correlation between Oxford Nanopore and 
Illumina gene counts per cell (R = 0.67) and the number of UMIs 
per cell (R = 0.65) (Supplementary Fig. 15d,e). The clustering is 
more defined at the transcript level and more diffuse at the gene 
expression level, likely reflecting the diversity of transcript use 

within these cells. We next searched for differentially regulated 
transcripts between cell types and clusters. In this experiment, 
cell-type-specific usage was observed for 359 genes and 416 dif-
ferentially expressed isoforms. Differential transcript usage was 
particularly apparent for the marker CD74 (Fig. 2e–h), which is a 
potential therapeutic target in multiple myeloma7. Furthermore, in 
agreement with the literature and the biology of plasma cells8, a dif-
ferential expression of both immunoglobulin κ and λ light-chain 
isoform use between the different myeloma cell lines was observed 
(Supplementary Figs. 16, 17).

Long read sequencing permits the measurement of fusion tran-
scripts that are often key drivers of tumor development. To illus-
trate the principle, Ewing’s sarcoma was selected, which harbors 
the t(11:22)(q24:q212) translocation that generates EWS-FLI, a 
fusion between EWSR1 (Ewing’s sarcoma breakpoint region 1) and 
the ETS transcription factor FLI1 (Friend leukemia integration 1) 
genes9. The EWS–FLI protein regulates the expression of numerous 
target genes that promote cancer survival and drug resistance10,11. 
scCOLOR-seq was performed on human STA-ET-1 Ewing’s cells, 
which are known to express the EWS–FLI protein and we measured 
the presence of the EWS-FLI fusion transcript within each single 
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Fig. 1 | Developing a strategy to error-correct barcode and UMI sequences from droplet-based sequencing. a, Schematic bead and oligonucleotide 
structure using dimer blocks of nucleotides for Buc-seq. b, Cell barcode-assignment strategy. c, UMI deduplication strategy. d, Simulated data showing 
the number of barcodes recovered with increasing simulated sequencing error rates. e,f, Simulated data showing the difference and coefficient of variation 
between the deduplicated UMIs and the ground truth. Correction of the UMI counts was performed using a basic directional network-based approach 
after accounting for sequencing errors within homodimeric blocks of nucleotides.
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cell. Given that fusion transcripts can be falsely detected as a con-
sequence of PCR artifacts12, the mixed-species data (Fig. 2a,b) was 
first used to determine the frequency of false-positive fusion events. 
As these would never occur naturally, the incidence of human to 
mouse fusion events can be used as a guide to set filtering thresh-
olds. The mixed species data reveals that 5% of total reads contain 
a fusion event, with 35% of these reads showing mixed human 
and mouse fusion transcripts (Supplementary Fig. 18). This sug-
gests that over 70% of detected fusion transcripts could be PCR 
artifacts. However, application of a filtering threshold based on a 
minimum of 5 UMIs for each fusion event removed all the mixed 
human–mouse fusion reads (Supplementary Fig. 18b,c), which was 
subsequently applied to eliminate false-positive fusion events in the 
Ewing’s cell data. After filtering, a total of 10,258 unique fusion tran-
scripts were detected, enabling the measurement of the EWS-FLI 
fusion transcript in 17% of cells (Fig. 2i,j). Several EWS-FLI fusion 
transcripts have been reported13. We detected the presence of the 
most common type ‘1’ form in our single-cell data, consisting of the 
first seven exons of EWSR1 joined to exons 6–9 of the FLI1 gene 
(Fig. 2k and Supplementary Fig. 19). In addition, a potentially pre-
viously undescribed fusion transcript between FLI1 and the long 
noncoding RNA AL596087.2 was observed (Fig. 2l).

Several groups have reported the use of short-read Illumina 
sequencing data to error-correct long-read Oxford Nanopore 
single-cell sequencing3,14–16, in which the more accurate barcode 
sequences from Illumina sequencing are used as a guide to assign 
Oxford Nanopore reads to cells. Although this approach was able 
to increase assignment rates from around 6% to more than 60%, the 
requirement to independently construct and sequence two libraries 
increases the cost of single-cell sequencing. Moreover, accurate UMI 
assignment is challenging with this approach because of the random 
nature of the UMI generation and the low base-calling accuracy of 
nanopore sequencing. Volden et al. used a rolling circle amplifica-
tion to concatemeric consensus (R2C2) method to error-correct 
nanopore sequencing17. Although this method achieved 96% 
sequencing accuracy, this still only translated to 72% of barcodes 
demultiplexing correctly, with 45% of UMIs not matching against 
parallel Illumina sequencing. Furthermore, the increased read 
length that is needed to support this error-correction approach is 
prone to increased error rates for longer reads in the late stages of a 
sequencing run without reagent refueling18.

scCOLOR-seq has multiple advantages over current methodolo-
gies to correct error-prone sequencing. The method provides supe-
rior error correction of single-cell sequencing barcodes, with over 
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Fig. 2 | scCOLOR-seq identifies transcript isoform diversity and fusion transcripts in cancer cell line models. a,b, Human HEK293T and mouse 3T3 cells 
were mixed at a 1:1 ratio and approximately 1,200 cells were taken for encapsulation and cDNA synthesis followed by nanopore sequencing. a, A Barnyard 
plot showing the expression of mouse and human UMIs before quality filtering using an edit distance of 6. b, A UMAP plot of data after quality filtering 
showing the clustering of human, mouse or mixed human and mouse cells after barcode correction using an edit distance of 6. Insets: bar plots show the 
specificity of UMIs aligning to either the human or mouse UMAP cluster. c–h, NCI-H929, DF15 and JJN3 myeloma cell lines were mixed at a 1:1:1 ratio 
and approximately 1,200 cells were taken for cDNA synthesis and sequenced using a PromethION flow cell. c,d, UMAP plot of gene expression (c) and 
transcript isoform expression (d). e, Principal CD74 (also known as HLA-DR) splice variants showing all protein-coding transcripts. f–h, UMAP plot showing 
the isoform expression of detected CD74 transcripts ENST00000377775.7 (f), ENST00000353334.10 (g) and ENST00000009530.12 (h). i, A UMAP plot  
of total fusion transcripts in Ewing’s cells mapped as a parentage of the total RNA of the cell. j, A UMAP plot showing the expression of the EWS-FLI  
fusion transcript. k, A schematic showing the structure of the EWSR1 and FLI1 genes. The EWS-FLI fusion transcript consists of the 5′ end of the EWSR1  
gene and the 3′ end of the FLI1 gene. Arrowheads denote known fusion events and the most common type-1 fusion transcript is shown. l, A circular 
representation of the fusion transcripts identified between FLI1 and EWSR1.
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80% recovery of reads when using an edit distance of 7, or over 60% 
recovery when using a conservative edit distance of 6. Uniquely, 
UMIs can be deduplicated with a high level of accuracy, approaching 
100% in simulated data. Furthermore, we envision that the method 
can be further improved using blocks of trimer phosphoramidites. 
However, at present, these are not commercially available and the 
synthesis of reverse trimer phosphoramidite blocks is considerably 
more complex than for dimers.

In summary, single-cell long-read technology has the potential 
to open new avenues within genomics. For example, we demon-
strate that it is possible to measure fusion events in chimeric reads at 
the single-cell level, which is only practical with long-read technol-
ogy. scCOLOR-seq provides a simplified and more robust method 
to perform quantitative long-read transcript sequencing on large 
numbers of cells. We propose the use of this approach to stimulate 
further work on single-cell copy number variation and mutational 
analysis, which would have considerable potential in diagnostics 
and for the understanding of human disease.
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were performed according to the manufacturer’s instructions of the Nadia 
instrument (DolomiteBio). The droplet emulsion was then disrupted using 1 ml of 
1H,1H,2H,2H-perfluoro-1-octanol (Sigma) and beads were released into aqueous 
solution. After several washes, the beads were subjected to reverse transcription. 
Before PCR amplification, beads were washed and then treated with ExoI 
exonuclease for 45 min. PCR was then performed using the SMART PCR primer 
(AAGCAGTGGTATCAACGCAGAGT) and cDNA was subsequently purified 
using AMPure beads (Beckman Coulter). To achieve a high concentration of 
cDNA the input was subjected to 25 cycles of PCR amplification, rather than the 
13 stated in the original Drop-seq protocol. Finally, cDNA was quantified using 
a TapeStation (Agilent Technologies) using a DNA high-sensitivity D5000 tape 
before being split for Illumina or Oxford Nanopore library generation.

Single-cell Illumina library preparation for sequencing. Library preparation for 
Illumina sequencing was performed as described previously19. In brief, purified 
cDNA was used as an input for the Nextera XT DNA library preparation kit 
(Illumina). Library quality and size were determined using a TapeStation (Agilent 
Technologies) high-sensitivity D1000 tape. High-quality samples were then 
sequenced to a minimum of 50,000 reads per cell on a NextSeq 500 sequencer 
(Illumina) using a 75-cycle High Output kit using a custom read-1 primer 
(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC). The sequencing 
depth was around 50,000 reads per cell barcode.

Nanopore library preparation for sequencing. Full-length cDNA samples 
were prepared using the Oxford Nanopore Technologies SQK-LSK-109 Ligation 
Sequencing Kit, with the following modifications. Incubation times for end 
preparation were increased to 15 min and all washes were performed with 1.8× 
AMPure beads to improve the recovery of smaller fragments. Short fragment 
buffer was used for the final wash of libraries. Next, 50 fmol samples of the 
library were sequenced on either a MinION FLO-MIN106D R9.4.1 flow cell or 
PromethION FLO-PRO002 R9.4.1 flow cell, according to the manufacturer’s 
protocol. A sequencing depth of 40,000 reads per cell was aimed for, which for 
500 cells equates to two or three flow cells of a MinION (the final sequencing 
depth was at least 20 million). For 1,200 cells, sequencing was carried out using 
a PromethION flow cell across one flow cell (final read depth was at least 
48 million).

Illumina-based single-cell RNA-sequencing analysis workflow. The FASTQ 
data were processed using a custom-written cgatcore pipeline (https://github.
com/Acribbs/TallyNN)21. Ambiguous and unambiguous reads were identified 
on the basis of the occurrence of dual nucleotide complementarity within the 
barcode sequence. The unambiguous barcodes were then used to error-correct 
the ambiguous reads by fuzzy searching using a Levenshtein distance of 4 (unless 
stated otherwise in the figure legend). The barcode and UMI sequence for the 
corrected read pairs were then collapsed into single-nucleotide sequences. The 
resulting FASTQ files were used as an input for Kallisto (v.0.46.1) bustools 
(v.0.39.3)22, which was used to generate a counts matrix. This counts matrix was 
used as an input for the standard Seurat pipeline (v.3.1.4)23.

Nanopore-based single-cell RNA-sequencing analysis workflow. Base calling 
was performed on the FAST5 data to generate FASTQ files using Guppy (v4.2.2) 
(guppy_basecaller --compress-fastq -c dna_r9.4.1_450bps_hac.cfg -x “cuda:1”) 
in GPU mode from Oxford Nanopore Technologies running on a GTX 1080 Ti 
graphics card. After base calling and the generation of FASTQ files, for each  
read the barcode and UMI sequence were identified by searching for the 
poly(A) region and flanking regions before and after the barcode and UMI. 
Accurately sequenced barcodes were identified based on their dual nucleotide 
complementarity. Unambiguous barcodes were then used as a guide to 
error-correct the ambiguous barcodes in a second-pass correction analysis 
approach (Supplementary Fig. 2). Fuzzy searching was performed using an edit 
distance (a string matching algorithm for measuring the distance between two 
strings) of 6 (unless stated otherwise in the figure legend) and replaced the original 
ambiguous barcode with the unambiguous sequence. A white list of barcodes was 
then generated using UMI-tools whitelist (umi_tools whitelist --bc-pattern= 
CCCCCCCCCCCCCCCCCCCCCCCCNNNNNNNNNNNNNNNN --set- 
cell-number=1000)6. This white list was used to assess the ratio of the quality 
of cells to the read count and used as an input for UMI-tools extract. Next, the 
barcode and UMI sequence of each read were extracted and placed within the 
read2 header file using UMI-tools extract (umi_tools extract --bc-pattern= 
CCCCCCCCCCCCCCCCCCCCCCCCNNNNNNNNNNNNNNNN -- 
whitelist=whitelist.txt). Reads were then aligned to the transcriptome using 
minimap2 (ref. 24) (-ax splice -uf --MD --sam-hit-only --junc-bed) using the 
reference transcriptome for human hg38 and mouse mm10. The resulting SAM 
file was converted to a BAM file and then sorted and indexed using samtools25. 
The transcript name was then added as a XT tag within the BAM file using 
pysam. Finally, UMI-tools count (umi_tools count --per-gene --gene-tag = XT 
--per-cell --double-barcode), with modifications that allow the program to handle 
oligonucleotide blocks, was used to count features to cells before being converted 
to a market matrix format. UMI-tools count was modified to handle the double 

Methods
Cell lines and reagents. HEK293T, JJN3, H929 and 3T3 cells were purchased 
from the ATCC. DF15 cells were a gift from Celgene (now Bristol Myers Squibb). 
Cell lines were cultured in DMEM low-glucose medium supplemented with FBS 
for no more than 20 passages. The cells were mycoplasma tested routinely and 
authenticated by STR during the course of this project.

Oligonucleotide synthesis. Solid-phase phosphoramidite oligonucleotide 
synthesis on Toyopearl HW-65S resin (Tosoh Biosciences, 0019815) was performed 
by ATDBio, in the 5′–3′ direction (using reverse amidites), using a method adapted 
from Macosko et al.19. The sequence of the capture oligonucleotide is as follows: 
Bead-5′-TT-[spacer]-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACJJJJJ 
JJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3′, where 
‘J’ indicates a dual nucleotide dimer block added via split and pool synthesis 
using reverse dimer phosphoramidites (Supplementary Fig. 1; purchased from 
ChemGenes as custom products), ‘N’ indicates a degenerate dimer nucleotide 
(added using an equimolar mixture of the four reverse dimer phosphoramidites,), 
[spacer] is hexaethylene glycol, added using DMT-protected hexaethylene glycol 
phosphoramidite (LGC Link, 2129), and the other bases are standard (monomeric) 
DNA bases, added using reverse amidites (LGC Link, 2022, 2021, 2023 and 2020). 
AAGCAGTGGTATCAACGCAGAGTAC is the PCR handle.

Before oligonucleotide synthesis, the initial loading of hydroxyl groups on the 
resin was reduced via a capping reaction. Capping was performed by suspending 
the resin in a 1:1 mixture of Cap A (tetrahydrofuran:lutidine:acetic anhydride 
8:1:1) and Cap B (tetrahydrofuran:pyridine:1-methylimidazole 8:1:1) at room 
temperature for 24 h. After capping, oligonucleotide synthesis was performed using 
an ABI 394 DNA synthesizer, using a modified 1 μmol synthesis cycle (with an 
extended coupling time of 5 min for standard monomer bases and 10 min for dimer 
bases, spacers and linkers). The barcode was generated using 12 split-and-pool 
synthesis cycles. Before the first split-and-pool synthesis cycle, beads were 
removed from the synthesis column, pooled and mixed, and divided into four 
equal aliquots. The bead aliquots were then transferred to separate synthesis 
columns before coupling with the dimer reverse amidite. This process was repeated 
11 times. Following the final split and pool cycle, the resin was pooled, mixed 
and divided between four columns, ready for the next part of the synthesis. An 
equimolar mixture of the four dimer phosphoramidites was used in the synthesis 
of the degenerate UMI (poly(N)) region, and (monomeric) T reverse amidite was 
used for the poly(T) tail. After oligonucleotide synthesis, the resin was washed with 
acetonitrile and dried before deprotection in aqueous ammonia (55 °C, 6 h).

Simulated barcode data. Barcode sequences were simulated with a length of 
24 (12 blocks of nucleotides pairs) and then imitated the process of randomly 
introducing PCR errors and sequencing errors into 95% of the barcodes. A 
two-pass barcode assignment strategy was then performed in which true barcodes 
were identified on the basis of the nucleotide pair complementarity across the full 
length of the barcode. These true barcodes were then used as a guide to correct 
the remaining barcodes on the basis of approximate string matching. String 
matching was performed using the Levenshtein edit distance, which is a metric for 
measuring the difference between two strings. The following values were used as 
values within the simulations: sequencing depth, 400; number of UMIs, 10–100; 
barcode length, 24; PCR error rate, 1 × 10−5; sequencing error rate, 1 × 10−1 to 
1 × 10−7; and number of PCR cycles, 25.

Simulated UMI data. Simulated UMI data were generated with a length of 16  
(8 blocks of nucleotide pairs) to confirm the accuracy of the UMI correction 
method by mimicking UMI PCR amplification and sequencing errors seen with 
Oxford Nanopore sequencing. UMIs were generated following an approach that 
was initially proposed by UMI-tools6. In brief, each UMI was generated at random, 
with a uniform probability of amplification (0.8–1.0). PCR cycles were simulated so 
that each UMI was selected in turn and duplicated according to the probability of 
amplification. PCR errors were added randomly and then any new UMI sequences 
were assigned new probabilities of amplification. A defined number of UMIs were 
randomly sampled to simulate sequencing depth and sequencing errors introduced 
with a specified probability. Finally, the presence of mismatched double nucleotides 
within the UMI were checked for and if errors were detected, the UMIs were split 
into two and then separately collapsed into 8 bp nucleotides. Unambiguous UMIs 
were collapsed into 8 bp nucleotides without splitting. The number of true UMIs 
was then estimated from the final pool of UMIs using UMI correction methods 
proposed in the original UMI-tools manuscript6. The following values were used 
as values within the simulations. Sequencing depth, 10–400; number of UMIs, 
10–100; UMI length, 6–16; PCR error rate, 1 × 10−3 to 1 × 10−5; sequencing error 
rate, 1 × 10−1 to 1 × 10−7; and number of PCR cycles, 4–12.

Droplet-based single-cell RNA sequencing. Single-cell capture and reverse 
transcription were performed using the Drop-seq approach, as described 
previously19. In brief, cells were loaded into the DolomiteBio Nadia system 
microfluidic cartridge at a concentration of 310 cells per μl20. Oligonucleotide 
beads were synthesized by ATDBio. Beads were loaded into the microfluidic 
cartridge at a concentration of 620,000 beads per ml. Cell capture and lysis 
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Data availability
Sequencing data have been deposited in the GEO under accession number 
GSE162053.

Code availability
All custom pipelines used for analyses are available on GitHub (https://github.com/
Acribbs/TallyNN). Modifications to the UMI-tools code are also available as a fork 
on GitHub (https://github.com/Acribbs/UMI-tools).
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nucleotide UMIs as defined below. This counts matrix was then used as an input 
into the standard Seurat pipeline.

UMI error correction. UMI-tools was forked on GitHub (https://github.com/
Acribbs/UMI-tools) and the counts functionality was modified to handle the 
double oligonucleotide design. In brief, if a UMI contained at least one sequencing 
error, the UMI was split into two and then separately collapsed into 8 bp 
nucleotides (Supplementary Fig. 3). UMIs that did not contain a sequencing error 
were collapsed into 8 bp nucleotides without splitting. The directional method 
implemented within the original UMI-tools was then performed to correct UMI 
sequencing errors.

Dimensionality reduction and clustering. Gene and transcript expression 
matrices were generated by UMI-tools count (for Oxford Nanopore data) or 
kallisto bustools (for Illumina data) and were processed using R/Bioconductor 
(v.4.0.3) and the Seurat package (v.3.1.4). Cells that expressed fewer than 200 
features were removed from the analysis and gene matrices were cell-level-scaled 
and log-transformed as per the standard Seurat workflow23. The top 2,000 highly 
variable transcripts or genes were selected using Seurat FindVariableFeatures 
function. Principal component analysis dimensionality reduction was then 
performed to identify features that contributed to sources of variation within the 
data. Clustering was performed within Seurat using the Louvain algorithm, an 
unsupervised hierarchical clustering algorithm implemented by default in the 
standard Seurat workflow. To visualize the single-cell data, data were projected 
onto a UMAP, which is a non-linear dimensional reduction technique26. Cell-type 
determination was performed using clustifyr v.1.0.0 to identify correlated gene 
expression between single cells and bulk RNA-sequencing gene lists from the 
harmonize database27,28.

Differential gene and isoform expression. Differential expression analysis was 
performed using nonparametric Wilcoxon test on log2(transcript per million) 
expression values. Differentially expressed genes and transcripts were selected on 
the basis of an absolute log2-transformed fold change of >1 and an adjusted P value 
of P < 0.05.

Identification of fusion transcripts. Nanopore reads were aligned to the 
hg38 genome with minimap2 (-map-ont --MD --sam-hit-only -junc-bed 
--secondary=no). The splice junction BED file was generated from the Gencode 
v.36 GTF file using paftools, the minimap2 companion software. The SAM file was 
filtered using samtools to remove all non-primary alignment and supplementary 
alignments (samtools view -F 3328). Chimeric reads were identified on the basis 
of the SA SAM tag, which lists all other supplementary alignments. All SAM file 
processing was performed using pysam v.0.15.2. Next, the SA tag was inspected and 
assigned to the genomic feature using a BED file containing records of all known 
coding genes. The SAM record was updated with Ta, Tb, Tc and Td tags, which 
define the gene positional information from the BED file. Finally, fusion transcripts 
were annotated with gene information and the barcode information was used to 
generate per-cell counts for each translocated read. The counts table was then 
merged with the original transcript Seurat object. Original UMAP embeddings that 
were calculated for the transcript-only level analysis were used for visualization.

PCR and nanopore sequencing artifacts must be taken into consideration 
when investigating previously undescribed isoforms or translocations. Most PCR 
duplications and artifacts can be eliminated when the UMI is accounted for, 
but some artifacts may remain. Identification of reverse-transcription artifacts 
are more difficult to identify because reverse transcription introduces template 
switching between homologous sequences leading to increased chimeric cDNA12. 
However, to minimize the false-positive translocations in the data, a thermostable 
reverse-transcription enzyme was used, exonic chimeric transcripts were removed 
and a minimum of 5 UMIs per translocation event was required.

Base-calling accuracy. To calculate the theoretical base-calling accuracy from 
the frequency of reads that show perfect barcode dimer complementarity, we use 
the following equation: Base-calling accuracy =

l√b, where b is the frequency of 
barcode complementarity and l is the length of the barcode sequence. To measure 
the barcode base-calling accuracy, each base pair was assessed for complementarity 
across the whole length of the barcode for every read in the FASTQ file. Accuracy 
was determined by counting the occurrence of errors and dividing this by the 
number of total bases within the total barcodes. This code is provided as a Jupyter 
Notebook within the TallyNN GitHub repository.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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