
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

A radiomic signature as a non-invasive predictor of progression-free survival
in patients with lower-grade gliomas
Xing Liua,1, Yiming Lia,1, Zenghui Qiana, Zhiyan Suna, Kaibin Xub, Kai Wangc, Shuai Liua,
Xing Fana, Shaowu Lid, Zhong Zhange, Tao Jianga,e,f,g,⁎,2, Yinyan Wange,⁎⁎,2

a Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
b Chinese Academy of Sciences, Institute of Automation, Beijing, China
cDepartment of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,
dNeurological Imaging Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
e Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
f Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
g China National Clinical Research Center for Neurological Diseases, Beijing, China

A R T I C L E I N F O

Keywords:
Radiomic analysis
Lower-grade gliomas
Progression-free survival
Radiogenomics

A B S T R A C T

Objective: The aim of this study was to develop a radiomics signature for prediction of progression-free survival
(PFS) in lower-grade gliomas and to investigate the genetic background behind the radiomics signature.
Methods: In this retrospective study, training (n= 216) and validation (n=84) cohorts were collected from the
Chinese Glioma Genome Atlas and the Cancer Genome Atlas, respectively. For each patient, a total of 431
radiomics features were extracted from preoperative T2-weighted magnetic resonance images. A radiomics
signature was generated in the training cohort, and its prognostic value was evaluated in both the training and
validation cohorts. The genetic characteristics of the group with high-risk scores were identified by radio-
genomic analysis, and a nomogram was established for prediction of PFS.
Results: There was a significant association between the radiomics signature (including 9 screened radiomics
features) and PFS, which was independent of other clinicopathologic factors in both the training (P < 0.001,
multivariable Cox regression) and validation (P=0.045, multivariable Cox regression) cohorts. Radiogenomic
analysis revealed that the radiomics signature was associated with the immune response, programmed cell
death, cell proliferation, and vasculature development. A nomogram established using the radiomics signature
and clinicopathologic risk factors demonstrated high accuracy and good calibration for prediction of PFS in both
the training (C-index, 0.684) and validation (C-index, 0.823) cohorts.
Conclusions: PFS can be predicted non-invasively in patients with LGGs by a group of radiomics features that
could reflect the biological processes of these tumors.

1. Introduction

Gliomas are the most common and fatal primary tumors in the
central nervous system (Nuno et al., 2013). Lower-grade gliomas
(LGGs), referring to the World Health Organization (WHO) grade II and
III gliomas, account for approximately 43.2% of gliomas (Cancer
Genome Atlas Research et al., 2015; Jiang et al., 2016). The variable
biological behaviors of LGGs result in a wide range of progression-free
survival (PFS) times. Accurate prediction of PFS can provide crucial

information regarding treatment of gliomas in clinical practice. More
specific imaging examinations would be indicated for patients at high
risk for tumor progression. Furthermore, identification of a poor PFS
helps to determine whether more aggressive treatment should be ad-
ministered (Zhang et al., 2017).

Magnetic resonance imaging can provide more comprehensive in-
formation about tumor heterogeneity than focal tissue samples, and the
emerging field of radiomics holds great potential for facilitating better
clinical decision-making (Gillies et al., 2016). Radiomics refers to the
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conversion of digital medical images into mineable high-dimensional
data, and its potential application in clinical practice has attracted
much attention in recent years. Radiomic analysis has been used to
predict the diagnosis, prognosis, response to treatment, and underlying
genomic patterns in several types of cancer (Huang et al., 2016;
Kickingereder et al., 2016a; Kickingereder et al., 2016b; Li et al., 2016a;
Yamamoto et al., 2014). However, whether or not radiomic features
have value in prediction of PFS in patients with LGGs is still unclear.

The aim of this study was to develop a novel approach to pre-
operative, non-invasive, and individualized assessment of PFS in pa-
tients with LGGs. We further developed a practical nomogram that in-
corporated the radiomic signature and other clinicopathologic
characteristics for prediction of PFS in patients with LGGs and in-
vestigated the biological processes underlying this radiomic signature.

2. Material and methods

2.1. Patients

This study was approved and reviewed by the institutional review
board of our Hospital. Two hundred and sixteen patients were enrolled
from the CGGA database (http://www.cgga.org.cn) as a training set and a
further 84 cases were enrolled from TCGA database (http://
cancergenome.nih.gov) as a validation set. All patients in both cohorts
met the following inclusion criteria: (a) pathologically confirmed grade
II or III glioma according to the typical histological-based WHO clas-
sification (Louis et al., 2007); (b) no history of preoperative therapy; (c)
availability of preoperative T2-weighted magnetic resonance (MR)
images; and (d) availability of data on PFS, clinical characteristics, and
genetics. PFS was defined as the time from the date of the initial di-
agnosis until tumor progression.

2.2. Acquisition of MRI data and tumor segmentation

MR images of patients from the CGGA and TCGA databases were
obtained from the CGGA imaging database (http://www.cgga.org.cn)
and the Cancer Imaging Archive (http://www.cancerimagingarchive.net),
respectively. The extraction of radiomic features was performed on T2-
weighted MR images, because the T2-weighted sequence is well ac-
cepted in identifying tumor borders of low-grade gliomas (Kinoshita
et al., 2016; Ricard et al., 2007; Wang et al., 2015). We did not use the
T1-weighted or contrast enhancement images since it was difficult to
identify the tumor borders of LGGs on these sequences. Tumors were
segmented on T2-weighted images by two neuroradiologists (XC, JM)
using MRIcron software (http://www.mccauslandcenter.sc.edu/
mricro). Both neuroradiologists had>15 years of experience in neu-
roradiology and were blinded to the clinical data. Abnormal hyper-
intense signals on the T2-weighted MR images were identified as tumor
regions and signals from cerebrospinal fluid were excluded. A third
senior neuroradiologist (SL) with>20 years of clinical experience in
interpretation of brain MRI subsequently re-evaluated the segmented
lesions and made the final decision in the event of disagreement.

2.3. Extraction of radiomic features

First, normalization (z-score transformation) of image intensity was
performed on the whole brain image to transform arbitrary MRI signal
intensity values into standardized intensity ranges, thereby avoiding
heterogeneity bias. Next, quantitative radiomic features were extracted
using the automated approach reported in a previous study which
provided a detailed description of each feature in its supplementary
material (Aerts et al., 2014). Four hundred and thirty-one radiomic
features were extracted for each patient and divided into four groups:
(a) group 1, first-order statistics (n= 14) that quantitatively described
the distribution of the signal intensity of the images; (b) group 2, shape-
and size-based features (n= 8) that quantified the shape and size of the

tumor; (c) group 3, textural features (n=33) that were calculated from
the gray-level run-length and co-occurrence matrix in addition to re-
flecting intratumoral heterogeneity; and (d) group 4, wavelet features
(n= 376) that were derived from the features in groups 1 and 3 by
wavelet decomposition. The radiomic features were extracted using
MATLAB 2014a software (MathWorks, Natick, MA, USA) and are pre-
sented in Supplementary Table 1.

2.4. Molecular analysis and whole-genome gene profiling

Isocitrate dehydrogenase (IDH) mutations were detected by pyr-
osequencing in the CGGA training cohort (Zhang et al., 2014) and the
molecular profiles (Ceccarelli et al., 2016) of patients in the validation
cohort were collected from the TCGA database. Microarray analysis was
performed for 47 patients in the training cohort using the Agilent
Whole Human Genome Array (Agilent Technologies Inc., Santa Bar-
bara, CA, USA) in accordance with the manufacturer's protocol (Yan
et al., 2012). The integrity of total RNA was examined using a 2100
Bioanalyzer (Agilent). Biotinylated cRNA and cDNA were synthesized
and hybridized to the array. The data were obtained using the Agilent
Feature Extraction Software (version 9.1) and the Agilent G2565BA
Microarray Scanner System. Probe intensities were normalized using
GeneSpring GX 11.0.

2.5. Construction and validation of the radiomic signature

Univariate Cox regression was performed to screen for prognostic
radiomic features in the training cohort. P < 0.05 was deemed to be
statistically significant. Based on hierarchical clustering, the association
between these prognostic features and PFS was represented using a heat
map (the radiomic features were normalized by z-score transformation
only when the heat map was delineated). Subsequently, the least ab-
solute shrinkage and selection operator (LASSO) Cox regression model
was applied to the screened prognostic features to further select the
most useful prognostic radiomic features. These features were then
integrated into a radiomic signature, and an individualized risk score
was calculated from a linear combination of the selected features
weighted by their respective coefficients (β):

=
=
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i
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The patients in the training and validation cohorts were then clas-
sified into low-risk and high-risk groups according to a fixed cutoff
value. The relationship between the radiomic risk score and PFS was
evaluated in the training cohort and then tested in the validation cohort
using Kaplan-Meier survival and Cox regression analyses. Finally, the
prognostic significance of the radiomic signature was assessed by
Kaplan-Meier survival analysis in subgroups of the training cohort.
Patients were divided into subgroups according to IDH status (wild-type
vs. mutant), age (younger than 40 years vs. 40 years or older), sex (male
vs. female), tumor grade (WHO II vs. WHO III), seizure (non-seizure vs.
seizure), and presence of oligodendroglioma component (oligocompo-
nent vs. astrocytomas).

2.6. Construction of an individualized PFS prediction model

A nomogram was established as an individualized PFS prediction
model in the training cohort. The final selection of the model for the
nomogram was conducted using a backward step-down selection pro-
cess based on the Akaike information criterion (Li et al., 2016b). The
prognostic performance of the nomogram was estimated in the training
cohort and then tested in the validation cohort. The concordance index
(C-index), which is often used to assess the discriminative ability of
prognostic models in survival analysis, was used as a quantitative
measurement of the performance of the nomogram. Calibration curves
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were constructed to compare the probability values determined by the
nomogram with the observed survival fractions.

2.7. Radiogenomic analysis

Transcriptome data for 47 patients in the CGGA cohort were used
for the radiogenomic analysis. The Pearson correlation algorithm was
used to screen genes for their association with the radiomic signature;
the association was considered to be statistically significant when the
absolute value of Pearson correlation coefficient was>0.4 and the P-
value was< 0.05. Gene ontology (GO) analysis was performed to in-
vestigate the underlying biological processes of the radiomic signature
based on DAVID Bioinformatics Resources (http://david.ncifcrf.gov/).
The top 200 positive/negative genes that were significantly associated
with each feature in the radiomic signature (the absolute value of
Pearson correlation coefficient > 0.4 and P < 0.05) were subjected to
GO analysis to reveal the underlying biological processes involved in
each feature. The radiogenomic analysis was also performed in the
validation cohort (84 patients).

2.8. Statistical analysis

R version 3.3.2 software (R Foundation for Statistical Computing,
Vienna, Austria) was used for all statistical analyses and to generate
figures. Univariable and multivariable Cox regression models and
Kaplan-Meier survival analysis were performed in the “survival”
package. The LASSO Cox regression model and nomogram were con-
structed using the “glmnet” and “rms” packages, respectively. The
processing code for the generation of radiomic risk score and nomo-
gram were provided in the Supplementary material. Differences in
clinicopathologic characteristics between the low-risk and high-risk
groups were evaluated using the chi-square test. All statistical tests
were two-sided, and P < 0.05 was considered to be statistically sig-
nificant.

3. Results

3.1. Radiomic signature construction and validation

Forty-five prognostic features were screened from 431 radiomic fea-
tures by univariate Cox regression. The radiomic heat map allowed vi-
sualization of the association between these 45 radiomic features and PFS

in patients in the training cohort (Fig. 1). Nine features of the 45 radiomic
features were further selected using the LASSO Cox regression model
(Fig. 2). Detailed descriptions and coefficients of the 9 features are listed in
Table 3. A radiomics signature was constructed using these 9 features, and
the risk score was calculated by the linear combination of selected features
weighted by their respective coefficients (β): risk score=Correla-
tion× (−2.48)+Correlation_HHL× (−2.17×10–1)+Kurtosis_HLH
× (−3.40×10–3)+Median_HLL× (5.95×10–2)+Run Length Non-
uniformity_HHL× (2.87×10–6)+Run Percentage_HLH×(3.33×10–2)
+Short Run Low Gray Level Emphasis_LLL×1.13+Sum Var-
iance_HHL×(−8.04×10–4)+Uniformity× (1.92×101).

With using the third quartile value as a fixed cutoff value, PFS was
significantly stratified by the radiomic risk score in both the training
(Fig. 3A, P < 0.0001) and the validation (Fig. 3B, P=0.0233) cohorts.
In multivariable Cox analysis, the radiomic risk score was found to be
an independent prognostic factor for PFS in both the training
(P < 0.001) and the validation (P=0.045) cohorts (Table 2 and
Supplementary Table 3). Finally, the radiomic risk score was found to
be associated with PFS in all subgroups in the training cohort (Sup-
plementary Fig. 1).

3.2. Clinicopathologic characteristics

Two hundred and sixteen patients were included in the training
cohort. There was no significant difference between the low-risk and
high-risk groups with regard to age, sex, histology, whether or not
seizure was present, or resection status. However, there were significant
differences in WHO grade (P < 0.001) and IDH status (P=0.001)
between the two groups (Table 1). Eighty-four further cases were en-
rolled in the validation cohort, and no significant difference was found
in age, sex, seizure history (not available for only 2 patients), WHO
grade, or IDH status between the low- and high- risk groups. There was
a significant difference in histology between the two groups (P=0.046;
Supplementary Table 2).

3.3. Construction of an individualized PFS prediction model

Based on the Akaike information criterion, WHO grade, age, seizure,
IDH status, and radiomic risk score were selected and integrated into a
nomogram (Fig. 4A). The radiomic nomogram yielded a C-index value
of 0.684 in the training cohort and 0.823 in the validation cohort. The
radiomic nomogram also showed good calibration in both the training

Fig. 1. A heat map of 45 radiomic features screened based on univariate Cox regression. Each column corresponds to one patient in the training cohort, and each row
corresponds to one normalized radiomic feature. The PFS bars represents the time of follow-up. The trend line indicates the trend of follow-up, calculated with using
the linear regression model. The four radiomic groups are: group 1, first order statistics; group 2, shape- and size- based features; group 3, textural features; group 4,
wavelet features.
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and validation cohorts (Fig. 4B and C). As the radiomic risk score was
removed from the nomogram, the C-index reduced to 0.668 and 0.815
in the training and in the validation cohort respectively.

3.4. Radiogenomic analysis

The transcriptomic profiles of 47 patients in the CGGA cohort were
analyzed to explore the genetic background of the radiomic signature. A
heat map was constructed to illustrate the associations between the
radiomic risk score, gene expression level, and clinicopathologic char-
acteristics (Fig. 5A). Further GO analysis revealed significant associa-
tions of the radiomic risk score with biological processes, including the
immune response, programmed cell death, NF-kappaB signaling, and
vasculature development (Fig. 5B). Radiogenomic analysis in the TCGA
cohort revealed that some of the processes positively associated with
high-risk score exist both in the CGGA and TCGA cohorts, such as im-
mune response, NF-kappaB signaling, and angiogenesis (Supplementary
Fig. 2). To reveal the underlying malignant biological processes of each
feature in the radiomic signature, we analyzed the negatively associated
biological processes of Correlation, Correlation_HHL, Kurtosis_HLH and
Sum Variance_HHL, given that these four features were negatively
correlated with poor PFS. Similarly, the positively associated biological
processes of the other five features were analyzed individually because
they were positively correlated with poor PFS. Certain individual fea-
tures were indeed associated with malignant biological processes, in-
cluding epithelial-to-mesenchymal transition, positive regulation of cell
division, the immune response, and positive regulation of cell migration
(Supplementary Fig. 3 and Supplementary Fig. 4), all of which could

Fig. 2. Construction of a radiomic signature predictive of progression-free survival using the LASSO regression model. (A) Tuning parameter (lambda) screening in
the LASSO regression model. The partial likelihood deviance is generated versus log(lambda), and the lowest partial likelihood deviance corresponds to the optimal
number of features. The dotted vertical lines correspond to the optimal lambda value according to the 1 standard error criteria and the minimum criteria. When 9
features remain, the partial likelihood deviance is the lowest. (B) The LASSO coefficient profiles of the 45 radiomic features. A vertical line is drawn at the value
chosen by 10-fold cross-validation, which indicates that 9 non-zero coefficients were identified by the optimal lambda value. LASSO, least absolute shrinkage and
selection operator.

Fig. 3. Kaplan-Meier survival curves for low- and high- risk groups based on the radiomic risk score. The radiomic signature significantly stratified the progression-
free survival in both (A) the training (P < 0.0001) and (B) the validation (P=0.0233) cohorts. The tick marks represent censored observations.

Table 1
Clinicopathologic characteristics of patients with lower-grade glioma in the
training cohort (n= 216).

Variable Low risk (n= 162) High risk (n= 54) P value

Age (years) ≤40 100 28 0.201
> 40 62 26

Sex Male 98 33 0.936
Female 64 21

Histology A 59 21 0.745
OA and O 103 33

Seizure Yes 86 20 0.066
No 76 32
NA 0 2

WHO Grade WHO II 126 28 < 0.001
WHO III 36 26

IDH Status Mutant 120 27 0.001
Wild type 42 27

Abbreviations: A: astrocytoma, IDH: isocitrate dehydrogenase, NA: not avail-
able, O: oligodendroglioma, OA: oligoastrocytoma, WHO: World Health
Organization.
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contribute to poor PFS.

4. Discussion

In this study, many radiomic features were extracted from T2-
weighted MR images and a radiomic signature was identified as an
approach for stratifying patients into low-risk and high-risk groups.
These two groups had significantly different PFS in both the training
and validation cohorts. Subsequently, the radiomic signature was in-
tegrated into a nomogram along with clinicopathologic characteristics,
and an effective tool was constructed for individualized assessment of
PFS in patients with LGGs. Moreover, subsequent radiogenomic ana-
lysis revealed that the radiomic signature was associated with biolo-
gical processes, including the immune response, programmed cell
death, cell proliferation, and vasculature development.

Previous studies have revealed that PFS can be predicted by several
conventional observable MRI features (e.g., tumor contrast enhance-
ment pattern,(Wang et al., 2016a) peritumoral edema (Wang et al.,
2016b), and tumor location (Wang et al., 2017)) in certain subgroups of
glioma. Additionally, a series of correlations has been found between
PFS in patients with gliomas and voxel-based imaging features, such as
the maximum relative cerebral blood volume value (Bisdas et al., 2009)
and the minimum apparent diffusion coefficient (Romano et al., 2013)
of a single voxel in the tumor region. In recent years, radiomic analysis
has emerged as a powerful tool for building decision-support models
based on high-throughput quantitative features extracted from medical
images (Gillies et al., 2016). Radiomics-based PFS-predictive models

have been reported for early-stage non-small cell lung cancer (Huang
et al., 2016) and advanced nasopharyngeal carcinoma (Zhang et al.,
2017), indicating the feasibility of predicting PFS in patients with LGGs
by radiomic analysis.

In the current study, 45 of 431 radiomic features were screened by
univariate Cox regression analysis, and 9 features that were strongly
associated with PFS were further selected from these 45 radiomic fea-
tures based on the LASSO Cox regression model. The radiomic signature
constructed using these 9 features revealed adequate discrimination
both in the training (P < 0.0001, log-rank test) and validation
(P=0.0233, log-rank test) cohorts. Intriguingly, most of the 9 prog-
nostic features in the signature were also demonstrated to be able to
capture prognostic information in previous studies. For example, it was
reported that low Kurtosis and high Uniformity were related to poor
outcomes (defined by a shorter time to progression) in patients with
primary colorectal cancer (Ng et al., 2013), which is similar to our
findings. Specifically, this phenomenon could be biologically inter-
preted using our radiogenomic analysis because Kurtosis was negatively
associated with malignant biological processes, such as positive reg-
ulation of cell division and positive regulation of transcription (Sup-
plementary Fig. 3D), while Uniformity was positively associated with
mitotic nuclear division and nucleosome assembly (Supplementary
Fig. 4D). Another study revealed Sum Variance and Correlation to be
two of the most predictive features in differentiating long-term and
short-term survival in patients with glioblastoma (Prasanna et al.,
2017). Furthermore, the feature Median was found to be associated
with PFS in patients with advanced nasopharyngeal carcinoma (Zhang

Table 2
Cox regression analysis for patients in the training cohort.

Univariate Cox regression Multivariable Cox regression

HR 95% CI P value HR 95% CI P value

Age (years)
≤40 vs. > 40 1.279 0.902–1.813 0.167

Sex
Male vs. Female 0.791 0.557–1.124 0.191

Histology
A vs. O/OA 0.722 0.656–1.339 0.937

Grade
WHO III vs. WHO II 2.489 1.719–3.604 <0.001 1.945 1.316–2.875 <0.001

Seizure
Yes vs. No 0.573 0.400–0.820 0.002 0.709 0.493–1.021 0.065

IDH Status
MUT vs. WT 0.527 0.368–0.754 <0.001 0.670 0.460–0.974 0.036

Radiomic Risk
High vs. Low (cutoff=−1.755) 2.871 1.980–4.163 <0.001 2.306 1.558–3.411 <0.001

Abbreviations: CI: confidence interval, HR: hazard ratio, MUT: mutant, WHO: World Health Organization, WT: wild-type.
The statistically significant P value was displayed in bold font (P < 0.05).

Table 3
Nine prognostic radiomics features selected for further analysis using the LASSO Cox regression model.

Features Filter Descriptions Coefficients (β)

Correlation – Correlation measures the gray level linear dependence between pixels at a specified location relative to each
other.

−2.48
Correlation HHL −2.17× 10−1

Kurtosis HLH Kurtosis measures the sharpness of the first-order histogram. −3.40× 10−3

Median HLL Median is the value that divides the upper and lower half of the sorted array of pixel values. 5.95× 10−2

Run Length Nonuniformity HHL Describes the similarity of the lengths of runs throughout the image. This feature is low if the run lengths are
similar.

2.87× 10−6

Run Percentage HLH Describes the distribution and the homogeneity of runs of an image in a certain direction. This feature is very high
if all gray levels have the run lengths of 1.

3.33× 10−2

Short Run Low Gray Level Emphasis LLL Describes the joint distribution of short runs and low gray level values. This feature is high when the image has
many short runs and lower gray level values.

1.13

Sum Variance HHL Sum Variance measures the gray-level co-occurrence matrix relationship to distribution of intensity with respect
to variance. High Sum Variance corresponds to greater standard deviation of sum average.

−8.04× 10−4

Uniformity – Uniformity describes the uniformity of the image. 1.92× 101

Abbreviation: LASSO: least absolute shrinkage and selection operator.
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et al., 2017).
In the context of precision medicine, an individualized PFS predic-

tion model that can guide therapeutic strategies is essential. A nomo-
gram is an approach that enables neuro-oncologists to estimate patient
survival based on their clinical and biological profiles, which is an
advance towards patient-tailored treatment in the changing landscape
of neuro-oncology (Bredel, 2008). In the current study, a nomogram
that integrates radiomics and clinicopathologic information was es-
tablished for evaluation of PFS in patients with LGGs for the first time.
Favorable results were achieved in two independent datasets (CGGA, C-
index 0.684; TCGA, C-index 0.823), indicating that the nomogram is
robust and potentially applicable in clinical practice.

Further radiogenomic analysis in our study suggested that the
radiomic approach could potentially reflect biological processes and
guide treatment for patients with LGGs. For example, the radiomic risk
score was found to be positively correlated with certain malignant
tumor processes, such as cell proliferation, cell adhesion, and vascu-
lature development. Therefore, more aggressive therapeutic strategies
are suggested for patients with high radiomic risk scores. Further, drugs
that target the immune system, development of blood vessels, or the
nuclear factor kappa B pathway might be helpful for patients with high
radiomic risk scores. Although the hypotheses outlined above are pre-
liminary and need to be prospectively evaluated in future studies, our
present findings provide an approach for integrating imaging features,

clinical characteristics, and genetic information to aid in clinical deci-
sion-making with regard to the management of LGGs.

The main limitation of this study is its retrospective design. The
imaging protocols used were not fully consistent in that the imaging
data were acquired by different MRI scanners in different centers.
However, all the imaging data were normalized before extraction of
features to reduce bias. Previous studies have already documented the
robustness of extraction of radiomic features in terms of repeatability
and reproducibility in test/re-test settings (Aerts et al., 2014;
Balagurunathan et al., 2014; Fried et al., 2014; Grove et al., 2015;
Leijenaar et al., 2013; Parmar et al., 2015). We expect that the per-
formance of the radiomic signature will be further improved by more
standardization of imaging data. Additionally, the biological processes
underlying the radiomic signature and its components need to be va-
lidated in the future by prospectively designed studies.

In conclusion, the present study developed a radiomic signature as a
non-invasive approach for preoperative evaluation of PFS in patients
with LGGs. A radiomics-based nomogram and subsequent radiogenomic
analysis could be useful in precision medicine and improve the ther-
apeutic strategies used in patients with LGGs.
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