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Objective: This study screened potential fluid biomarkers and developed a prediction
model based on the easily obtained information at initial inspection to identify ataxia
patients more likely to have multiple system atrophy-cerebellar type (MSA-C).

Methods: We established a retrospective cohort with 125 ataxia patients from
southwest China between April 2018 and June 2020. Demographic and laboratory
variables obtained at the time of hospital admission were screened using Least
Absolute Shrinkage and Selection Operator (LASSO) regression and logistic regression
to construct a diagnosis score. The receiver operating characteristic (ROC) and decision
curve analyses were performed to assess the accuracy and net benefit of the model.
Also, independent validation using 25 additional ataxia patients was carried out to verify
the model efficiency. Then the model was translated into a visual and operable web
application using the R studio and Shiny package.

Results: From 47 indicators, five variables were selected and integrated into the
prediction model, including the age of onset (AO), direct bilirubin (DBIL), aspartate
aminotransferase (AST), eGFR, and synuclein-alpha. The prediction model exhibited an
area under the curve (AUC) of 0.929 for the training cohort and an AUC of 0.917 for the
testing cohort. The decision curve analysis (DCA) plot displayed a good net benefit for
this model, and external validation confirmed its reliability. The model also was translated
into a web application that is freely available to the public.

Conclusion: The prediction model that was developed based on laboratory and
demographic variables obtained from ataxia patients at admission to the hospital might
help improve the ability to differentiate MSA-C from spinocerebellar ataxia clinically.
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INTRODUCTION

Multiple system atrophy (MSA) is a sporadic and continuously
progressive neurodegenerative disorder (Gilman et al., 2008).
MSA includes two primary subtypes, predominant parkinsonism
(MSA-P) and cerebellar ataxia (MSA-C), of which MSA-C is the
most common subtype in the East-Asian population (Watanabe
et al., 2002; Gilman et al., 2005; Yabe et al., 2006). Presently, there
is no effective treatment for MSA-C, but clinical intervention in
the early stages of the disease might improve patients’ quality of
life and prolong their survival (Klockgether et al., 1998; Wenning
et al., 2013; Jacobi et al., 2015; Fanciulli et al., 2019). Therefore,
early diagnosis of MSA-C is the central focus of current research.

No specific and objective biomarkers are known for
MSA-C. Disease history, clinical manifestations, neurological
examinations, and some neuroimaging features are currently
common methodologies used to diagnose MSA-C. However,
due to individual patient differences and the disease stage,
it is typically challenging to diagnose MSA-C accurately
based on these conventional characteristics, and it is easy to
confuse MSA-C with other ataxia diseases, specifically hereditary
spinocerebellar ataxia (SCA) (Palma et al., 2018). Therefore,
objective biomarkers properly useful for distinguishing between
these two diseases would be of great help when initial clinical
features are similar. Currently, numerous studies have focused
on identifying candidate disease biomarkers for MSA-C from
cerebrospinal fluid (CSF) and peripheral blood (Jellinger, 2017).
CSF is an ideal biological sample because it is more likely
to reflect specific neurophysiological changes, but it must be
obtained through invasive surgery (lumbar puncture). On the
other hand, peripheral blood is safer and easier to obtain. The
various biomarkers in the blood including proteins, lipids, and
many other metabolites could serve as potential diagnostic and
prognostic markers for the disease.

The liquid biomarkers selected in our study were mainly
divided into two groups. One group is related metabolic
indicators which are actually clinical basic indicators routinely
tested for diagnostic use. Previous studies have shown that
abnormal metabolites change may exist in neurodegenerative
diseases including Alzheimer’s disease (AD), Parkinson’s disease
(PD), as well as MSA (Zhou et al., 2016; Nam et al., 2018; Takae
et al., 2018; Nho et al., 2019). Notably, several studies have shown
that the levels of metabolic related markers including uric acid
(URIC) and homocysteine are aberrant in MSA patients (Lee
et al., 2011; Chen et al., 2015; Zhou et al., 2016). Therefore,
the screening of those markers reflecting the metabolic status of
patients which are also widely available in clinical laboratories
may provide potential clues for diagnosis and pathogenesis study
of MSA. The other group includes proteins that are associated
with inflammation, neurodegeneration, regeneration, and so on.
Previous studies have indicated that the glial inflammation may
play a role in MSA disease progression (Yokoyama et al., 2007).
A study showed CSF cytokine/chemokine/growth factor profiles
in MSA-C and SCA in which pro-inflammatory cytokines like IL-
6, GM-CSF, and MCP-1 displayed specific correlation with the
disease stage in MSA-C (Yamasaki et al., 2017). Besides, several
proteins including calbindin D, amyloid precursor protein (APP),

S100B, and synuclein-alpha (α-synuclein) have been ascertained
in neurodegenerative diseases such as AD, Huntington’s disease
(HD), multiple sclerosis, and MSA (Steiner et al., 2011; Stefanits
et al., 2014; van Waalwijk van Doorn et al., 2016; Mavroudis
et al., 2020). Meanwhile, the investigation of other proteins
such as carbonic anhydrase, CD117/c-kit, proganulin, and
kallikreins which may play roles in neural circuit development
and maintenance, stress response, innate immunity, and aging as
well as brain innate immunity may open a new avenue for the
study of MSA (Greco et al., 2012; Dukic et al., 2016; Chitramuthu
et al., 2017; Gennarini et al., 2017; Hsieh et al., 2019).

Despite the continuous exploration of specific biomarkers,
recent efforts have been made on establishing clinical prediction
models integrating demographic characteristics, clinical
variables, and laboratory indicators for improving the diagnosis
or predicting survival prognosis of neurological diseases with
an output of quantitative risk estimate using limited number of
relatively objective predictors. Therefore, we screened potential
fluid biomarkers of MSA-C and combined mainly demographics
characteristics to establish a clinical prediction model to improve
the early identification and diagnosis of MSA-C.

MATERIALS AND METHODS

Participants
Seventy-nine MSA-C patients and 46 hereditary
ataxia patients were enrolled in the Department of
Neurology, West China Hospital, Sichuan University, between
April 2018 and June 2020. The MSA-C patients were assessed
and defined based on the second consensus statement on the
diagnosis of MSA, which is universally adopted (Gilman et al.,
2008). Briefly, the MSA-C patients exhibited specific features: (1)
sporadic, progressive, adult-onset disease signs (age > 30 years)
with predominant cerebellar syndromes, including gait ataxia,
dysarthria, limb ataxia, or cerebellar oculomotor dysfunction;
(2) autonomic failure involving urinary incontinence, erectile
dysfunction and orthostatic hypotension, or parkinsonism
with a poor levodopa response; and (3) no common genetic
diagnosis of hereditary ataxia. The patients diagnosed with
hereditary ataxia were assessed based on the diagnostic criteria
associated with SCA (Muzaimi et al., 2004; Klockgether et al.,
2019). The diagnostic guidelines for hereditary SCA included
(1) onset of symptoms that occurred in patients older than 18
and presented predominantly progressive cerebellar ataxia with
a disease duration longer than 1 year; and (2) cases with a family
history of the presence of a similar disorder, and after passing
molecular genetic testing, it was determined that the patients
carried SCA-related mutant genes. We have screened the gene
for SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA10, SCA12,
SCA17, and DRPLA. The results turned out that there were only
SCA1, SCA2, SCA3, and SCA6 patients in our study.

Individuals were not included in the study if they exhibited
secondary ataxia caused by cerebrovascular disease, tumors,
alcoholism, vitamin B1 or B12 deficiency, folate deficiency, drug
use, neurosyphilis, multiple sclerosis, paraneoplastic cerebellar
degeneration, immune-mediated cerebellitis, or hypothyroidism.
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From August 2019 to October 2020, we included an additional 25
patients with undiagnosed ataxia in an independent verification
cohort for evaluation and analysis. The schematic diagram for the
research design is shown in Figure 1.

Information on the Collection and
Detection of the Fluid Biomarkers
Information was collected for each patient concerning their
demographic and clinical characteristics as well as laboratory
examination results when they were first admitted and before
any treatment had occurred. The laboratory examination namely
as related metabolic or biochemical indicators included
total bilirubin (TBIL), direct bilirubin (DBIL), indirect
bilirubin (IBIL), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), total protein (TP), albumin (ALB),
globulin (GLB), urea (UREA), creatinine (CREA), cystatin C
(CysC), URIC, triglyceride (TG), cholesterol (CHOL), high-
density lipoprotein cholesterol (HDLC), low-density lipoprotein
cholesterol (LDLC), alkaline phosphatase (ALP), glutamyl
transpeptidase (GGT), estimated glomerular filtration rate
(eGFR), sodium (NA), potassium (K), lactate dehydrogenase
(LDH), hydroxybutyrate dehydrogenase (HBDH), creatine
kinase (CK), and glucose (GLU). They are actually clinical
basic indicators routinely tested for diagnostic use. These
analytes were tested by qualified laboratory personnel following
standard operating procedures established by the Department
of Laboratory Medicine in West China Hospital of Sichuan

University (WCH-LM-CHE-SOP-T1). Also, they were measured
using Roche Cobas 702 automatic biochemical analyzer (Roche,
Mannheim, Germany) with the corresponding reagents,
calibrators, and quality control materials. The specific method
for each analyte is listed in Supplementary Table 1.

Additional testing for 20 proteins included C-C motif
ligand (CCL)2/macrophage chemoattractant protein-1 (MCP-
1), CCL11, CD117/c-kit, α-synuclein, contactin-1, interleukin-
1 receptor antagonist (IL-1ra), IL-1β, IL-6, IL-15, IL-7, GM-
CSF, carbonic anhydrase, S100B, APP, calbindin D, proganulin,
kallikrein 3, kallikrein 5, kallikrein 6/neurosin, and urokinase.
These proteins were detected using Human Magnetic Luminex
Screening Assay (LXSAHM; R&D Systems, Minneapolis, MN,
United States) on Bio-Plex 200 detection platform (Bio-Rad,
California, United States) according to the manufacturer’s
instructions. The serum samples for Luminex assays were the
residuals of blood samples obtained from patients for routine
clinical experiments at first admission. They were centrifuged for
15 min at 1,000 × g then were stored at −80◦C until used. On the
day the samples were assessed, previously frozen serum samples
were centrifuged at 16,000 × g for 4 min immediately and 50 µl of
serum samples were handled in twofold dilutions with Calibrator
Diluent RD6-52 provided in the kit. The sample concentration
was calculated based on the standard curve determined for each
analyte, which was derived from the serial dilution concentration
of the standard. No sample exceeded the upper detection limit
or fell below the lower detection limit. The standards were tested
in duplicate. As for the standard curve, the coefficient of variation

FIGURE 1 | Flowchart of the study design.
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(CV) was calculated and did not exceed 20% and the recovery rate
was between 80 and 120%. The detailed principles and protocols
are introduced in Supplementary Sheet 1.

Core Variable Selection and
Identification of the Established Model
The Least Absolute Shrinkage and Selection Operator (LASSO)
regression analysis was performed to select core variables that
could decrease the regression coefficient for each variable
within a specific range and eliminate the feature with a
coefficient of 0, independent of statistical significance (Tibshirani,
1997). Forty-seven possible indicators including AO, gender,
25 related metabolic markers, and 20 proteins were included
in LASSO analysis at first. This protocol identified variables
that were more representative for disease outcomes that
allowed the identification of an optimally refined generalized
linear model without overfitting, which was better suited for
the variable analysis of studies with small sample numbers
(Corey et al., 2018). The remaining core variables were
integrated to establish a model using logistic regression. Shiny
R Package was used to build interactive web applications.
The steps described previously were accomplished using R,
version 3.5.0, for Mac.

Statistical Analysis
The distributions of variables were assessed using Kolmogorov–
Smirnov tests and quantile–quantile plots. Continuous variables
with normal distribution were presented as mean ± SDs.
Continuous variables not following the normal distribution
and categorical variables were presented as medians (upper
and lower quartiles) and in terms of frequency, respectively.
The χ2 test for categorical variables and Student’s t-test or
Mann–Whitney U test for continuous variables were applied
to compare the two groups. The diagnostic performance of the
equation was displayed using receiver operating characteristic
(ROC) analysis and quantified using the area under the curve
(AUC). Decision curve analysis (DCA) was used to measure
the net clinical benefits. All statistical analyses were carried
out using SPSS, version 25.0, and R, version 3.5.0, for Mac.
All statistical tests were two-tailed, and P <0.05 indicated
statistical significance.

Standard Protocol Approvals,
Registrations, and Patient Consent
The protocols used in this study were approved by the West
China Hospital, Sichuan University Medical Ethics Committee.
Written informed consent was obtained from all participants.

RESULTS

Demographic and Clinical Information
One hundred twenty-five patients were included in a derivation
cohort, among which 82 patients (31 SCA vs. 51 MSA-C) were
enrolled randomly in a training cohort, and 43 patients (15 SCA
vs. 28 MSA-C) were enrolled randomly in a testing cohort. The
frequency of MSA-C in the training cohort (62.20%) was not

significantly different from the testing cohort (65.12%). Also,
medical information from an additional 25 ataxia-like patients
was collected using the same criteria for external independent
validation. The demographic and clinical characteristics of
participants in the derivation cohort are shown in Table 1. The
median age of onset (AO) for MSA-C and SCA was significantly
different. The information of different subtypes of SCA patients
are displayed in Supplementary Table 2.

Among the fluid markers assessed in the training set, we
observed only IL-7 as a neuroinflammation-related cytokine that
was significantly differentially expressed between MSA-C patients
and SCA patients, with higher levels in SCA patients (Table 2 and
Supplementary Figure 1). Similarly, four metabolites exhibited
different levels between the two groups, including relatively
increased AST, GLU, and CysC, while the level of eGFR was
lower in MSA-C patients. However, different trends of expressed
markers were observed in the testing set where additional
metabolomic changes existed (Table 2).

Core Variable Selection and
Establishment of the Identification Model
We investigated the possibility of identifying MSA-C patients
based on candidate variables. Using the Lasso regression
analysis for multivariate analysis, five core variables (AO,
DBIL, AST, eGFR, and α-synuclein) were selected out of
47 possible indicators to formulate a disease panel. DBIL
presented no significant differences between the two groups
when assessed in univariate analysis. However, higher AST level
(P = 0.027) and lower level of eGFR were observed in the
MSA-C patients (P < 0.001). The remaining five core variables
with favorable identification efficiency were integrated into a
logistic identification model and simultaneously credited with
weighting coefficients. Afterward, the five core variables were
combined according to the weighting coefficients to obtain a
scoring formula.

The Performance of the Model
The ROC curve was displayed to validate the predictive accuracy
of the model. The ROC illustrated that an AUC of 0.929 (95% CI:
0.872–0.985) was present in the training set, and an AUC of 0.917
(95% CI: 0.829–0.995) was present for the testing set, revealing
good concordance and reliable ability. The cutoff value for the
training set was 0.707. The DCA quantitatively demonstrated
a high clinical net benefit over the entire probability threshold
(Figures 2A,B).

External Independent Validation
We included 25 suspected ataxia patients to independently
validate the model before obtaining their final definite diagnosis
information. According to the suggestive prediction results
from the model, 15 individuals were identified as MSA-C
patients. Subsequently, we compared the model prediction
results after obtaining the final diagnoses, which were confirmed
using a combination of clinical evaluation, neuroimaging
results, and genetic testing. The comparison revealed that 13
MSA-C patients were confirmed to have MSA-C compared
with the predicted results of 15 individuals (13/15, positive
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predictive value = 86.67%). Two patients who were not
recognized by the model were confirmed as MSA-C patients
after the comprehensive diagnostic evaluation (8/10, negative
predictive value = 80%).

Construction of the Web Application
The Shiny R Package was used to transform the prediction
model into a visualizing and operational web application1, which
integrated all five selected factors. By dragging the slider below
each of the variables, the corresponding parameter could change,
and the sum of the points calculated represented the predictive
probability of the risk for MSA-C (Figure 2C).

DISCUSSION

Over the past decade, many clinicians have summarized disease
characteristics and conducted research with the goal of better
defining and diagnosing MSA-C (Koga and Dickson, 2018). In
fact, on account of heterogeneity in clinical characteristics due
to different stages of disease and individual variation, it is easy
to misdiagnose MSA-C as other similar diseases such as SCA.
Meanwhile, with the lack of pedigree and genetic information,
the certain diagnosis of SCA can also be difficult. However, little
has been gained due to a lack of sufficient specific biomarkers
of the disease. Unfortunately, no specific biomarkers for MSA-
C have been found in this study or previous studies. Even
though some potential specific biomarkers in our study exhibited
significant differences, their specificity for a diagnosis of MSA-C
was not convincing.

When specific biomarkers cannot meet the requirements for
adequate disease diagnosis, a clinical prediction model based
on information, including multiple demographic characteristics,
clinical variables, and laboratory indicators, might improve the
diagnostic efficiency for some neurological diseases, avoid specific
biases, and provide relatively objective predictions. For example,
a nomogram developed by Wei et al. based on seven predictive
factors (the AO, rate of disease progression, hemoglobin A1c
level, body mass index, creatinine, creatine kinase, and non-
invasive positive pressure ventilation) was used to predict the
possibility of longer survival of amyotrophic lateral sclerosis
patients and attained an AUC of 0.92 (95% CI: 0.88–0.96)

1https://guoshuo.shinyapps.io/shuo/

(Wei et al., 2018). Such advances also have been proposed and
proved sufficient in the diagnosis and subsequent health care
management of many diseases. Therefore, we hypothesized that
combining variables from different assessment parameters could
be used to develop successful predictive models to identify MSA-
C patients.

In this study, we screened five predictors (AO, DBIL, AST,
eGFR, and α-synuclein) as a panel that were combined to
construct a predictive diagnosis model for MSA-C. These five
predictors were essential for improving the identification of
MSA-C patients. AO was an independent positive indicator
for MSA-C, which matched the natural baseline information
reported for MSA-C and SCA, as the peak AO of MSA-C was later
than SCA (Jellinger and Wenning, 2016). Both AST and eGFR
presented significant differences between the MSA-C and SCA
groups, whereas there was no difference for DBIL between the
two groups. Accumulative evidence has suggested misfolded α-
synuclein could be a key component in the pathogenic pathway
leading to neurodegeneration and the pathological presence in
autopsy results of α-synuclein-containing protein aggregates,
also known as glial cytoplasmic inclusion (GCI) bodies, was
regarded as the crucial method for a definitive diagnosis of
MSA (Trojanowski et al., 2007; Ubhi et al., 2011; Jellinger and
Wenning, 2016; Woerman et al., 2018). Therefore, numerous
studies have focused on CSF or blood α-synuclein levels in
the diagnosis of MSA, but the results have been inconsistent.
Interestingly, α-synuclein alone did not exhibit a significant
difference between the two groups in our study. Nevertheless, it
remained as one of the core variables suitable to be added into
the model construction. The vast majority of MSA-C patients do
not have a familial predisposition, and the family history of some
patients were unclear or missing, so we did not include family
history as a parameter in the variable-based prediction model.

The performance evaluation and external clinical validation
for this model demonstrated good reliability and accuracy,
with a satisfactory AUC of 0.929 and 0.917 in the training
and testing sets, respectively. Only minor differences were
observed between the two sets, all of which revealed the good
discrimination accuracy of this model. Moreover, we performed
a DCA evaluation in this study, and it indicated that the model
had an overall high net clinical benefit at different threshold
probabilities, suggesting that the judgments made in the model
will benefit patients in most cases.

TABLE 1 | Demographic and clinical characteristics of the patients enrolled.

Training cohort Testing cohort

MSA-C SCA P MSA-C SCA P

Age of onset 59(53–65) 43(36–54) <0.001 56(53–64) 49(37–52) 0.004

Gender 26/25 14/17 0.609 15/13 9/6 0.813

Family history 0/45 26/30 <0.001 0/25 12/15 <0.001

Autonomic dysfunction 49 15 <0.001 25 8 0.023

Atrophy on MRI 47 26 0.424 26 11 0.161

Gender was presented as male/female; Family history was shown as cases with positive family history/total cases with family history inquire; Atrophy on MRI refers to
atrophy on MRI of putamen, middle cerebellar peduncle, pons, or cerebellum. The bold values represent the P value less than 0.05.
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TABLE 2 | The fluid biomarkers levels of the patients enrolled.

Training cohort Testing cohort

MSA-C SCA P MSA-C SCA P

TBIL (µmol/L) 11.5(8.6–14.2) 11.2(9.4–15.8) 0.334 11.5(8.1–14.7) 13.3(9.2–15.6) 0.199

DBIL (µmol/L) 3.3(2.8–4.2) 3.6(2.9–5.6) 0.144 3.1(2.7–3.5) 3.3(3.0–3.8) 0.189

IBIL (µmol/L) 7.4(5.5–9.9) 7.9(6–10.3) 0.503 7.6(5.2–9.6) 9.3(6.0–11.0) 0.186

ALT (IU/L) 18(14–24) 14(11–23) 0.127 19(16–25) 25.5(17–39.5) 0.198

AST (IU/L) 21(18–28) 19(15–23) 0.027 26(21.5–32) 20(18–25) 0.002

TP (g/L) 69.19 ± 5.57 71.36 ± 5.99 0.101 67.38 ± 6.1 73.34 ± 5.77 0.001

ALB (g/L) 43.91 ± 3.92 44.46 ± 4.00 0.537 41.98 ± 3.69 44.99 ± 3.56 0.005

GLB (g/L) 25.28 ± 4.48 26.89 ± 4.26 0.112 25.40 ± 3.74 28.35 ± 4.04 0.009

GLU (mmol/L) 5.07(4.62–5.75) 4.77(4.33–5.15) 0.041 5.07(4.62–5.71) 4.71(4.35–5.62) 0.331

UREA (mmol/L) 5.17 ± 1.57 4.67 ± 1.31 0.147 5.40 ± 1.72 5.02 ± 0.77 0.36

CREA (µmol/L) 63(55–75) 59(50–67) 0.085 62(55–83) 79(53–81) 0.869

CysC (mg/L) 0.91 ± 0.11 0.82 ± 0.15 0.002 0.94 ± 0.18 0.92 ± 0.14 0.696

URIC (µmol/L) 282(241–369) 275(225–327) 0.253 314(256–384) 293(229–370) 0.474

TG (mmol/L) 1.44 ± 0.96 1.17 ± 0.52 0.158 1.48 ± 0.76 1.32 ± 0.74 0.446

CHOL (mmol/L) 4.55 ± 0.78 4.57 ± 0.76 0.887 4.37 ± 0.92 4.60 ± 0.96 0.39

HDLC (mmol/L) 1.50 ± 0.42 1.50 ± 0.44 0.928 1.20 ± 0.36 1.35 ± 0.37 0.174

LDLC (mmol/L) 2.58 ± 0.68 2.72 ± 0.70 0.374 2.58 ± 0.73 2.68 ± 0.76 0.557

ALP (IU/L) 69(61–89) 69(59–83) 0.473 78(68–92) 85(67–96) 0.373

GGT (IU/L) 21(13–35) 15(13–22) 0.121 20(16–32) 22(15–34) 0.912

eGFR (mL/min) 95.50 ± 11.73 111.15 ± 12.46 < 0.001 96.04 ± 14.03 101.27 ± 18.58 0.284

NA (mmol/L) 142.66 ± 1.82 142.07 ± 2.16 0.189 143.68 ± 1.70 142.76 ± 2.44 0.135

K (mmol/L) 4.10(3.87–4.4) 4.09(3.99–4.27) 0.996 3.97(3.75–4.12) 3.93(3.67–4.11) 0.588

LDH (IU/L) 177(152–198) 178(159–197) 0.977 161(144–182) 191(162–211) 0.002

HBDH (IU/L) 142(118–156) 144(121–155) 0.935 126(111–139) 153(130–169) 0.001

CK (IU/L) 75(59–101) 85(66–126) 0.16 80(53–109) 107(68–152) 0.033

Carbonic Anhydrase (pg/mL) 28.59 ± 16.33 37.27 ± 22.33 0.229 24.41 ± 19.58 31.51 ± 18.02 0.345

Proganulin (pg/mL) 41965.39 ± 16410.80 42880.48 ± 18336.43 0.885 37814.59 ± 19829.00 45736.21 ± 18312.81 0.282

Urokinase (pg/mL) 746.88 ± 448.37 793.91 ± 342.10 0.744 736.29(328.83–959.34) 766.57(257.69–920.59) 0.91

APP (pg/mL) 4863.79 ± 2041.30 6014.14 ± 3215.31 0.125 8463.76 ± 3176.12 10612.37 ± 3202.44 0.099

S100B (pg/mL) 477.98 ± 95.71 547.85 ± 145.75 0.151 350.31 ± 222.26 522.11 ± 327.68 0.117

Calbindin D (pg/mL) 46.91 ± 18.48 52.20 ± 24.47 0.528 61.97 ± 26.31 65.95 ± 23.07 0.673

Contactin-1 (pg/mL) 95.41(71.59–119.41) 109.49(76.70–137.85) 0.643 102(78–133) 148.90(99.61–195.40) 0.042

GM-CSF (pg/mL) 9.95(8.33–12.85) 14.71(8.87–27.42) 0.077 11.75(9.82–17.99) 15.71(12.49–20.04) 0.16

CCL11 (pg/mL) 139.04 ± 81.04 123.34 ± 69.19 0.592 177.52 ± 110.48 137.34 ± 78.29 0.31

CCL2/MCP-1 (pg/mL) 1886.92(1299.49–2502.96) 1892.47(1255.21–2380.58) 0.981 1772.44(1285.95–2700.49) 2388.32(1388.61–2643.39) 0.285

CD117/c kit (pg/mL) 2871.91(1707.97–4055.16) 2806.98(1728.85–3975.72) 0.633 2229.06(1545.08–4063.76) 2810.99(1657.68–4302.99) 0.471

IL-1ra (pg/mL) 259.38(172.26–472.42) 235.02(173.44–338.66) 0.392 573.05(242.52–1221.935) 683.20(307.66–848.79) 0.982

IL-1β (pg/mL) 20.12 ± 14.85 17.70 ± 3.85 0.533 17.73 ± 5.30 17.38 ± 4.42 0.852

IL-6 (pg/mL) 3.28 ± 0.77 3.44 ± 1.53 0.697 4.51 ± 3.39 6.52 ± 3.49 0.534

IL-7 (pg/mL) 10.35 ± 3.29 13.56 ± 4.34 0.045 13.68 ± 7.17 16.98 ± 9.87 0.368

IL-15 (pg/mL) 6.76 (5.49–8.59) 6.98 (5.80–10.84) 0.626 7.86 ± 3.12 6.64 ± 2.19 0.634

Kallikrein 3 (pg/mL) 305.92 ± 82.54 329.22 ± 131.11 0.597 306.56 ± 102.06 357.96 ± 74.04 0.206

Kallikrein 5 (pg/mL) 1045.93 ± 476.68 835.53 ± 569.11 0.346 1099.09 ± 600.28 984.74 ± 735.35 0.714

Kallikrein 6/Neurosin (pg/mL) 1473.92(1273.09–1647.58) 1363.65(920.17–1742.88) 0.238 1504.69(1064.80–1826.89) (1409.67(–798.61–1939.33) 0.451

Synuclein-alpha (pg/mL) 198.22(156.91–261.58) 209.01(139.67–327.54) 0.569 240.16(193.88–330.00) 268.66(209.57–326.97) 0.589

ALB = Albumin; ALP = Alkaline phosphatase; ALT = Alanine aminotransferase; AST = Aspartate aminotransferase; CHOL = Cholesterol; CK = Creatine kinase;
CREA = Creatinine; CysC = CystatinC; DBIL = Direct bilirubin; eGFR = Estimated glomerular filtration rate; GGT = Glutamyl transpeptidase; GLU = glucose; GLB = Globulin;
HBDH = Hydroxybutyrate dehydrogenase; HDLC = High-density lipoprotein cholesterol; IBIL = Indirect bilirubin; K = Potassium; LDH = Lactate dehydrogenase;
LDLC = Low-density lipoprotein cholesterol; NA = Sodium; TBIL = Total bilirubin; TG = Triglyceride; TP = Total protein; UREA = Urea; URIC = Uric acid. The bold
values represent the P value less than 0.05.
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FIGURE 2 | (A) Receiver operator characteristic curve of the identification model in training set and testing set. The AUC of this model is 0.929 and 0.917 in training
set and testing set, respectively. (B) Decision analysis curve of the identification model. Dotted line: prediction model. Solid line: all patients with MSA-C. Horizontal
line: all patients without MSA-C. The decision curve shows that using the identification model to identify MSA-C yields more benefits than total or no relative
treatment. If the patient has a personal threshold probability of 60% (i.e., if the patient has a MSA-C probability of 60%, the patient will choose corresponding
treatment), then the net benefit is 0.453 when the decision is made using the model. (C) Application example of the identification model. A 52-year-old male patient
with suspected ataxia was admitted to the Department of Neurology, West China Hospital. We entered the corresponding parameters of each marker. Then, the
model showed his probability of MSA-C was 0.79. The follow-up clinical comprehensive evaluation, neuroimaging examination, and genetic testing confirmed the
speculation of our model.

Also, determination of the true clinical application ability
was of utmost importance, for which we enrolled 25 suspected
ataxia patients as an independent validation cohort. The
model results were compared with the comprehensive
assessments for the 25 individuals, including family
history, clinical manifestations, neuroimaging features,
and genetic sequencing results. The model identification
results demonstrated a relatively high predictive accuracy
value, suggesting promising use in clinical practice.
However, four patients were misclassified, among whom

there was one ataxia patient with an undefined cause and
one SCA patient.

It was notable that the five core variables, which may
not present with statistic differences as single biomarkers in
univariate analysis, were automatically chosen by the Lasso as a
group with the best performance for differential identification.
Lasso helped screen the potential predictors as well as maintain
the objectivity, comprehensiveness, and accuracy, in view of
balancing the number of variables and sample size at the same
time. The inconsistency observed between the univariate analysis
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and multivariate analysis might result from the sample size,
the number of variables, the interaction of multiple markers
as a whole, or other factors. Therefore, in the future, we
need to combine more elements and research as well as enroll
more ataxia patients with other probable causes to improve the
performance of the model.

At present, the prediction model cannot prove the causality
between markers and the pathogenesis of the disease, but it
theoretically and statistically displayed a certain correlation
between markers and disease, which provide the clue for
further fundamental researches. In our study, five core variables
were integrated in a multi-parameter combination. Biologically
speaking, bilirubin is related with oxidative stress. It plays a role
in defending against the increased oxidative stress and some
studies have suggested that low bilirubin levels and oxidative
stress could occur in some neuroinflammatory diseases and
neurodegenerative diseases (Ilzecka and Stelmasiak, 2003; Vitek,
2013). Previous study showed that TBIL and IBIL were lower
in MSA patients than in healthy controls (Zhou et al., 2016).
ALT and eGFR are indicators reflecting kidney and liver function
respectively, and their roles in neurodegenerative diseases have
also been reported (Nam et al., 2019; Nho et al., 2019; Palma
et al., 2020). In fact, previous studies have suggested that chronic
diseases such as diabetes mellitus (DM), hypertension, and
depression may be associated with an increased risk of developing
PD (Ascherio and Schwarzschild, 2016). However, none of the
similar study for MSA has been found. Therefore, the metabolic
and hormonal disturbances may be a topic of interest for further
research of MSA-C.

Furthermore, based on the results mentioned previously, we
translated the prediction model into a visual and operational
web application, which can be applied to mobile devices. By
dragging the slider to change the corresponding parameters,
the point total is displayed automatically, which represents the
probability of a diagnosis of MSA-C. The short time taken to
detect the factors needed, the ease of use, and the capability for
continuous optimization have made this application accessible
and convenient for users.

However, this study presented several limitations. Because
the study was restricted by the morbidity of MSA-C patients,
the number of participants included in our study from a single
center was small and might not accurately represent MSA-
C patients as a whole. Even though we enrolled the MSA-C
patients exclusively based on clinical diagnostic criteria without
postmortem evidence, some bias could have been introduced
when we chose the patients that were included in our study.
The candidate biomarkers were limited. Additional biomarkers
combined with neuroimaging features or other types of objective
markers might provide a better process for the differential
diagnosis of MSA-C. As for the SCA patients enrolled, due to
the low prevalence of SCA, only the subtypes of SCA1, SCA2,
SCA3, and SCA6 were included as a whole. Although SCA3
patients were in the majority of the controls, still the existence of
heterogeneity might have a certain influence on the comparison
of variables between two groups afterward on the efficiency and
generalization of the model. The impact of the diversity of SCA
subtypes can be further analyzed for the optimization of the
model. Also, other types of ataxia-like sporadic adult-onset ataxia

could be included as disease controls to improve the specificity
of the model for MSA-C diagnosis. Therefore, we intend to add
and analyze more variables from diverse aspects to accurately and
efficiently differentiate MSA-C from other kinds of diseases to
perfect this model. The model also needs to be validated using a
larger population followed by a series of consistent development
actions to expand the usability and reliability for application.
After the dynamic detection of candidate biomarkers, this model
also should be of considerable benefit to monitor and predict
disease development.

CONCLUSION

To our knowledge, this is the first study to establish a clinical
prediction model based on demographic and laboratory variables
selected by LASSO regression analysis, including AO, DBIL, AST,
eGFR, and α-synuclein, for better differentiation between MSA-
C and SCA, and the model presented excellent overall availability
in our specific study group. It is highly anticipated that after
continued improvement of the model and its validation in a larger
population, it will be applied clinically as an integral auxiliary
tool to assist in the differential diagnosis of MSA-C and advance
related healthcare management.
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