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Simple Summary: The present study investigated the impacts of a change in animal housing system
on selected parameters of the camel immune system. Samples collected from camels during a
free-ranging time were compared with samples collected from the same camels during movement-
restricted housing. Movement-restricted camels showed elevated myeloperoxidase activity in their
serum, a significant shape-change of their neutrophils, and higher reactive oxygen species content
in their monocytes and neutrophils. The leukogram pattern of the camels under restricted housing
was characterized by increased numbers of neutrophils, eosinophils, lymphocytes, and monocytes.
Within the lymphocyte population, only the helper T cells and B cells were expanded in animals
under restricted housing. In addition, restricted housing modulated the expression of several cell
surface antigens, including monocyte-polarization markers and cell adhesion molecules. Functional
analysis of bacterial phagocytosis indicated impaired antibacterial function of phagocytes in camels
under restricted housing. In summary, the present study identified significant changes in blood
immune cell composition, phenotype, and function in dromedary camels under restricted-housing
conditions, and suggests the development of an excitement leukogram in those animals.

Abstract: Background: The dromedary camel (Camelus dromedarius) is an important livestock animal
of desert and semi-desert ecosystems. In recent years, several elements of the camel immune
system have been characterized. Stress and excitement induced by animal housing represent the
most important environmental factors with potential modulatory effects on the immune system. The
present study evaluated the impacts of a restricted-housing system on some phenotypic and functional
properties of blood leukocytes in dromedary camels. Methods: Immunofluorescence and flow
cytometry were used to comparatively analyze samples collected from camels during a free-ranging
time and samples collected from the same camels during movement-restricted housing. Results:
In comparison to blood samples collected from the camels during the free-ranging time, samples
from movement-restricted camels showed elevated serum myeloperoxidase activity, a significant
shape-change in their neutrophils, and higher reactive oxygen species content in their monocytes
and neutrophils, indicating increased cellular oxidative stress under movement-restricted housing.
The leukogram pattern of the camels under restricted housing was characterized by leukocytosis
with increased numbers of neutrophils, eosinophils, lymphocytes, and monocytes, resembling an
excitement leukogram pattern. Within the lymphocyte population, only the helper T cells and B
cells were expanded in animals under restricted housing. The upregulation of CD163 together with
the downregulation of MHC-II on monocytes from excited camels indicate a modulatory potential
of animal excitement to polarize monocytes toward an anti-inflammatory phenotype. Functional
analysis of bacterial phagocytosis indicates an impaired antibacterial function of phagocytes in excited
camels. The downregulation of several cell adhesion molecules on leukocytes from excited camels
suggests a role for impaired cell adhesion and tissue migration and leukocyte retention in blood in
the observed leukocytosis in animals under excitement. Conclusions: The present study identified
significant changes in blood immune cell composition, phenotype, and function in dromedary camels
under restricted-housing conditions. The observed changes in leukocyte composition suggest the
development of an excitement leukogram pattern in camels under movement-restricted housing. To

Animals 2022, 12, 317. https://doi.org/10.3390/ani12030317 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12030317
https://doi.org/10.3390/ani12030317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-8942-005X
https://doi.org/10.3390/ani12030317
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12030317?type=check_update&version=1


Animals 2022, 12, 317 2 of 15

evaluate the clinical relevance of the observed changes in immune cell phenotype and function for
the immune competence of camels under restricted housing, further studies are required.

Keywords: housing; immunity; dromedary camel; excitement; flow cytometry; leukocytes ROS;
phagocytosis

1. Introduction

The dromedary camel (Camelus dromedarius) is one of the most important livestock
animals in arid and semi-arid regions [1–4]. In comparison to other domestic species, camels
can reproduce and produce high-quality food under extremely harsh conditions, including
heat stress and very limited food and water resources [5–7]. In addition, camels show
relatively higher resistance to several pathogens than many other farm animal species [8].

For the dromedary camel, several components of the immune system have been
recently characterized [8]. For most immunological studies, peripheral blood leukocytes,
which are a valuable source of innate and adaptive immune cells, are collected from the
animals for ex vivo analysis of their phenotypes and functions. The leukocyte count in
peripheral blood is regulated by the balance between their production in the bone marrow
and their migratory activity from blood to tissues [9]. Leukocyte adhesion to blood vessel
endothelial cells and their transmigration and extravasation from blood are regulated by
several cell surface adhesion molecules [10–13].

The phenotypes and functions of leukocytes are influenced by several physiologi-
cal [14] and pathological factors [15]. Stress and excitement during animal housing rep-
resent major environmental factors with significant modulatory effects on the immune
system [16]. Studies in several animal species have shown that measurements of many
immunological parameters in samples taken from stressed animals can be highly variable,
ranging from almost normal baseline to extremely high [16–20]. Cattle and sheep under
short-term stress have shown impaired immune responses [17,20]. Bovine heifers with
higher handling-stress responsiveness showed reduced antibody and cellular immune
responses [16].

Animal stress may result from several factors, which may differently affect animal
welfare. Animal stressors may be either physiological, including excitement, restraint, nov-
elty, or handling; or physical stressors, such as hunger, fatigue, injury, or heat-stress [21,22].
According to recent reports, housing management, including space allowance and the
freedom of movement, are critical factors for camel welfare [23–25]. Restricted housing
agitates and excites animals, resulting in changes in several body systems, including the
immune system [17,22,26]. In cattle, a limited space allowance has been linked to higher
aggressiveness and reduced immune responses [27,28].

The methods of camel housing are now changing due to the increased cultivation,
resulting in a significant decrease in free grazing areas. Camel keepers of free-grazing
management systems are currently looking for alternative intensive and semi-intensive
housing systems [29]. In semi-intensive keeping systems, camels are set free during the
daytime and collected at the evening to be herded in closed pen during night. The limited
space in intensive animal housing systems is usually associated with several environmental
stressors that could affect their welfare [29]. As the impact of housing system on the
camel immune system has not been investigated so far, the present study aimed at the
evaluation of leukocyte composition, phenotype, and function in camels after movement-
restricted housing.

2. Materials and Methods
2.1. Animals and Blood Sampling

Nine apparently healthy female dromedary camels were selected from a herd of
25 camels reared at a private farm in the Al-Ahsa region in Saudi Arabia. The experimental
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camels were from the black Majahim breed ranging in age between 9 and 13 years. The
she-camels were non-pregnant and non-lactating animals with an average body weight
of 345 ± 12.0 kg. As the studied camels were from an associated homogenous herd, the
selection criteria were based on the animal age and weight. The study was performed in the
arid area of the Al-Ahsa region (N 25◦17′8.0844”, E 49◦29′11.3316”) in the eastern province
of Saudi Arabia. The annual temperature of the area varies from 15 to 45 ◦C with a mean
annual rainfall of 85 mm. The study was conducted on two consecutive days in November
2020 with an average ambient temperature and relative humidity of 23 ◦C (range: 19–28 ◦C)
and 31.3% (range: 20–32.5%), respectively. The animals were kept under a traditional
management system and were not within the breeding season. During the daytime, the
camels were grazing, browsing from 06:00 a.m. to 08:00 p.m. In the evening, the animals
were guided by the caretaker on foot into the farm to be corralled in a group-field fence
during the nighttime (08:00 p.m. to 06:00 a.m.). The camels were fed on hay and barley
in addition to bread and discarded dates with a mineral supplement (copper sulphate,
zinc sulphate, manganese sulphate, calcium iodine, cobalt sulphate, and sodium selenite).
Drinking water was available for the camels in the stall and the grazing range. For the first
sampling, blood samples were collected from the free-ranging animals during the daytime
(at 09:00 a.m. to 12:00 p.m.), where the animals were distanced from each other (1–3 km
distance). The second blood sample was taken from the same camels on the second day
at 05:00 a.m., where the animals were still on the farm. Blood samples were obtained by
venipuncture of the jugular vein (vena jugularis externa) into vacutainer tubes containing
ethylenediaminetetraacetic acid (EDTA). After collection, blood samples were transported
to the testing laboratory in a cool box. Cell separation from the collected blood samples was
performed within one hour from the sampling. For blood serum collection, blood was taken
into sterile tubes without anticoagulants (Becton Dickinson, Heidelberg, Germany). After
clotting, cell-free serum was prepared by centrifugation of the blood samples at 3000 × g
for 15 min.

2.2. Serum Myeloperoxidase Activity

Serum myeloperoxidase activity was estimated based on the procedure described
previously [30,31] with some modifications. Briefly, the test was performed in a flat-
bottomed 96-well microtiter plate. Serum was diluted 1 to 5 in phosphate buffered saline
(PBS) and 50 µL of diluted serum was incubated with 50 µL of peroxidase substrate and
chromogen buffer (33.3 mmol/L citric acid, 66.7 mmol/L NaH2PO4, pH 5.0, supplemented
with 130 µg/mL 3,3′,5,5′-tetramethylbenzidine and 0.01% (v/v) H2O2; all chemicals from
Sigma, Darmstadt, Germany). After a short incubation of 8–10 min at RT in the dark,
the reaction was stopped by adding 50 µL of 0.5 M H2SO4 to each well. The density of
color developed was measured spectrophotometrically (MR 5000, Dynatech, Denkendorf,
Germany) at 450 nm.

2.3. Cell Separation

Camel white blood cells were isolated from EDTA blood samples after removing the
red blood cells using osmotic hypotonic lysis. For this, 1 mL blood sample was incubated
in 5 mL distilled water for 20 s, and 5 mL double concentrated PBS were added to restore
tonicity. This procedure was repeated until complete hemolysis. After that, the cells
were washed two times in PBS (500× g, 250× g, 10 min, 10 ◦C). Separated leukocytes
were finally suspended in staining buffer (PBS containing 5 g/L BSA, 100 mg/L NaN3) at
5 × 106 cells/mL for flow cytometry.

2.4. Analysis of Neutrophils’ Shape-Change

For the analysis of changes in neutrophil side scatter characteristic (SSC), which is
indicative of neutrophil degranulation and secretion of their granular contents [32,33],
separated leukocytes (5 × 106 cells/mL) were analyzed for their mean SSC values using
the Accurie C6 flow cytometer (equipped with a blue (488 nm) and a red (640 nm) laser,
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two light scatter detectors (FSC and SSC), and four fluorescence detectors; BD Biosciences,
Heidelberg, Germany). Neutrophil SSC height (SSC-H) was measured using the CFlow®

software (version 1.0.264.21, BD Biosciences, Heidelberg, Germany) and compared between
cells from normal range animals and animals during restricted housing.

2.5. Measurement of Reactive Oxygen Species Production in Neutrophils and Monocytes

For monocyte identification, separated leukocytes were firstly labeled with anti-CD14
antibody. For this, 100 µL per well of 1 × 106 leukocyte suspension were incubated with
an APC-conjugated mouse IgG2a against human CD14. After 15 min at 4 ◦C, the cells
were washed twice with MIF buffer. Labeled leukocytes were then incubated (20 min;
37 ◦C, 5% CO2) with 500 ng/mL dihydrorhodamine-123 (DHR-123, Mobitec, Goettingen,
Germany). After that, the cells were washed once with PBS (300× g for 3 min) and the
median fluorescence intensity of FL1 (indicative for ROS amount) was determined by
flow cytometry (Accurie C6 flow cytometer, BD Biosciences, Heidelberg, Germany). The
fluorochromes allophycocyanin (APC) and DHR-123 were excited by the red and the blue
lasers and detected in FL-1 and FL-4, respectively.

2.6. Monoclonal Antibodies

The antibodies used for cell staining are presented in Supplementary Table S1. All
monoclonal antibodies were directed against leukocyte antigens of other animals, including
lama (CD44 and CD45R), human (CD14 and CD18), bovine (CD14, CD163, CD4, WC1,
CD11a), and swine (MH II). All antibodies were tested for reactivity against camel leuko-
cytes in previous studies. The cross-reactivity was based on the expression pattern in
flow cytometry [15,34–37]. For the CD4 and WC1 antibodies, a cross-reactivity with camel
leukocytes antigens has been indicated by the manufacturer (Supplementary Table S1).

2.7. Membrane Immunofluorescence

Cell labeling was performed in a round-bottomed 96-well microtiter plate using
5 × 105 leukocytes per well as previously described [38]. All incubation and centrifuga-
tion steps were performed at 4 ◦C. Separated leukocytes were incubated with unlabeled
primary monoclonal antibodies (mAbs) (Supplementary Table S1) specific for the cell sur-
face molecules CD4, WC-1, CD14, CD163, CD172a, MHC-II, CD11a, CD18, CD44, and
CD45R [15,34–37] for 15 min in the dark. After two washings in staining buffer, the cells
were incubated with fluorochrome-labeled anti-mouse IgM, IgG1, and IgG2a secondary
antibodies (Invitrogen, Schwerte, Germany) for 15 min in the dark. Parallel setups were
incubated only with antibody isotype controls. After two washings, labeled cells were
analyzed on an Accurie C6 flow cytometer (BD Biosciences, Heidelberg, Germany) by
the acquisition of at least 100,000 total leukocytes. Collected flow cytometric data were
analyzed using the CFlow Software (V 1.0.264.21; BD Biosciences, Heidelberg, Germany).
Leukocyte count was estimated under a microscope using the Neubauer counting chamber
after staining of the blood sample with Türk Solution.

2.8. Flow Cytometric Analysis of Bacterial Phagocytosis

For the phagocytosis assay, heat killed Staphylococcus aureus (S. aureus) bacteria (Pan-
sorbin, Calbiochem, Merck, Nottingham, UK) were labeled with fluoresceinisothiocyanate
(FITC, Sigma-Aldrich, St. Louis, MO, USA) according to manufacturer instructions. For
monocyte identification, separated leukocytes were firstly labeled with APC-conjugated
mouse IgG2a against CD14 as described above. Labeled leukocytes were then incubated
in 96 well plates (1 × 105/well) with FITC-labeled S. aureus (50 bacteria/cell) for 45 min
at 37 ◦C and 5% CO2. After incubation (15 min; 4 ◦C), the percentage of monocytes and
neutrophils with elevated green fluorescence among total cells was calculated after flow
cytometric analysis.
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2.9. Statistical Analyses

For statistical analysis, the values for the two groups were compared using the Prism
(GraphPad software version 5, GraphPad Software, San Diego, CA, USA). The Kolmogorov–
Smirnov test (with the Dallal–Wilkinson–Lilliefor p value) was performed to check the
normal distribution of data. For normal-distributed data, the paired student’s t-test was
used to compare the mean of the two groups. For the data that failed to pass the normality
test, the Wilcoxon matched-pairs signed ranks test was used to compare the means. The
results for each analyzed parameter are presented graphically as mean ± standard error of
the mean (SEM). The p-values indicating the significance of the differences between means
are presented for each parameter.

3. Results

In the present study, the leukogram and some phenotypic and functional properties
of leukocytes were analyzed in dromedary camels under restricted housing. Samples
from free-ranging camels (range camels) were compared with samples from camels during
restricted-housing. During the first sampling, where the camels were free-ranging and
distanced from each other, the animals were calm and easy to handle. In contrast to this,
the movement-restricted camels on the second sampling day were excited and agitated.

3.1. Camels under Movement-Restricted Housing Showed Elevated Serum Peroxidase Activity

The analysis of the enzymatic activity of peroxidase in serum samples collected from
range and housed camels revealed significantly (p = 0.004) higher activity in housed camels
(mean ± SEM; 2822 ± 287 optical density units (OD)) with two times higher values than
range camels (1397 ± 175 OD) (Figure 1A). In addition, the SSC values of neutrophils
(indicative of granularity) were significantly (p = 0.03) reduced in samples collected from
housed camels (409,097± 9520), when compared to samples collected during the free-range
time (452,361 ± 11,230) (Figure 1B).

Figure 1. Analysis of serum myeloperoxidase activity and neutrophil shape-change. (A) Serum sam-
ples were collected from the camels before and after restricted housing and analyzed for myeloperoxi-
dase activity using a colorimetric assay. Optical density (OD) values are presented for free-range and
restricted-housing animals as mean± standard error of the mean (SEM). (B) Neutrophil shape-change
was analyzed by the assessment of neutrophil side scatter values using flow cytometry. The student’s
t-test was used to compare the means, and the * p-value is indicated on the graph.

3.2. Camels Leukocytes Showed Higher Spontaneous Production of Reactive Oxygen Species (ROS)
during Restricted Housing

The analysis of spontaneously produced ROS by neutrophils and monocytes revealed
significantly higher levels in cells from housed camels compared to free-range camels
(Figure 2A,B). The MFI values of dehydrorohdamin-123 were three to five-time higher in
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neutrophils (252,724 ± 12,262; p = 0.0001) and monocytes (481,461 ± 44,440; p = 0.0006)
from housed animals than neutrophils (55,201 ± 4272) and monocytes (66,280 ± 2330) from
free-range animals.

Figure 2. Reactive oxygen species (ROS) levels in monocytes and neutrophils. Leukocytes separated
from camel blood were labeled with DHR-123, which detects ROS metabolites. (A) Labeled cells were
analyzed by flow cytometry. After gating on single cells using SSC-A against SSC-H, neutrophils
were identified based on their higher SSC signal. Monocytes were identified as CD14-positive cells
within the PBMC population. ROS amount in neutrophils or monocytes was measured as median
fluorescence intensity of DHR-123. Cells from free-range and housed camels are compared using
an FL-1-histogram. (B) ROS MFI values are presented graphically for neutrophils and monocytes
(student t-test).

3.3. Changes in the Leukogram Pattern after Restricted Housing

Flow cytometric analysis of the relative white blood cell (WBC) composition did not
identify any significant differences between housed and free-range camels regarding the
percentages of neutrophils (p = 0.21), eosinophils (p = 0.06), lymphocytes (p = 0.14), and
monocytes (p = 0.45) (Figure 3A,B). The estimations of absolute cell numbers in blood sam-
ples from housed and free-range camels revealed significant leukogram changes (Figure 3C).
The total leukocyte number in the blood from housed camels (19,880 ± 1214 cell/µL blood)
was two-times higher (p = 0.002) than in the blood from the free-range camel group
(10,080 ± 991 cell/µL blood). The elevated leukocyte number in the blood from housed
camels included significantly increased numbers of neutrophils (p = 0.004), eosinophils
(p = 0.003), lymphocytes (p = 0.02), and monocytes (p = 0.04) (Figure 3C).
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Figure 3. Impacts of housing system on the camel leukogram. (A) Gating strategy for the identification
of camel leukocyte populations. Singlets were excluded from the analysis based on their side scatter
height (SSC-H) and SSC-Aria (SSC-A) signals. Within the mononuclear cell population, lymphocytes
(L) and monocytes (M) were identified as CD14-negative and CD14-positive cells, respectively. In an
SSC-A/FL-1 dot plot, eosinophils (E) were distinguished from neutrophils (N) based on the higher
green autofluorescence of their eosinophilic granules. (B) For blood samples collected from free-range
and housed camels, the relative percentages (B) and the absolute cell numbers (C) of all leukocyte
populations are presented as mean ± SEM. The p-values indicating the significance of the differences
between means are presented for each parameter.

3.4. Relative and Absolute Quantification of Blood Lymphocyte Subsets

While the fractions of B cells did not differ between housed and range animals
(p = 0.42), and the fraction of CD4-positive T helper cells was only slightly (p = 0.09)
reduced in the blood from housed camels, the percentage of γδ T cells was significantly
(p = 0.03) lower in the blood from housed camels (Figure 4A,B). In contrast to their relative
fractions, the absolute numbers of B cells (p = 0.04) and helper T cells (p = 0.03) were
significantly increased in the blood from housed animals (Figure 4C).

3.5. Restricted Housing Modulated the Phenotype of Camel Monocytes

Monocytes from housed camels showed a significantly different phenotype in com-
parison to free-range animals (Figure 5). The median fluorescence intensity (MFI) values
of CD172a (p = 0.03), CD14 (p = 0.03) and major histocompatibility complex (MHC) class
II molecules (p = 0.001) were lower for monocytes collected from housed camels when
compared with those from free-range animals. In contrast to this, the scavenger receptor
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CD163 was upregulated (p = 0.001) on monocytes from housed camels in comparison to
those from free-range camels (Figure 5).

Figure 4. Lymphocyte composition in blood collected from free-range and housed camels. (A) Gating
strategy for the identification of lymphocyte subsets. The whole lymphocyte population was identi-
fied within the mononuclear cells in an SSC-A/FSC-A dot plot and the fraction of CD4-positive T
helper cells and WC-1-positive gamma delta (γδ) T cells were identified according to their positive
staining with CD4 and WC-1 antibodies, respectively. B lymphocytes were defined based on positive
staining with MHC-II molecules and negative staining with CD14 antibodies. The relative percent-
ages (B) and the absolute cell numbers (C) of B cells, helper T cells, and γδ T cells were estimated and
are presented as mean ± SEM. The p-values indicating the significance of the differences between
means are presented for each parameter.

3.6. Leukocytes from Movement-Restricted Animals Changed Their Adhesion Molecule
Expression Profiles

Restricted animal housing resulted in marked decreases in the abundance of the cell
adhesion molecules CD44 and CD45 on all leukocyte populations, including granulocytes,
monocytes, and lymphocytes (Figure 6). The average CD44 downregulation was 47.9%
(compared to MFI values in free-range animals) for monocytes (p = 0.001), 57.9% for
granulocytes (p = 0.006), and 58.6% for lymphocytes (p = 0.009). (Figure 6). Similarly,
CD45 was downregulated on granulocytes (38.3% of MFI values in free-range animals;
p = 0.004), monocytes (28.2%; p = 0.001), and lymphocytes (56%; p = 0.03) from housed
animals in comparison to free-range animals. In addition, housed animals showed increased
abundance of CD11a on granulocytes but decreased CD18 expression on monocytes and
granulocytes when compared to free-range animals (Figure 6).
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Figure 5. The effect of restricted housing on the expression densities of the main myeloid markers
on camel monocytes. Leukocytes were labeled with monoclonal antibodies against CD172a, CD14,
MHCII, and CD163, and labeled cells were analyzed by flow cytometry. The abundance of each cell
marker was evaluated by median fluorescence intensity (MFI), and the results were presented as
mean ± SEM.

Figure 6. Flow cytometric assessment of the abundances of the adhesion molecules CD11a, CD18,
CD44, and CD45 on the surfaces of leukocytes. Leukocytes were labeled with monoclonal antibodies
against CD11a, CD18, CD44, and CD45, and labeled cells were analyzed by flow cytometry. After
gating on camel neutrophils, lymphocytes, or monocytes, the expression levels of CD11a, CD18, CD44,
and CD45 were measured as MFI of analyzed markers, and the results are presented as mean ± SEM
(t-test).
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3.7. The Phagocytic Activity of Monocytes and Neutrophils Was Reduced after Restricted Housing

Flow cytometric evaluation of the capacity of monocytes and neutrophils to uptake
staphylococcus aureus bacteria revealed a negative effect of restricted housing on the phago-
cytosis of myeloid cells in camels (Figure 7A,B). In housed animals, the percentages of
neutrophils (52.51 ± 1.2% of total cells) and monocytes (55.83 ± 1.1) with ingested bacte-
ria were significantly reduced in comparison to their percentages in free-range animals
(73.35 ± 2.1% for neutrophils and 80.48 ± 1.7% for monocytes) (Figure 7A,B).

Figure 7. Bacterial phagocytosis by neutrophils and monocytes from free-range and housed camels.
Camel leukocytes were labeled with antibodies to the monocyte marker CD14 and were then in-
cubated with S. aureus conjugated with FITC. (A) Fow cytometric assessment of phagocytosis by
neutrophils and monocytes. Neutrophils and monocytes were gated based on their SSC values and
CD14 staining, respectively. In an SSC against FL-1 dot plot, the percentage of cells with positive
green staining (FITC-s aureus) was calculated and presented graphically (B) for free-range and housed
animals as mean ± SEM (t-test).

4. Discussion

A functional immune system is essential to maintaining health in animals. The com-
petence of the immune system may, however, be influenced by several physiological and
pathological factors. Animal excitement results in changes in several body systems, in-
cluding the immune system [17,22,26]. According to recent reports, housing management,
including space allowance and the freedom of movement, are critical factors for camel
welfare [23]. The present study investigated the impacts of movement-restricted housing
on selected parameters of the camel immune system.
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4.1. Increased Cellular Stress in Animals under Restricted Housing

Myeloperoxidase (MPO) represents the most abundant inflammatory enzyme stored
in the primary granules of neutrophils, and it can be released upon neutrophil degranula-
tion [39]. Increased serum MPO activity has been identified as an indicator of inflammation
and sepsis [40]. MPO, which has strong oxidative activity, catalyzes the formation of
reactive oxygen species (ROS). Although ROS produced during oxidative phosphorylation
serve as essential regulators of several cellular processes [41], high ROS concentrations in
neutrophils may have negative effects on fundamental cellular processes. When released,
ROS may also cause damage to various biological structures, such as proteins, carbohy-
drates, lipids, and nucleic acids, and may enhance inflammatory responses, increasing the
risk of tissue damage [42,43]. In the present study, serum samples collected from the camels
during restricted housing showed elevated serum MPO enzymatic activity in comparison
to samples collected from free-range animals. The induced shape-change of neutrophils—
seen through a significant decrease in their mean side scatter values (proportional to cell
granularity [32,33,39])—suggests that a restricted-housing system is associated with neu-
trophil activation and degranulation. These results together with the significantly higher
amounts of ROS metabolites in neutrophils and monocytes from housed camels indicate
increased cellular stress in animals under restricted housing, which may be associated with
enhanced cellular and tissue damage.

4.2. Restricted Housing Modulated the Composition, Phenotype, and Function of Camel Leukocytes

Flow cytometric analysis of changes in camel leukogram identified marked leuko-
cytosis in the camels during restricted housing. In other veterinary species, physiologic
leukocytosis is usually associated with animal stress, excitation, exercise, or parturition [44].
The typical pattern of physiologic leukocytosis is characterized by neutrophilia and lym-
phocytosis, which are results of a shift from the marginal leukocyte pool to the circulating
pool [44,45]. On the other hand, the corticosteroid-associated leukogram is characterized
by lymphopenia and neutrophilia [46,47]. In the present study, the unchanged leukocyte
composition together with increased total WBC numbers in housed camels resulted in
general leukocytosis with elevated cell numbers of all leukocyte populations, including
polymorphonuclear granulocytes (neutrophils and eosinophils) and mononuclear cells
(lymphocytes and monocytes). These results argue against a selective effect of restricted
housing on the hematopoiesis of distinct immune cell types and suggest the development
of an excitement leukogram in camels under restricted housing. However, the analysis of
lymphocyte subsets suggests selective increases in only B cells and helper T cells, but not
in γδ T cells.

Monocytes are key effector cells of the early immune response to pathogens [48].
Their phenotype is characterized by plasticity, with the ability to differentiate to different
functional subtypes of macrophages [49]. The cell surface molecules CD172a, CD14, MHC
II, and CD163 are important markers of monocyte phenotype [37,50]. In the present study,
monocytes from housed camels displayed a lower abundance of the antigen-presenting
molecule MHC II and higher expression of the scavenger receptor CD163, compared to their
values before restricted housing, resembling an anti-inflammatory phenotype [48,51–56].
This is also supported by the reduced expression of the LPS receptor CD14 on monocytes
in addition to their decreased phagocytic activity when compared to cells collected before
restricted housing.

We further investigated whether these changes in cell composition and phenotype
were associated with functional alterations in the camel immune system. Phagocyto-
sis is an effector innate mechanism with a major role during the first phase of bacterial
infection [57,58]. The marked decrease in the ability of neutrophils and monocytes from
housed animals to ingest S. aureus indicates a negative effect of animal excitement on
the innate immune function of camels. The clinical relevance of the observed changes
in phagocytic activity, however, requires further clinical studies comparing the in vivo
antibacterial capacity of free-range and housed camels.
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Leukocyte recruitment to the site of infection and inflammation is an essential part
of an effective immune response, which requires their effective interaction with blood
vessel endothelial cells and extracellular matrix in a very complex process regulated by
the expression of several cell surface adhesion molecules [10–13]. The hyaluronan receptor
CD44 is widely expressed on all leukocyte populations, and it has a crucial role in leukocyte
trafficking and inflammatory processes [59–62]. The lack of CD44 expression was found
to be associated with reduced leukocyte recruitment to the site of bacterial infection,
which negatively affected the course of infection [63]. The common leukocyte antigen
CD45 is a leukocyte cell surface glycoprotein expressed on all cells of the hematopoietic
system [64]. CD45 functions as a protein tyrosine phosphatase with a pivotal role in
T- and B-cell antigen receptor signaling [64]. It has also an essential role in leukocyte
adhesion and migration. The absence of CD45 has been linked to impaired adhesion and
migration of macrophages [65]. In the present study, the reduced expression of CD44 and
CD45 on all leukocyte populations from the housed camels indicates significant effects of
animal excitement due to restricted housing on cell migration and signaling in camel blood
leukocytes. The surface molecule CD11a dimerizes with the integrin beta chain-2 CD18
to form the lymphocyte function antigen-1 (LFA-1), a cell adhesion molecule with a major
role in leukocyte adhesion and migration [66,67]. The opposite effect of restricted housing
on the expression of CD11a and CD18 on granulocytes may argue against a role for LFA-1
in the observed excitement-induced leukocytosis.

The identification of B cells based on their positive staining with MHCII and negative
staining with CD14 represents a limitation of the present study, as MHCII is not a cell-
specific marker for B cells. However, we tested several monoclonal antibodies against
CD20, CD19, IgM, and CD79 of other species for camel leukocytes but did not identify
any cross-reactivity with camel B cells (Data not shown). B cells express MHCII, as do
other antigen presenting cells, including monocytes and dendritic cells [68]—so using a
combination of MHCII and CD14 to exclude monocytes was the only way for us to identify
camel B cells. However, as dendritic cells are a minor population in blood, we believe that
their contribution to the CD14-MHCII+ lymphocyte compartment would not significantly
affect our results. In addition, we found a similar expression pattern using a combination
of MHCII and the myeloid marker CD172a, which is also expressed on DC.

5. Conclusions

In summary, the present study identified significant changes in blood immune cell
composition, phenotype, and function in dromedary camels under restricted housing con-
ditions. Blood samples collected from the camels during movement-restricted housing
showed elevated MPO enzymatic activity and higher ROS content in monocytes and neu-
trophils when compared to samples collected from the same animals during free-ranging
time. The leukogram pattern of the camels under restricted housing was characterized
by leukocytosis with increased numbers of neutrophils, eosinophils, lymphocytes, and
monocytes, resembling an excitement leukogram pattern. Regarding lymphocytes, only
the numbers of helper T cells and B cells were affected by restricted housing. In addition,
monocytes from excited camels displayed an anti-inflammatory phenotype with elevated
CD163 expression and reduced MHC-II expression. Functional analysis of bacterial phago-
cytosis indicates an impaired antibacterial function of phagocytes in excited camels. The
downregulation of several cell adhesion molecules on leukocytes from excited camels
suggests roles for impaired cell adhesion, tissue migration, and leukocyte retention in blood
in the observed leukocytosis in animals under housing-induced excitement. The evaluation
of the clinical relevance of the observed changes in immune cell phenotype and function
for the immune competence of camels under restricted housing requires further studies.
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