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Abstract

Anticipation of a daily meal in rats has been conceptualized as a rest-activity rhythm driven by a food-entrained circadian
oscillator separate from the pacemaker generating light-dark (LD) entrained rhythms. Rats can also anticipate two daily
mealtimes, but whether this involves independently entrained oscillators, one ‘continuously consulted’ clock, cue-
dependent non-circadian interval timing or a combination of processes, is unclear. Rats received two daily meals, beginning
3-h (meal 1) and 13-h (meal 2) after lights-on (LD 14:10). Anticipatory wheel running began 6868 min prior to meal 1 and
10169 min prior to meal 2 but neither the duration nor the variability of anticipation bout lengths exhibited the scalar
property, a hallmark of interval timing. Meal omission tests in LD and constant dark (DD) did not alter the timing of either
bout of anticipation, and anticipation of meal 2 was not altered by a 3-h advance of meal 1. Food anticipatory running in
this 2-meal protocol thus does not exhibit properties of interval timing despite the availability of external time cues in LD.
Across all days, the two bouts of anticipation were uncorrelated, a result more consistent with two independently entrained
oscillators than a single consulted clock. Similar results were obtained for meals scheduled 3-h and 10-h after lights-on, and
for a food-bin measure of anticipation. Most rats that showed weak or no anticipation to one or both meals exhibited
elevated activity at mealtime during 1 or 2 day food deprivation tests in DD, suggesting covert operation of circadian timing
in the absence of anticipatory behavior. A control experiment confirmed that daytime feeding did not shift LD-entrained
rhythms, ruling out displaced nocturnal activity as an explanation for daytime activity. The results favor a multiple oscillator
basis for 2-meal anticipatory rhythms and provide no evidence for involvement of cue-dependent interval timing.
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Introduction

Nocturnal rats with free access to food typically eat numerous

small meals throughout the night, but can readily adapt to

restricted feeding schedules in which food is provided for only a

few hours each day in the middle of the light period. Adaptation

involves shifting of circadian cycles of clock gene expression and

clock-controlled rhythms in most peripheral organs and the

gradual emergence of a robust bout of locomotor activity

anticipating mealtime by 1–3 h [1,2]. Food anticipatory activity

induced by such feeding schedules has been conceptualized as a

circadian rhythm driven by a food-entrained circadian oscillator

(FEO) separate from the master light-entrainable circadian

pacemaker located in the suprachiasmatic nucleus (SCN). This

entrained oscillator model can account for properties of food

anticipatory rhythms, including persistence for several cycles

during total food deprivation, gradual resetting following meal

shifts, changes in the onset of anticipation when the period of the

feeding schedule is shortened or lengthened within the 22–29 h

range, failure of anticipation to emerge or remain synchronized if

feeding schedules fall outside of this ‘circadian’ range, and

persistence following SCN-ablation [1,3–5]. The model is

parsimonious to the extent that food anticipatory behavior, like

daily rhythms entrained to LD cycles, can be explained as a simple

oscillator-driven rest-activity cycle without recourse to higher

order cognitive processes.

A dual-FEO model has been suggested to account for the ability

of rats and mice to anticipate two daily meals separated by 5 h or

more, and the apparent failure of rats to anticipate three daily

meals [6–8]. In these studies, some rats with SCN-ablations could

at least temporarily anticipate two daily meals with different

period lengths (e.g., concurrent 23.75-h and 24.0-h feeding

schedules) [6,8]. Anticipation tended to be unstable, and during

total food deprivation tests only a single bout of activity spanning

the two mealtimes was evident, possibly because the mealtimes

were too close during the test. This caveat aside, the results

provide at least tentative support for the idea that circadian

oscillators driving food anticipation can be configured as a single

FEO or as two independently entrainable FEOs. Precedence for

the concept of a 2-oscillator structure is provided by the light-

entrainable SCN pacemaker, for which there is behavioral,

electrophysiological and molecular evidence [9–11].

Anticipation of two daily meals could also be accounted for by

the concept of a single FEO functioning as a so-called
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‘continuously consulted clock’. A consulted clock provides a

continuous readout of circadian phase, which can be used to

recognize and record the time of occurrence of daily events, such

as meals. To be useful, the clock must be synchronized to local

time, so that its phase predicts daily events. The use of circadian

oscillators as consulted clocks is believed to underlie sun compass

orientation in various insects and birds that forage or migrate over

distance [12]. There is also evidence that birds [13,14], rats [15–

17] and mice [18] can use circadian phase as a discriminative cue

for time-place learning (e.g., associating a time of day with a

unique feeding location or operant response). There is some

evidence that rats can accomplish this without a SCN [16], raising

the possibility that anticipation of two daily meals could be

mediated by a single FEO serving as a consulted clock, enabling

animals to anticipate one or more meals at any arbitrary phase.

This type of mechanism would require additional cognitive

processes for linking representations of clock phase to event

memories, and for generating rules to enable anticipation of two

daily meals with different periodicities in the circadian range [6,8].

A circadian clock basis for anticipation of daily meals has been

challenged by the persistence of food anticipatory rhythms in mice

with mutations of known circadian clock genes [19,20]. This may

indicate the existence of novel molecular or network processes for

generating circadian behavioral rhythms, or the availability of

non-circadian mechanisms such as interval timers that can

compensate when circadian mechanisms are disabled [21–22].

Interval timers have been conceptualized as neural stopwatches for

measuring elapsed time between events, to explain the properties

of anticipatory behaviors when food rewards are provided at fixed

intervals in the seconds to minutes range, or when rewards are

preceded by an external stimulus, as in Pavlovian conditioning

paradigms [17,21,23]. These properties are distinct from those of

rhythms generated by entrained oscillators; the anticipation

‘rhythm’ does not persist if the cue or reward are omitted, resets

immediately rather than gradually when the cue or reward cycle

are shifted, and exhibits proportionality between the average

duration of anticipatory responding and the duration of the

interval being timed [formally, the standard deviation of the

response distribution is a constant proportion of the duration of

the interval being timed, known as the ‘scalar’ property) [23].

Violations of stopwatch and scalar properties have been noted in

short interval timing [17,24], suggesting alternative models, but

interval timers that measure elapsed time between events have

generally been discounted as a possible mechanism for inducing

anticipatory rhythms under circadian feeding schedules.

Nonetheless, a contribution of interval timing to single or 2-

meal anticipatory rhythms has not been ruled out. It has recently

been suggested that ‘‘it is likely that animals learn the time of (daily)

feeding with respect to a light-entrainable oscillator, food entrainable

oscillator(s), interval timers triggered by light onset or offset and perhaps an

interval timer that records the duration of one meal to the next’’ [21]. There is

little direct evidence by which to evaluate this proposition as it

pertains to rodents, as most studies of circadian food anticipation

have reported on the presence of anticipation, without quantifying

anticipation parameters such as duration, magnitude and

variability, in the presence and absence of events, such as lighting

transitions and meals, that could actuate interval timers and

influence anticipatory behavior. The first study to explicitly

examine a role for interval timing in circadian food anticipation

found that the presence of an auditory tone beginning 2-h or 4-h

prior to a daily meal resulted in a pause in anticipatory responding

(lever pressing), thereby delaying the rise time and reducing the

terminal peak of the anticipation waveform [25]. A more recent

study observed that rats initiated anticipatory operant behavior

earlier prior to a single daily meal delivered 7-h after lights-off

compared to a meal delivered 3-h after lights-off, and that the

duration of anticipation was a constant proportion of the interval

between lights-off and mealtime [26]. This evidence for the scalar

property suggests that rats may measure elapsed time between a

LD transition and a predictable mealtime 3–7 h later. However,

the study did not include a food deprivation test in constant dark

(DD) to confirm that the differences in anticipation duration were

dependent on external time cues. If the differences were to persist

in the absence of LD and feeding cues, then these could not be

related to psychophysical properties of interval timing, and would

have to involve other factors, such as the different phases of the

SCN pacemaker at which the meals occur.

A quantitative model of daily meal timing in rats will need to

incorporate contributions made by circadian, interval timing,

homeostatic, and other processes, where these can be empirically

substantiated. We report here the results of experiments designed to

evaluate the role of interval timing and circadian oscillators in

anticipation of two daily meals in rats. Sufficient work has been

done to establish that rats can anticipate two daily meals in the light

or dark period, and that anticipation can persist in DD and without

a SCN [6,7,15,16,27–31]. However, analyses in these studies where

qualitative rather than quantitative, and thus provide a limited basis

for evaluating potential contributions of interval timing mecha-

nisms, or for discriminating between single and multiple circadian

oscillator models. In the present study, food was provided for 1-h

twice each day during the light period, at dissimilar intervals relative

to lights-on and to prior mealtime. The onsets of the two daily bouts

of anticipatory locomotor activity were quantified in LD, on meal

omission days conducted in LD and DD, and following an acute

shift of one mealtime. The results provide no evidence for a

contribution of interval timing under the conditions of this study,

but do provide support consistent with a dual-FEO model.

General Methods

Animals and Apparatus
Adult male Sprague Dawley rats (450–550 g; Charles River,

PQ) were housed individually in clear plastic cages

(40.6 cm650.8 cm621 cm) equipped with a 35.5 cm running

wheel and a metal cage top holding a water bottle and food

hopper (Lafayette Instruments, IN, USA). Each cage was housed

in an isolation box (Lafayette Instruments) with controlled lighting

(LD 14:10, white LEDs, ,30 Lux) and an exhaust fan. A long

(14 h) photoperiod was used so that 2 daily meals could be

scheduled during the light period, when anticipation is easy to

detect in wheel running activity, with an intermeal interval

sufficient to unambiguously distinguish separate food anticipation

bouts during meal omission and meal shift tests. After the first

experiment, the cages were moved to open cabinets, 2 cages per

shelf, and a food bin was attached to the outside of each cage,

accessible via a 4 cm square window. Temperature in the

vivarium was maintained at ,22uC. Wheel revolutions were

detected by magnetic switches and food-bin activity by infra-red

beam breaks. Activity counts were summed and stored at 1-min

intervals using the Clocklab data acquisition system (Actimetrics,

IL USA). All animal work was conducted according to guidelines

established by the Canadian Council on Animal Care and was

approved by the University Animal Care Committee at Simon

Fraser University (permit number 732P95).

Data analysis
For visual inspection, activity data were collapsed into 10 min

bins plotted in the standard ‘actogram’ format using Circadia (Dr.

Multiple Meal Anticipation in Rats
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T.A. Houpt, Florida State University), and as 24-h waveforms

averaging one or more days across animals within groups, using

Prism 5.0 (Graphpad Software Inc., La Jolla, CA). For group

mean waveforms, activity data for each rat were normalized

relative to their daily means. The onsets of food anticipatory

activity bouts were defined as the first 10 min bin within 4 h of

mealtime in which activity exceeded 30 or 40 counts after an

interval of 120 min during which this threshold was not exceeded.

The lower threshold was used for rats with lower mean daily

activity levels that exhibited premeal activity that failed to meet a

40 count criterion on many days. The same threshold was used for

all conditions within each rat. Onsets were identified automatically

using Circadia software. The duration of anticipation was defined

as the difference in minutes between activity onset and mealtime.

Proportionality between the duration of anticipation and the

interval between lights-on and mealtime (a measure of the scalar

property) was evaluated by calculating the ratio of anticipation

duration to the interval. Differences in the timing of food

anticipatory activity across days were evaluated statistically by

repeated measures ANOVA, and post-hoc t-tests with Bonferroni

corrections. Consistent with chronobiological conventions for

nocturnal animals, time of day relative to the LD cycle is reported

as ‘Zeitgeber Time’ (ZT), with lights-off designated as ZT12. In a

14:10 LD cycle, lights-on is therefore designated ZT22. Group

means are reported in the text and plotted with standard errors.

Experiment 1. Two meals 10 h apart: meal
omission and shift tests in LD and DD

Introduction
We first quantified the duration and amount of wheel running

prior to two daily meals beginning 3-h and 13-h after lights-on. We

then conducted a series of meal omission tests in LD and DD, and

a single 3-h meal shift test in LD. Predictions from single consulted

clock, dual-FEO and interval (scalar) timing models are as follows.

If anticipation of one or both meals is mediated or modulated by

measuring elapsed time from LD transitions or the prior meal,

then two predictions obtain. First, given the disparate light-food

and intermeal intervals associated with the two mealtimes, the two

bouts of anticipatory activity should differ in average duration,

standard deviation of onset across days, and peak level [32].

Specifically, anticipation duration should scale with intervals

relative to lights-on or prior mealtime. Second, anticipation to one

or both meals should fail or exhibit significantly altered timing

when LD or meal cues are absent. If anticipation of two daily

meals is based on a single food-entrainable, continuously consulted

clock, and the clock has measurable cycle-to-cycle variability

(analogous to the light-entrainable SCN pacemaker, which

exhibits variability in phase or period across days) then over

many days, the duration of the two bouts of anticipation should be

positively correlated (i.e., onsets should move forward and

backward in parallel, in response to stochastic or induced changes

in clock phase). If anticipation is based on entrainment of two

independent FEOs, then anticipation onsets are more likely to be

uncorrelated. Also, a shift of one mealtime would be expected to

shift one bout of anticipation without an immediate parallel

movement of anticipation to the next meal.

Procedures
Rats (N = 15) were acclimated to the 14:10 LD cycle for 6 weeks

and to the running wheels for the last 3 of these weeks. The rats

were weighed and then food deprived for 37-h, beginning at lights-

off. Food (12 g of 5001 rodent chow pellets) was then provided

twice daily, 3-h after lights-on (ZT1, designated Mealtime 1 or the

morning meal) and 1-h before lights-off (ZT11, designated

Mealtime 2 or the afternoon meal). Any remaining pellets were

removed after 1-h. On day 13 of restricted feeding (RF13) meal 1

was omitted. On day RF16, both meals were omitted and the

lights were not turned on. On day RF20, meal 1 was provided 3-h

early for that day only. On day RF23, both meals were omitted a

second time, in LD. The sequence of conditions are illustrated in

Figure 1.

Results
Mean duration and variability of anticipation. Group

mean onsets for each bout of food anticipatory activity on each

day of the experiment are illustrated in Figure 1. There was a main

effect of day on the onset of activity prior to Mealtime 1

(F(27,378) = 8.68, p,.0001) and Mealtime 2 (F(26, 364) = 10.1,

p,.0001). Prior to food restriction, wheel running activity was

Figure 1. Group mean (± SEM, N = 15 rats) anticipatory wheel
running onsets in minutes prior to meal 1 (m1; red closed
circles, dotted curve) and meal 2 (open squares, black solid
curve) during each day of restricted feeding (RF) in Experiment
1. Mealtime 1 and 2 began 3-h and 13-h after lights on (LD 14:10). Meal
1 was omitted on day 13, both meals were omitted and the lights were
left off on day 16, meal 1 was delivered 3-h early on day 20 and both
meals were omitted on day 23.
doi:10.1371/journal.pone.0031772.g001
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predominantly nocturnal (Fig. 2A, B, C, D; Fig. 3A). When food

was removed for 37-h prior to scheduled daytime feeding, the

onset and level of nocturnal activity were remarkably stable,

indicating that the LD-entrained circadian pacemaker was not

acutely shifted by food deprivation (Fig. 3A). When food was

provided for 1-h twice daily, at ZT1 and ZT11, running was

evident in all rats prior to both meals by day RF3. Group mean

activity waveforms (Figs. 3B; S1), generated by averaging across

days RF8-12 prior to the first meal omission test, reveal two

prominent bouts of food anticipatory running that differed

significantly in mean duration (6868 min Vs 10169 min, for

Mealtimes 1 and 2, respectively; t(14) = 6.51, p,.0001). To

determine if the duration of anticipation to the two mealtimes

scaled with the intervals between lights-on and mealtime (180 min

and 780 min for Mealtimes 1 and 2, respectively), the ratio of the

mean anticipation bout length to the appropriate interval was

calculated for both meals, for each rat. This ratio is a modification

of the so-called coefficient of variance (CV) and should be

equivalent for each mealtime if the rats measure intervals from

lights-on to mealtime. The two ratios were instead markedly

different (group mean ratios of .566.05 for meal 1 anticipation,

and .096.02 for meal 2; t14) = 10.93, p,.0001). The ratios were

similarly discordant when the intermeal interval from Mealtime 1

to Mealtime 2 was used as the numerator for the second bout of

anticipation, to test the possibility that rats timed meal 1 relative to

lights-on, and meal 2 relative to meal 1 (600 min; CV = .116.02).

The scalar property of interval timing also predicts a decreased

peak level and increased variability of anticipatory activity onsets

to Mealtime 2 relative to Mealtime 1 (commensurate with the

longer interval from lights-on or from Mealtime 1). Contrary to

these predictions, the two bouts of anticipatory activity rose to the

same terminal peak (Figs. 3B, S1) and exhibited equivalent within-

subject variability of onset times across days (standard deviations of

activity onsets averaged 2763 min prior to Mealtime 1 and

2563 min prior to Mealtime 2; t(14) = 0.56, p = .58).

A plot of premeal activity for each rat on a single day (RF12)

suggests that the shape of the waveforms obtained by averaging

across animals and across days (RF8-12) is representative of

individual rats on single days (Fig. S1A). Regression lines fit to

activity counts for each minute of the last hour before mealtime

exhibited a positive slope in 13 of 15 rats at both mealtimes (Fig.

S1B,C insets). Thus, the rate of anticipatory wheel running on

individual days exhibits a gradual acceleration prior to feeding,

rather than a step change from a low to a high rate of running, as

is sometimes seen with short-interval timing [32].

To minimize disturbances, the rats were weighed only twice

during the study. On the last day of ad-lib food access, the rats

weighed on average 53969 gms. After 9 days of restricted feeding,

body weights were reduced on average by 461%. Body weights on

this day were negatively correlated with the duration of food

anticipation on that day. The association was stronger for

Mealtime 1 anticipation (r = 2.58, p = .02) than for Mealtime 2

anticipation (r = 2.30, p..05).

Meal omission tests. When meal 1 was omitted on day

RF13, all 15 rats exhibited anticipation of the second meal. The

onset of anticipatory activity to Mealtime 2 was modestly delayed

relative to the previous 5 day average (2668 min late; paired

t(14) = 3.13, p,.05). Closer inspection revealed two subgroups of

rats, a group of 9 in which anticipation was late (Fig. 3C) and a

group of 6 in which anticipation was virtually unaltered (i.e.,

within one 10 min bin; Fig. 3D). Although delayed, anticipation in

the group of 9 was still significant relative to their baseline activity

onsets (4469 min, t(14) = 4.86, p,.005). On day RF16, after two

days of receiving both meals, the lights were left off and both meals

were omitted. Relative to day RF15, anticipation of Mealtime 1

began 27621 min early while anticipation of Mealtime 2 began

1368 min late, and neither difference approached statistical

significance (Fig. 3E).

On day RF17 the LD and feeding schedules were reinstated.

Despite .1.5 days (37-h) without food, neither the onset nor the

peak level of anticipation to Mealtime 1 was altered relative to the

deprivation day or to day RF15 (Figs. 1, 3E, F). By contrast, the

onset of Mealtime 2 anticipation was advanced in 11 of 15 cases

(Figs. 1, 3E–F; group mean change = 64615 min, t(14) = 4.32,

p,.003). Over the next 2 days, Mealtime 2 anticipation shifted

back toward its original onset time (Fig. 1, days RF18-19).

Meal shift test. On day RF20, the morning meal was

delivered 3-h early, at light onset. Despite the early feeding, most

of the rats exhibited some activity at the clock times normally

associated with the beginning and ending of meal 1 (Fig. 3G). The

timing of anticipation to Mealtime 2 on this day was not significantly

altered relative to the preceding day (RF19, mean

change = 17614 min, t(14) = 1.20, p = 0.25). On the following day

(RF21) the original morning mealtime was reinstated. The morning

bout of anticipation on that day was markedly advanced

(107615 min, t(14) = 7.16, p,.0001; Figs. 1, 3H), whereas there

was again no change in the timing of anticipation to Mealtime 2

(mean change = 23611 min). Over the next 2 days (Fig. 1, RF22-

23), Mealtime 1 anticipation shifted back towards its original onset

time, while Mealtime 2 anticipation remained stable.

Figure 2. Wheel running activity of four representative rats in Experiment1. Each line represents 24 h, with time of day plotted left to right
in 10 min bins. Time bins during which wheel counts were registered are denoted by heavy bars. Meals are indicated by opaque bars. Experimental
conditions are numbered to the left of each panel: 1 = 37-h food deprivation, 2 = restricted feeding days, 3 = meal 1 omitted, 4 = both meals omitted
in constant dark, 5 = meal 1 provided 3-h early.
doi:10.1371/journal.pone.0031772.g002
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Correlation of anticipation onsets across all days. To

further assess the relationship between the two bouts of food

anticipation during restricted feeding, Pearson correlation

coefficients were calculated for each rat. Daily variations in

onset times of the two activity bouts were not significantly related

in any rat, across all 23 days (average Pearson r = .196.06) or from

days 8–23 (omitting the first week, when both bouts of anticipation

were emerging in parallel; average Pearson r = .006.07). The

correlation coefficient approached zero for the group mean data

(r = .01; Fig. 1).

Discussion
The results of Experiment 1 provide no evidence that interval

timing contributes to the timing of food anticipatory activity in rats

Figure 3. Group mean (± sem) waveforms of normalized wheel running activity in Experiment 1. Time is plotted in 10 min bins from
lights-on (Hour 0, yellow bar). Meal times are denoted by green stripped vertical bars (hollow when meals were skipped). A. Last 4 days of ad-lib food
access (dashed line) and 37-h food deprivation (red solid line, shaded) prior to initiation of 2-meal restricted feeding (RF) schedule. B. Ad-lib (dashed
line) and RF days 8–12 (blue, solid line). C. RF day 12 (blue line) and Meal 1 omission day (red line, shaded), n = 9 rats showing delayed onset of
anticipation to Meal 2. D. RF day 12 (blue line) and Meal 1 omission day (red line, shaded), n = 6 rats showing no change in anticipation onset. E. RF
day 15 (blue line) and total food deprivation day with lights-off (DD, red line, shaded). F. Total food deprivation day in DD (red line, shaded) and first
day of RF after food deprivation (blue line). G. RF day 19 (blue line) and 3-h shift of Meal 1 (red line, shaded). H. RF day 19 (black line), 3-h shift of Meal
1 (red line, shaded), and day after 3-h shift of Meal 1 (RF21, blue line).
doi:10.1371/journal.pone.0031772.g003
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fed two daily meals in the light period. Although the longer

duration of Mealtime 2 anticipation relative to Mealtime 1

anticipation is in the direction predicted by scalar timing, the ratio

of the duration of anticipation to the intervals between lights-on

and mealtimes did not exhibit proportionality, a hallmark property

of interval timing. Also, the within-subject variability of anticipa-

tion bout duration across days did not differ between Mealtimes 1

and 2 (variability across days should also scale with interval

duration) [32]. Crucially, anticipatory activity to both meals

persisted with little or no shifting when one or both meals were

omitted, in either LD or DD, leaving no external cues available.

Finally, shifting the morning mealtime failed to alter the timing of

anticipation to the afternoon meal, ruling out endogenous feeding-

related cues as stimuli that might actuate an interval timer for

measuring elapsed time between meals. Taken together, the results

demonstrate that the onset of food anticipatory wheel running in

this 2-meal paradigm is under the control of one or more circadian

clocks, and does not involve measurement or memory of elapsed

time between external events.

Other results of Experiment 1 tend to favor a dual-FEO model

of 2-meal anticipation over a single continuously-consulted-clock

model. On two occasions, anticipation of one meal was acutely

shifted without a change in the timing of the next bout of

anticipation. A rapid shift of meal timing after a single event (e.g,

one early meal, or one refeeding after a 37-h food deprivation) is

predictable if each bout of anticipation is timed by a separate

oscillator that is entrained (and thus can be acutely shifted) by one

meal, analogous to resetting of the SCN pacemaker by a single

light or dark pulse. If anticipation of both meals was based on a

single food-entrained oscillator (functioning as a continuously-

consulted-clock), then both bouts of anticipation would be

expected to shift in lock step on the first cycle after one bout has

shifted. Across all 23 days of the feeding schedule, the daily onsets

of the two bouts of anticipation were not significantly correlated

within subjects or in group data, a property more consistent with

two independently entrained FEOs rather than a single consulted

clock.

Experiment 2. Two daytime meals 10-h apart:
assessment of SCN phase

Introduction
If rats use separate circadian oscillators to anticipate 2 daily

meals, could one of these be the LD-entrained SCN? Our strategy

of scheduling the second daily meal 1-h prior to lights-off, to

maximize the intermeal interval, creates the impression that

nocturnal activity may have phase shifted, raising the possibility

that activity prior to Mealtime 2 represents the onset of nocturnal

activity driven by the SCN. This interpretation would require an

,3-h phase advance shift of the SCN, despite continued exposure

to a 24-h LD cycle. Several well established facts argue against this

interpretation. First, it has been shown repeatedly that in LD-

entrained rats, the SCN is not phase shifted by daytime feeding

schedules [33–37]. Food-restricted mice may show a phase shift of

nocturnal activity onset, but only on caloric restriction schedules

that markedly reduce body weight (,20%, compared to ,4% in

the present study) [38]. In that study [38], no shift of per1 or Bmal1

clock gene rhythms in the SCN was observed, suggesting that clock

phase was not altered and that severe caloric restriction affects

daytime activity downstream from the circadian clock. Second,

during daytime restricted feeding, SCN-driven nocturnal activity is

typically decreased in rats [4], and SCN output during the light

period is actively inhibited [39]. Third, abrogation of SCN

function in rats by lesion [40] and in mice by clock gene mutation

[41] enhances the magnitude of food anticipatory activity. Finally,

SCN-ablated rats robustly anticipate and can discriminate 2 daily

mealtimes [15,16]. Thus, the rat SCN in LD is not shifted by

daytime feeding, its output is if anything inhibited during restricted

feeding, and a mechanism for anticipating 2 daily meals is present

elsewhere in the brain. These facts do not support a role for the

SCN as a clock driving daytime food anticipatory rhythms.

Rather, the prevailing interpretation is that FEOs and the light-

entrainable SCN are distinct timing mechanisms that compete for

control of activity, with FEOs dominating during scheduled

feeding, and the SCN dominating when there are no constraints

on feeding.

To test this argument, we conducted an additional experiment

to assess the phase of the SCN following daytime restricted

feeding. Rats in LD 14:10 were subjected to the same 2-meal

feeding schedule, or were fed ad-lib, and then both groups were

provided food ad-lib in DD. Food anticipatory activity rhythms

persist during total food deprivation, but are markedly attenuated

or absent on the first day of ad-lib food access, which combined

with DD should reveal the true phase of SCN-driven nocturnal

activity.

Procedures
Sixteen male Sprague Dawley rats naı̈ve to restricted feeding

schedules were randomly assigned to a food restriction group

(N = 8) or an ad-lib fed group (N = 8). The rats were first

acclimated to the running wheel cages for 2 weeks with ad-lib food

access. The food restriction group was food deprived for 37-h, and

then fed twice daily for 1-h, beginning at ZT1 and ZT11, for the

next 15 days. After the last meal at ZT11, food was provided ad-

libitum in constant dim red light (DDr, ,1 lux) for 10 days.

Results and Discussion
By contrast with the results of Experiment 1, food anticipatory

wheel running was less robust in most rats in Experiment 2.

Nonetheless, all 8 food restricted rats exhibited some anticipation

of Mealtime 1, and 5 of 8 also showed significant anticipation of

Mealtime 2 (e.g., Fig. S2A), with an average bout duration similar

to that evident in Experiment 1 (10868 min). Activity onsets on

each of the first two days of DDr were compared with onsets

averaged over the week prior to restricted feeding, and these

differences were then compared between groups (Fig. S2C). The 5

rats that anticipated Mealtime 2 were treated as a separate group

for contrast with the ad-lib fed rats. The onset of activity on the

first day of DDr did not differ from nocturnal activity onsets

during the last week of ad-lib food access in this subgroup of 5 rats

(t(4) = 1.23, p = .30) or in the ad-lib fed group (t(7) = 0.65, p = .53).

The onset of activity on the first day of DDr, expressed as

differences from the onsets prior to restricted feeding, also did not

differ significantly between the ad-lib fed rats and the food

restricted rats (all 8, t(14) = 0.41, p = .68; subgroup of 5, t(11) = 0.09,

p = .92). These results provide no evidence that the SCN was

phase advanced by the daytime feeding schedules.

Experiment 3. Two daytime meals, 7-h apart

Introduction
The 10-h interval between mealtimes 1 and 2 in Experiments 1

and 2 was chosen to minimize ambiguity in identifying distinct

bouts of activity associated with each mealtime during meal

omission tests, which is the most important criterion for

determining whether the two bouts are under independent

circadian control. A wide interval should also facilitate detection

of differently phased circadian clock gene rhythms in different
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brain regions or peripheral organs, if separate bouts of anticipation

are mediated by different groups of circadian clock cells,

functioning as independently entrained FEOs. In earlier work,

total food deprivation tests conducted when two daily meals were

5-h apart revealed only a single bout of activity extending across

the two mealtimes [7]. In Experiment 3, we examined an interval

of 7-h, toward defining discrimination limits for 2-meal timing. We

also explored the use of 1 and 2 day food deprivation tests and a

food-bin activity measure as methods for uncovering meal timing

in rats that exhibit weak or no food anticipatory wheel running, as

was observed in Experiment 2.

Procedures
Two cohorts of rats entrained to LD 14:10 were housed in

wheel running cages as in Experiment 2, with food provided in an

external food bin accessed via a window. After two weeks of ad-lib

food access, the rats were food deprived for 37-h and then received

food (powdered chow in corn oil) twice daily, 3-h (ZT1) and 10-h

(ZT8) after lights-on. Powdered chow was used so that rats could

not remove it from the food bin, and would therefore focus activity

on the food bin. The first cohort of rats (N = 8) were food restricted

for 41 days, during which the morning meal was omitted once (RF

day 22), both meals were omitted for one day in LD (RF25) and

for two days in DD (RF29-30), and the morning meal was

advanced by 3-h once (RF34). The second cohort (N = 16) were

food restricted for 34 days, during which the afternoon meal was

omitted once (RF7), the morning meal once (RF17), both meals for

2 days in DD (RF21-22) and both meals for 1 day in LD (RF31).

Results and Discussion
Food anticipatory wheel running was again less robust in this

experiment by contrast with Experiment 1. Of the 24 rats, 12

showed anticipatory activity to Mealtime 1 on most days, with

variable expression of anticipatory activity to Mealtime 2 (e.g.,

Fig. 4A,B,D,E). The other 12 rats showed little anticipation of

either meal on most days (e.g., Fig. 4C,F). When anticipation was

present, in most cases it persisted during meal omission tests in LD

and DD, with no systematic shift in the time of onset (Fig. 5). A

notable feature of the results was the appearance of activity before

or during the scheduled mealtime during meal omission tests in

rats that did not exhibit food anticipatory activity on the

immediately preceding days (e.g., Fig. 4C,F). This implies that

meal timing may be operational even when meal anticipation is

not expressed on most days, and that the timing process may be

more precise than is suggested by the typical duration of

anticipatory activity.

Figure 4. Wheel running of representative rats in Experiment 3. Panels A–C. Rats from cohort A. Experimental conditions are numbered
to the left of each actogram: (1) 37-h food deprivation. (2) Two daily meals, denoted by opaque vertical bars. (3) Meal 1 omitted. (4) Both meals
omitted. (5) Both meals omitted for 2 days in DD. (6) Meal 1 advanced by 3-h. Panels D–F. Rats from cohort B. Experimental conditions: (1) 37-h food
deprivation. (2) Meal 2 omitted. (3) Meal 1 omitted. (4) Both meals omitted for 2 days in DD. (5) Both meals omitted in LD.
doi:10.1371/journal.pone.0031772.g004
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Food bin activity in the second cohort of rats (N = 16) was

measured by a photobeam across the food-bin window, to

determine if this might reveal anticipatory behavior in the absence

of wheel running. This proved not to be the case, and overall the

results conformed closely to the wheel data. Of 6 rats that showed

little anticipatory running, pre-meal food bin activity was nearly

absent in 4 cases and sporadic in the other 2, but, like running, was

evident at mealtime during meal omission tests. The other 10 rats

showed anticipatory food bin activity to both meals on most days,

and the timing of these bouts was not significantly changed during

meal omission tests in LD (meal 1, t(9) = 1.2, p..1; meal 2,

t(9) = 1.13, p..1) and DD (meal 1, t(9) = 1.9, p..1; meal 2,

t(9) = 0.38, p..1) (Fig. 6). As was observed for wheel running in

Experiment 1, the duration of anticipatory food bin activity was

greater prior to meal 2 than meal 1 (e.g., for restricted feeding days

24–31, 6067 min vs 7966 min, t(9) = 2.66, p,.02, Fig. 6C,D).

During meal omission tests, activity peaked during the expected

mealtime, and was approximately symmetrical around this peak

(Fig. 6E,F). The width of the distributions of activity associated with

each mealtime were quite similar, and clearly not proportional to

the different intervals between lights-on and mealtime or between

mealtimes, as would be predicted by interval timing models.

The average amount of anticipatory food bin activity to Mealtime

1 and 2 increased by factors of 2.5 and 1.8, respectively, during the

week following the first 48 h meal omission test. This suggests a

possible effect of weight loss incurred during fasting. Body weights

were found to discriminate the group of anticipators from non-

anticipators (F(1,28) = 8.68, p = 0.0064); compared to the 10 rats that

anticipated daily meals, the 6 non-anticipators weighed more both

at the beginning (54868 g vs 515610.4, p,.05) and the end

(55969 vs 517.3614, p,.05) of restricted feeding.

General Discussion
These experiments were designed to probe formal properties of

food anticipatory rhythms in rats maintained on two daily meals in

the light period, and to assess quantitatively whether anticipation

of two daily meals involves both circadian and interval timing

processes [21]. The results in aggregate provide little support for

this proposition, and instead indicate that when food is available at

two fixed times of day, anticipatory behavior is under circadian

clock control. The persistence (or appearance) of food anticipatory

activity at scheduled mealtimes during meal omission tests

(Experiments 1 and 3) is consistent with predictions of 2-oscillator

and consulted clock models, but not interval timing models.

Shifting of one bout of food anticipation without parallel shifting of

anticipatory running to the next meal is consistent with predictions

of a 2-oscillator model, as is the lack of association between the

timing of the two bouts of anticipation across all 23 days of

restricted feeding in Experiment 1. These results are readily

interpretable within the framework of a dual-FEO model, and

constitute a novel set of observations that complement existing but

limited evidence for dual FEOs derived from experiments in which

two meals were provided with slightly different periodicities [6,8].

The failure of the two daily bouts of anticipatory activity to meet

criteria for interval timing, in particular the lack of proportionality

between the bout durations and the intervals between lights-on

and mealtimes or between the 2 mealtimes, as well as the similar

degree of variability of the two bout durations within-animals

across days, differs from the results of a single meal study, in which

proportionality of anticipation duration to single daily meals 3-h or

7-h after lights-off was observed [26]. It is possible (although not

likely) that lights-off is a more salient cue than is lights-on to

support interval timing in the multi-hour range. Alternatively, rats

may be more inclined to measure intervals when acquisition of

food is contingent on operant behavior, such as lever pressing or

nose pokes, as in [26] and in most other studies of short-interval

timing in rodents. General locomotor activity measures, such as

wheel running or exploratory activity, may primarily reflect

circadian processes such as oscillator entrainment or clock

consultation, whereas learned operant behaviors may be more

Figure 5. Group mean waveforms of wheel running activity in rats from Cohort A (panels A–C) and Cohort B (panels D–F). Panels A,D:
ad-lib food access (grey shading) and 37-h food deprivation prior to restricted feeding (red curve). Panels B,E: Restricted feeding (RF) days (black line)
prior to 2 days food deprivation (FD, red line) in constant dark (DD). Panels C,F: RF days (black line) prior to omission of both meals for one day (red
line) in LD. Other plotting conventions as in Figure 1.
doi:10.1371/journal.pone.0031772.g005
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likely to come under joint control of circadian and interval timing

processes. Support for this interpretation is provided by an earlier

study, which showed interval timing effects in anticipatory lever

pressing but not in general locomotor activity measured

concurrently in rats maintained on a daily feeding schedule

(Fig. 4 in [25]). Taken together, these results indicate that under

some circumstances, food anticipatory activity can be jointly

regulated by circadian and interval timing, but that this is

dependent on the food delivery procedures (free-food Vs. working

for food) and behavioral measures (operant Vs. non-operant). To

our knowledge, no study of intact rats or mice has been able to

demonstrate anticipation of one or two daily meals based

exclusively on external, cue-dependent interval timing.

In Experiment 1, all of the rats exhibited robust anticipation of

both meals, but in the follow-up experiments, anticipation was

notably weaker and more variable in the number of rats

anticipating one or both meals, and in the amount of premeal

running in those that did anticipate. The cause of this variability

across experiments is unclear, but could involve procedural or

physiological variables. Although the running wheel cages were

the same in all of the experiments, in Experiment 1 the cages were

housed in individual isolation boxes, whereas in the other

experiments the cages were in open cabinets. Also, in Experiment

3 food was provided in an external food bin accessed through a

small window. Whether these differences played any role in the

amount of anticipatory running is uncertain. One previous study

found an effect of housing, albeit in a different species and in the

opposite direction; mice in isolation boxes failed to anticipate a

daily meal, whereas the same mouse strain did anticipate meals

when housed in open racks [42]. A physiological variable that can

affect the expression of food anticipatory activity is body weight, as

rats made obese by a cafeteria diet exhibit less anticipation [43],

while obese leptin receptor-deficient Zucker fatty rats and obese

leptin-deficient ob/ob mice exhibit greater anticipation [44,45].

Body weight was associated with anticipatory behavior in both

Experiment 1 and 3, in the expected direction (greater weight

associated with less anticipation), but the starting body weights of

the rats did not differ across studies. Despite the absence of

anticipation in a substantial number of rats in Experiments 2 and

3, the meal omission tests in DD revealed evidence of meal timing

behavior in most cases. This suggests that factors associated with

body weight modulate the expression of food anticipatory activity

downstream from the anticipatory timing mechanism.

In addition to metabolic factors, the expression of food

anticipatory activity is likely also affected by ambient lighting.

Some rats in Experiment 3 that failed to exhibit food anticipation

to meal 1 in LD, did exhibit anticipation of meal 1 on the first day

of DD, prior to meal omission. Light is known to suppress

locomotor activity in nocturnal rodents [46], and evidently this

effect is not entirely superseded by daytime restricted feeding

schedules. Light and metabolic factors may modulate thresholds

gating expression of clock-controlled anticipatory behavior.

The neural mechanisms by which animals coordinate foraging

activity with daily feeding opportunities remain to be elucidated.

While phenomenological evidence supports the concept of a dual

FEO system underlying 2-meal timing in rats, the validity of this

model will require confirmation at the cellular level, by the

observation of independently phased circadian oscillations in one or

more neuronal groups that could, in principle, be manipulated to

evaluate a role as independent driving oscillators for separate bouts

of anticipatory activity. This task is complicated by continued

uncertainty about the location of circadian oscillators critical for

food anticipatory rhythms, and about the role of known circadian

clock genes in the generation of these rhythms [19,20,22,47–50].

Supporting Information

Figure S1 Group mean (± SEM) anticipatory wheel
running in Experiment 1. A. Overlay of running activity in

Figure 6. Anticipatory food-bin activity in Experiment 3 (cohort B, N = 16). A. Group mean activity waveform during restricted feeding (RF)
days 18–21 (blue curve) immediately prior to 2 days of total food deprivation (FD) in constant dark (DD) (red curve and shading). B. Group mean
activity waveform during RF days 25–31 (blue curve) immediately prior to 1 day of FD (red curve and shading). C. Food bin counts during each 10-min
bin starting 3-h prior to the morning meal (Mealtime 1, solid blue curve) and the afternoon meal (Mealtime 2, dashed blue curve), from Panel A. Data
normalized and smoothed. [D] Food bin counts prior to Mealtime 1 and 2 (from Panel B). E. Food bin counts from 3-h before to 3-h after Mealtime 1
(solid curve) and Mealtime 2 (dashed curve) during 2 days of FD. F. Food bin counts from 3-h before to 3-h after Mealtime 1 (solid curve) and
Mealtime 2 (dashed curve) during 1 day of FD.
doi:10.1371/journal.pone.0031772.g006
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each 10 min bin beginning 4-h prior to Mealtime 1 (solid line) and

Mealtime 2 (dashed line), on restricted feeding (RF) days 8–12.

B–C. Running activity during each 10 min bin beginning 3-h

before Mealtime 1 (B) and Mealtime 2 (C), for each rat on day

RF12. The inset panels illustrate the results of linear regression line

fits to the last hour of activity in 1 min time bins, for each rat.

(TIF)

Figure S2 Wheel running activity of representative rats
in Experiment 2. A. Rat subjected to the 2-meal daytime

restricted feeding schedule. Mealtimes denoted by vertical open

bars. B. Rat fed adlib. Light-off denoted by shading. Other

plotting conventions as in Figure 2. C. Group mean activity onsets

(6 SEM) of food restricted rats (upper 3 data points) and ad-lib fed

rats (lower 3 data points), in minutes relative to activity onsets

during the last week of ad-lib food access in LD (2 m RF, AL base

2), and on the first two days of constant dark (DD1 and DD2).

(TIF)
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