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A B S T R A C T   

Digitally-delivered healthcare is well suited to address current inequities in the delivery of care due to barriers of access to healthcare facilities. As the COVID-19 
pandemic phases out, we have a unique opportunity to capitalize on the current familiarity with telemedicine approaches and continue to advocate for main-
stream adoption of remote care delivery. In this paper, we specifically focus on the ability of GuessWhat? a smartphone-based charades-style gamified therapeutic 
intervention for autism spectrum disorder (ASD) to generate a signal that distinguishes children with ASD from neurotypical (NT) children. We demonstrate the 
feasibility of using “in-the-wild”, naturalistic gameplay data to distinguish between ASD and NT by children by training a random forest classifier to discern the two 
classes (AU-ROC = 0.745, recall = 0.769). This performance demonstrates the potential for GuessWhat? to facilitate screening for ASD in historically difficult-to- 
reach communities. To further examine this potential, future work should expand the size of the training sample and interrogate differences in predictive ability 
by demographic.   

1. Introduction 

Remote treatment and progress tracking has transformed the way in 
which clinicians deliver care to their patients [1]. This trend was cata-
lyzed by COVID-19, and as the pandemic phases out, remote health is 
positioned to remain a primary component of many forms of care [2,3]. 
One of the best established forms of remote treatment, telemedicine, has 
been shown to increase access to care across geographic regions [4]. 
Telemedicine’s success during the COVID-19 pandemic provided a 
glimpse of a future in which access to care is not determined by one’s 
ability to physically visit a care provider. This specific moment in history 
presents the biomedical community with an opportunity to drastically 
improve access to care for individuals who have historically been un-
derserved by the medical system. If we are to realize a future of more 
equitable healthcare delivery, it is critical that we focus on developing 
new forms of remote care at a moment in time when both patients and 
clinicians are familiar with remote care workflows. 

Autism Spectrum Disorder (ASD) serves as a clear example of a 
condition that is an ideal substrate for remote care. Although the prev-
alence of ASD is similar in both rural (0.9 pct.) and urban (1.0 pct.) 
areas, individuals in rural communities face limited access to 

identification and intervention services [5]. Data mining studies have 
suggested that up to 80 pct. of counties in the U.S. lack sufficient diag-
nostic resources [6]. Moreover, early diagnosis and intervention of ASD 
can significantly improve the quality of life for individuals with ASD and 
their families [7]. As such, the invention of novel technologies that allow 
for remote screening for ASD could address the disparity in early diag-
nosis of the disorder. 

The development of technology for remote care also allows us to 
experiment with novel ways of conceptualizing the patient-care inter-
action. It is not a stretch to say that simply providing the current 
physician interaction through a smartphone may not be the best way of 
providing remote care. In fact, delays in the adoption of telehealth have 
been attributed to “unengaged” and “resisting” users [8]. 

Moreover, current methods for screening for ASD typically include 
subjective caregiver-report questionnaires. Feature selection on elec-
tronic health records have identified salient behavioral features for 
predicting ASD [9–12], and these features can be reliably acquired 
through crowdsourcing by non-expert raters [13–17,17]. These 
non-expert feature tags have been used to train machine learning models 
which can detect ASD with high accuracy, precision, and recall [10,11, 
18–23]. While digitization of these questionnaires may be one way of 
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addressing gaps in screening for ASD, such questoinaries require literacy 
and perform worse with non-white and lower education caregivers [24]. 
Consequently, naively deploying digitized versions of diagnostic ques-
tionnaires risks exacerbating current disparities in the early identifica-
tion of ASD. A clear need exists for objective methods of screening for 
ASD that perform equally well across demographic groups. 

Our lab developed GuessWhat? a mobile charades-style gamified 
therapeutic intervention that acquires structured video data from chil-
dren with ASD for use in behavioral diagnostics research [25–29]. We 
designed the gamified therapeutic to be an engaging and fun way for 
parents and children to interact while having the option to support 
behavioral research and remote therapy by sharing objective gameplay 
and video data. Computer vision classifiers have been developed with 
the resulting data streams [29,30], and other computer vision efforts for 
detecting behavioral features related to early time point diagnostics and 
longitudinal outcome tracking are possible [13,31,32]. 

In addition to active data collection and monitoring of structured 
gameplay sessions, passive data collection and device usage measures 
can potentially be used for diagnostic purposes. Detecting behavioral 
and mental health conditions through passive device usage has been 
termed “digital phenotyping” in the literature [29,30,33–35]. Here, we 
explore the feasibility of using device usage data during gameplay to 

predict the presence of ASD in a semi-passive manner. Although this falls 
outside of the traditional definition of “digital phenotyping”, we argue 
that this passive and semi-passive prediction of behavioral health from 
device usage also falls into the broad category of “digital phenotyping”. 

The main goal of this study is to identify the ability for GuessWhat? 
To generate a signal that distinguishes children with ASD from neuro-
typical (NT) children. Using only objective behavioral data captured by 
the game, we successfully demonstrated the ability to train a classifier 
that distinguishes the two groups, a critical step toward formalizing the 
game as an objective and easily-deployed remote screening tool for ASD. 

2. Methods 

2.1. Data collection 

We collected behavioral data through at-home gameplay of the 
GuessWhat? game, a game developed to acquire structured video from 
children with ASD for behavioral disease research [25–29]. During 
gameplay, a parent shows a child a prompt–an image–and the child is 
asked to act out the image, much as they would in a game of charades. As 
the child acts out the prompt, the parent guesses what the image is based 
off of the child’s acting, and if the parent guesses correctly, the parent 

Fig. 1. Mobile Intervention User Experience. a) 
GuessWhat is a charades-style mobile game available 
for any a smartphone device. In a typical game ses-
sion, b) the parent holds the smartphone to their 
forehead and tries to guess the emotion mimicked by 
the child in response to the prompt shown on the 
phone’s screen. Upon guessing, the parent tilts the 
phone to proceed to the next prompt through the end 
of the 90-second session. c) After each 90s game, 
parent and child can review together. In-app d) game 
modes, e) unlocking deck and character choices based 
on coins earned, and f) activity-based achievement 
badges reinforce positive progression and ensure 
optimal child engagement through time.   
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labels the prompt by tilting the phone forward (top of phone away from 
forehead) if successful and backward (bottom of phone away from 
forehead) if unsuccessful. These steps are detailed in Fig. 1. 

During gameplay, the app collects metadata regarding whether the 
parent successfully guessed the prompt acted out by the child. We define 
a trial to be the delivery of a single prompt to a child during a unique 
session of gameplay (need figure/graphic showing this). 

The unprocessed data stored by the game and used in this study in-
cludes event-level data that tracks the following aspects of gameplay:  

● Start time of a prompt  
● End time of a prompt  
● Whether the prompt was correct  
● Whether the prompt was skipped 

2.2. Participant recruitment 

The Stanford Institutional Review Board approved the study prior to 
any research activities taking place. The recruitment methods for this 
study are identical to Ref. [36] This study was conducted remotely. 
Participants were recruited through GuessWhat’s existing userbase, The 
Hartwell Foundation’s KidsFirst autism research database, Research 
Match.org, and Facebook advertisements. 

All participating were required to meet the following criteria: 1) they 
were able to read and speak English, 2) they had a compatible iOS or 
Android device with internet access, 3) the parent was 18+ years old, 4) 
the child was between 3 and 12 years of age and diagnosed with ASD. 

To safeguard against the potential for self-reporting bias, we required 
the caregiver to confirm that their child’s autism diagnosis came from a 
formal medical assessment. We asked the caregiver to choose a diag-
nostic label from a menu of choices including Autism Spectrum Disor-
der, Autistic Disorder, Pervasive Developmental Disorder-Not Otherwise 
Specified, Asperger Syndrome, ADHD/ADD, Anxiety, Speech and Lan-
guage Delay. In addition, we required participants to report on the 
specific type(s) of therapy being administered to their child. This in-
formation requires a specialized understanding of the autism diagnosis 
and subsequent treatment prescriptions. 

2.3. Data sample, feature engineering and preprocessing 

We collected gameplay from children with autism spectrum disorder 
(ASD, n = 28) and neurotypical children (NT, n = 21). 19 of the ASD 
children were male and 9 were female. 10 of the NT children were male, 
7 were female, and 4 did not provide sex information. Data were ac-
quired between April 2017 and February 2021. Children were classified 
as ASD or non-ASD based on parent-provided information collected 
when the parent signed up for GuessWhat? Children had a mean age of 
7.10 +- 5.82 years. 

In order to minimize missing-data imputation, we focused our 
analysis only on the most commonly presented prompts, which were 
images from the CAFE dataset, a collection of images of young children 
displaying angry, fearful, sad, happy, surprised, disgusted and neutral 
faces [37]. Future work will expand this image dataset to include 
prompts derived from videos served on the social media platform 
TikTok. 

2.4. Feature engineering 

Previous work has shown that differences in emotion recognition 
tasks can be used to distinguish children with autism from NT children 
[38,39]. This delta stems from the ability to correctly identify an 
emotion and the reaction time required to do so (e.g., how long it takes a 
child to recognize a facial emotion). Consequently, we developed fea-
tures that allowed us to measure these two constructs. 

The first set of features (N = 17, detailed in appendix A1) measured 
the accuracy with which a child successfully acted out a specific prompt. 

Each one of these features corresponded to one of 17 faces shown during 
gameplay. A prompt was considered correct if the parent labeled it as 
such during gameplay. It should be noted that, although parents 
received instructions for how to correctly label a prompt, we had no way 
to confirm that they did in fact label it correctly. Thus, for m trials of 
each face type, we calculated percent correct p to be: 

p = 100 ∗
1
m

∑m

i
1 where 1 =

{
1 if  correct
0 if  incorrect (1) 

For a single session of gameplay, we calculated a percent correct 
feature for each of the prompts shown from the CAFE dataset. 

The second set of features (n = 17) measured the amount of time it 
took for a child to act out the prompt and for the parent to label it. . We 
call this prompt duration, d, and we calculated it as follows: 

d =
1
m

∑m

i
ei − si where

{
ei = prompt  end  time
si = prompt  start  time (2)  

where m is the number of times a prompt corresponding to a specific 
emotion was shown to a child. In other words, it was the average amount 
of time it took a child to identify a specific emotion. We calculated d for 
each of the 17 types of faces shown, regardless of whether a child 
correctly identified the face. Appendix A2 illustrates the input data 
schema. 

2.5. Preprocessing 

To avoid incorporating information from the distribution of the 
training data into the test set (i.e., “data leakage”), we carried out the 
following preprocessing steps separately for each test-train split of the 
data. The steps included, in order: outlier removal, imputation, stan-
dardization, upsampling. For all features, we considered values greater 
than 3 standard deviations away from the mean value to be an outlier. 
We removed these values and then used k-nearest-neighbor imputation 
(k = 3) to fill missing observations. We then standardized our data by 
subtracting feature-wise means from each observation and dividing by 
feature-wise standard deviation. Finally, due to compounding effects of 
moderately imbalanced classes within a small size dataset, we used 
SMOTE [40] to upsample the minority class and ensure balanced classes 
(equal ASD and NT) in each test-train split. 

2.6. Modeling 

We tested the performance of 4 classifiers on our set of 34 features. 
We trained and tested our models in Python and using the packages 
scikit-learn [41]. We chose to test models from 3 families of classifiers: 
linear models, support vector machines (SVM) and tree-based methods. 
Three main criteria drove the choice of these families of models. First, 
we had no a priori belief about the linearity (or lack thereof) of the re-
lationships between our features, so it was important to model our data 
using a set of methods that would perform well under various conditions 
of linearity. Second, our sample size was not particularly large, so it was 
important to test model types that offered considerable flexibility to 
prevent overfitting through regularization. Third, we wanted to choose 
an interpretable model to gain insight into the specific aspects of 
gameplay that predict ASD. Table 1 describes the types of models we 
used in our analysis and their relevant attributes. 

We used a repeated, nested grid search to simultaneously identify the 
best performing set of hyperparameters for our models as well as to 
understand the statistical accuracy of the performance metrics we ob-
tained. The first iteration of the outer loop of our cross-validation pro-
cedure randomly splits the dataset into 4 equal-sized partitions. Then, 
using only 3 of these 4 partitions, the inner loop tunes the model 
hyperparameters using a grid search and 4-fold cross validation in order 
to select the best performing model with respect to AU-ROC. It should be 
noted that, because of a low sample size, we limited our search space to 
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include hyperparameters that would lead to more regularization and less 
overfitting. After the best performing model was selected by the inner 
loop, its performance (measured by AU-ROC and recall) was tested on 
the unseen data included in the 4th partition from the outer loop. After 
four iterations of the outer loop, we obtained 4 classifiers, each with a 
corresponding set of performance metrics. Finally, we repeated the outer 
loop 7 times to obtain a total of 28 sets of performance metrics from 
which we bootstrapped distributions of each metric of interest. Fig. 6 
provides a visualization of the repeated, nested cross validation 
procedure. 

2.7. Feature selection 

A simpler model (e.g. a model with fewer features) is often favorable 
as it is easier to interpret and often can improve performance by elim-
inating noisy features. We produced heatmaps in order to inspect the 
importance of each feature across the 28 iterations of cross validation 
used to train and evaluate each model (e.g., Fig. 2). Finally, we retained 
the models using only duration-based features, which consistently dis-
played higher feature importance in the random forest classifier. We 
noted a clear separation between duration and accuracy-based features: 
features using the time taken by the child to act out the prompt were 
significantly more important on average (Fig. 4; t = 5.15, p = 1e-5) than 
features relying on the parent’s ability to correctly guess the prompt the 
child is acting out. This gap in feature importance based on the type of 
feature (duration or accuracy-based) could be due to the variability in 
parents’ adherence to the GuessWhat? Instructions. 

2.8. Final training 

After manual feature selection, we followed the same repeated, 
nested cross-validation procedure as before and re-trained the classifiers 
using the entire training set on the reduced feature space. 

2.9. Model evaluation 

We evaluated models by comparing the mean values of AU-ROC and 

Table 1 
Summary of tested classifiers. Hypermarameter names correspond to those used 
by scikit-learn v. 1.0.1   

Hyperparameter Values Tested 

XGBoost learning_rate 0.05, 0.10, 0.15, 0.20, 0.25, 0.30  
max_depth 1, 2, 3  
min_child_weight 1, 3, 5, 7  
gamma 0.1, 0.2, 0.3, 0.4  
colsample_bytree 0.3, 0.4, 0.5, 0.7 

Random Forest max_depth 1, 2, 3  
min_samples_leaf 2, 3, 4, 5 

Logistic Regeession penalty L1, L2  
C 0.1 to 10, 20 values log-spaced 

Linear SVM C − 7 to 4, 50 values log-spaced  

Fig. 2. Heatmaps of relative feature importance for each classier type (all features). The y axis corresponds to the 28 iterations of cross-validation. Plots are presented 
in decreasing order of ROC-AUC performance (as read left to right). Duration-based features tended to be most important in models that produced a higher AU-ROC. 
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recall across the 28 iterations of cross validation. Later in this paper we 
will discuss the practical considerations of each metric and provide an 
argument for those off of which we should base final model selection. 

3. Results 

3.1. Model performance using full feature set 

Using the full set of 34 features (all accuracy and duration measures), 
we obtained four heatmaps of relative feature importance across each of 
the 28 iterations of repeated, nested cross validation (Fig. 2). One 
heatmap exists for each type of classifier, and each row of the heatmap 
displays feature importances for the classifier that maximized AU-ROC 
during the hyperparameter tuning grid search. 28 rows of the heat-
map correspond to the 28 models produced through the 28 iterations of 
repeated, nested cross validation. 

When trained on the full set of 34 features, an XGBoost classifier 
produced the best model with respect to both AU-ROC (AU-ROC = 0.74) 
and recall (recall = 0.76). Random Forest performed second best with 
respect to both AU-ROC (AU-ROC = 0.73) and recall (recall = 0.76). 
Logistic regression and linear SVM performed noticeably worse than tree 
based methods with respect to recall, but SVM showed better precision 
than the other methods. In our discussion we will argue for selecting the 
model that results in the highest average of AU-ROC and Recall. A 
summary of all performance metrics for all models are found in Table 2. 

3.2. Manual inspection of features 

Manual inspection of feature importances revealed that duration- 
based features were, in general, most important in the two best per-
forming tree-based classifiers. This pattern was most pronounced in the 

Fig. 3. Heatmaps of relative feature importance for each classier type (duration-only features). The y axis corresponds to the 28 iterations of cross-validation Plots 
are presented in decreasing order of AU-ROC performance (as read left to right). 

Fig. 4. Difference in average feature importance by feature type.  
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random forest (Fig. 2). Lower performing linear methods tended to 
spread feature importance out among both duration-based and 
accuracy-based features (Fig. 2). 

More specifically, duration-based features corresponding to faces 
expressing disgust (in the tree-based methods) most consistently dis-
played high relative importance across the folds of cross-validation. This 
is most clearly seen in Fig. 2 Fig. 3, where duration based features are 
seen on the left side of the figures. 

3.3. Model performance using reduced feature set 

Three of the four classifiers saw comparable or improved perfor-
mance with respect to AU-ROC and recall when trained only on the 
reduced subset of 17 duration-based features. XGBoost was the only 
classifier that performed worse when trained only on the reduced 
feature subset. Performance metrics for each model trained using both 
the full set of features and the duration-based subset are found in 
Table 2. 

3.4. Feature importances using the reduced feature set 

Features corresponding to the emotion “disgust” were consistently 
most important within the highest performing random forest classifier 
(random forest). Features corresponding to surprise and sadness were 
consistently highly important across all classifier types except for 
XGboost (Fig. 5). 

When we aggregated feature importance by emotion (e.g., took the 
average of all features corresponding to a face showing disgust), the 
difference in importance between the most important feature, disgust, 
and all other emotions was most drastic in the random forest classifier 
(Fig. 5). 

3.5. Classifier selection 

As mentioned, we selected the simplest model resulting in the 
highest average of AU-ROC and Recall. According to this metric, the best 
performing model among both the full and reduced feature set was a 
random forest classifier. Because of the repeated, nested cross valida-
tion, we cannot report a single “best” set of hyperparameters. 

4. Discussion 

4.1. Novelty of method 

To the extent of our knowledge, this was the first study to use 
naturalistic, smartphone-collected game play data to distinguish ASD 
from NT children in a non-clinical setting. Moreover, the objective na-
ture of the data adds to a growing body of work demonstrating that 
digital phenotyping can successfully distinguish ASD from NT children 
[32,42]. 

Considerable work has focused on researching and developing 
objective methods of screening for ASD. Many of these methods rely 
either on genetic information or image and video data collected for use 
with computer vision algorithms. In this study, we expand on these 

Table 2 
Cross-validated performance metrics for each classifier type obtained through hyperparameter grid search. Minority class (NT) was sampled using SMOTE to obtain 
equal class size as majority class (ASD).  

Features Mean AU-ROC Mean Recall Mean Accuracy Mean Precision 

All Duration All Duration All Duration All Duration 

Model 
XGBoost 0.74* 0.70 0.76* 0.72 0.71 0.67 0.64 0.61 
Random Forest 0.73 0.75* 0.76 0.77* 0.72* 0.72* 0.65 0.67* 
Logistic Regression 0.67 0.69 0.67 0.69 0.65 0.68 0.60 0.67 
Linear SVM 0.70 0.71 0.70 0.74 0.69 0.69 0.70* 0.65  

Fig. 5. Feature importances aggregated by emotion across all 4 families 
of classifiers. 
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modalities, demonstrating that using data collected through the use of a 
digital therapeutic, we are able to distinguish ASD from NT. These re-
sults can potentially generalize to other ubiquitous modalities such as 
wearable computers, which have proven to be clinically useful for 
addressing certain symptoms related to autism [43–52]. 

The significance of this is twofold. First, it is reasonable to expect that 
supplanting the aforementioned efforts to develop digital screening 
tools with the modality presented in this paper will produce more 
expressive models that can be used to screen for ASD in a privacy- 
preserved manner. Privacy concerns are at the forefront of behavioral 
phenotyping efforts (Washington et al., 2020). Second, GuessWhat? 
benefits from capturing information during naturalistic interactions 
between parents and their children. This has a clear benefit: the parent 
can intervene if the child begins to lose interest or pay less attention to 
the game. That said, involving the parent in gameplay introduces po-
tential confounding effects of the parent’s method of interacting with 
the game (e.g., the duration-based measures in this study could capture 
the speed with which a parent marks a prompt as correct as opposed to 
the speed with which it takes the child to answer the prompt). 

5. Feature discussion 

One of the most striking results of the study was the extent to which 
the highest performing models nearly exclusively found duration-based 
features important compared to accuracy based features. This may have 
been due to the low variance of the accuracy features compared to that 
of the duration based features. For both ASD and NT, accuracy metrics 
were skewed heavily towards 1.0 (i.e., always correct), suggesting that 
these features may not discriminate well between the two conditions. 
This trend could be driven by latent factors such as parents incorrectly 
labeling or a game design that was too easy for the majority of children 
regardless of diagnosis. 

Positing that the accuracy features may have been introducing noise 
into our dataset, we opted to train models using only duration-based 
features, which improved performance in 3 of the 4 types of classi-
fiers. Consequently, our final classifier was a random forest trained on 
just the duration subset of features (Fig. 3). 

When we looked at the mean feature importance of features 

aggregated by emotion, features corresponding to disgust were the most 
important in the random forest classifier. It has been shown that younger 
children are worse at discriminating facial expressions of disgust and 
surprise when images of these expressions are presented alongside 
specific other emotions [53], suggesting that cognitive development is 
required for accurate processing of these emotions. This provides a 
compelling explanation of why we found features corresponding to 
disgust and surprise to be best at discriminating between ASD and NT 
children in our study. 

That said, we must take care to not deduce an oversimplified un-
derstanding of these features. Specifically, although emotion recogni-
tion is necessary for a child to act out a prompt, it is but one component 
of a complex interaction between child performance and parent inter-
pretation that could drive the signal found in this study. In this paper, we 
consider this complex didactic process to be a proxy for emotion 
recognition, but it likely captures components of theory of mind, 
metacognition and many other phenomena, as well. 

6. Strengths and limitations 

This study demonstrated that naturalistic gameplay data involving 
childrens’ ability to identify and process facial emotions can be used to 
distinguish ASD and NT children. Moreover, the features that were most 
important to distinguishing the children were features corresponding to 
disgust and surprise, a finding consistent with previous literature [53]. 
Capturing this objective signal “in the wild” is a promising step forward 
in successfully developing novel methods of screening for ASD that 
complement existing instruments, resulting in more accurate and 
accessible methods of screening for the disorder. 

The ability to capture this signal “in-the-wild” without the use of 
specialized equipment is extremely well situated for translation due to 
three key factors. First, an emerging model of remote care that em-
phasizes telehealth visits was catalyzed by COVID-19, and both clini-
cians and patients became accustomed to receiving care through digital 
tools. Second, there is increasing awareness of the disparities in diag-
nosing ASD both in rural areas and among low socioeconomic status 
groups [5,54]. Requiring only a smartphone with internet access, 
GuessWhat? could be used as part of a broader strategy of addressing 

Fig. 6. Repeated Nested Cross Validation Procedure Used to separately tune model hyperparameters and evaluate out-of-sample performance.  
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these disparities in care for ASD among different groups in the United 
States. Third, while there is some disagreement about the “patient as a 
consumer” model [55,56], when we narrow the discussion specifically 
to the ways in which patients interact with digital health tools and 
products, it would be naive to assume that patients are not sensitive to 
the experience of using a digital tool, especially when many of the most 
successful health and wellness apps provide exemplar experiences. As 
such, the low barrier to use and straightforward experience provided by 
GuessWhat? positions the platform well for high engagement from the 
relevant patient populations. 

A limitation of this study is that the sample size was too small to 
evaluate the predictive power of our models across various demographic 
dimensions, including gender, ethnicity, nationality, age and other 
diagnosis (e.g. ADHD, dyslexia). As we expand our recruitment efforts, 
we plan to follow up on this work with models that are validated to 
assess fairly across demographic subdivisions. Additionally, to mitigate 
the possible bias introduced by parents being lenient with their own 
children, we should reproduce this study in a clinical setting in which 
the person displaying the prompts to the child is neither a parent nor 
informed of the child’s diagnosis. 

Finally, future work should attempt to elucidate the impact of the 
many dimensions of the child-parent dyadic relationship on the signal 
found in this study. Future work should specifically interrogate 1) the 
ability for a child to identify a prompt’s emotion 2) the child’s ability to 
introspect and express the emotion in a way that the parent would 
recognize 3) the ability of the parent to identify the relevant emotion 
and 4) the parent’s ability press the button quickly. 

Furthermore, the broader autistic phenotype (BAP) is a term that 
refers to the presence of certain autism-related traits in undiagnosed 

family members of children with autism [57]. These typically manifest 
as more mild impairments in social and communication abilities. Par-
ents exhibiting the BAP could potentially drive the results found in this 
study. 
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Appendix 

A1Prompts shown during gameplay  

ANGRY_2 NEUTRAL_2 
ANGRY_3 SAD 
DISGUST SAD_2 
DISGUST_2 SCARED 
DISGUST_3 SCARED_2 
DISGUST_4 SURPRISED 
HAPPY_2 SURPRISED_2 
HAPPY_3 SURPRISED_3 
NEUTRAL   

A2Data Schema  

ANGRY_2_duration ANGRY_2_accuracy DISGUST_2_duration DISGUST_2_accuracy …… SURPRISED_3_duration SURPRISED_3_accuracy  

References 

[1] Kadir MA. Role of telemedicine in healthcare during COVID-19 pandemic in 
developing countries. TMT; Apr. 2020. 

[2] Gunasekeran DV, Tham Y-C, Ting DSW, Tan GSW, Wong TY. Digital health during 
COVID-19: lessons from operationalising new models of care in ophthalmology. 
Lancet Digit Health 2021;3(2):e124–34. 

[3] Inkster B, O’Brien R, Selby E, Joshi S, Subramanian V, Kadaba M, Schroeder K, 
Godson S, Comley K, Vollmer SJ, Mateen BA. Digital health management during 
and beyond the COVID-19 pandemic: opportunities, barriers, and 
recommendations. JMIR Ment Health 2020;7(7):e19246. 

[4] Barbosa W, Zhou K, Waddell E, Myers T, Dorsey ER. Improving access to care: 
telemedicine across medical domains. Annu Rev Publ Health 2021;42:463–81. 

[5] Antezana L, Scarpa A, Valdespino A, Albright J, Richey JA. Rural trends in 
diagnosis and services for autism spectrum disorder. Front Psychol 2017;8:590. 

[6] Ning M, Daniels J, Schwartz J, Dunlap K, Washington P, Kalantarian H, Du M, 
Wall DP. Identification and quantification of gaps in access to autism resources in 
the United States: an infodemiological study. J Med Internet Res 2019;21(7): 
e13094. 

[7] Elder JH, Kreider CM, Brasher SN, Ansell M. Clinical impact of early diagnosis of 
autism on the prognosis and parent-child relationships. Psychol Res Behav Manag 
2017;10:283–92. 

[8] Greenhalgh T, Procter R, Wherton J, Sugarhood P, Shaw S. The organising vision 
for telehealth and telecare: discourse analysis. BMJ Open Jul. 2012;2(4). 

[9] Kosmicki JA, Sochat V, Duda M, Wall DP. Searching for a minimal set of behaviors 
for autism detection through feature selection-based machine learning. Transl 
Psychiatry 2015;5:e514. 

[10] Duda M, Ma R, Haber N, Wall DP. Use of machine learning for behavioral 
distinction of autism and ADHD, Transl. Psychiatry 2016;6:e732. 

[11] Abbas H, Garberson F, Glover E, Wall DP. Machine learning approach for early 
detection of autism by combining questionnaire and home video screening. J Am 
Med Inf Assoc 2018;25(8):1000–7. 

N. Deveau et al.                                                                                                                                                                                                                                 

http://Cognoa.com
http://Cognoa.com
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref1
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref1
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref2
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref2
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref2
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref3
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref3
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref3
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref3
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref4
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref4
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref5
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref5
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref6
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref6
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref6
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref6
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref7
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref7
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref7
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref8
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref8
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref9
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref9
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref9
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref10
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref10
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref11
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref11
http://refhub.elsevier.com/S2666-5212(22)00010-2/sref11


Intelligence-Based Medicine 6 (2022) 100057

9

[12] Abbas H, Garberson F, Liu-Mayo S, Glover E, Wall DP. Multi-modular AI approach 
to streamline autism diagnosis in young children. Sci Rep 2020;10(1):5014. 

[13] Washington P, Mutlu OC, Leblanc E, Kline A, Hou C, Chrisman B, Stockham N, 
Paskov K, Voss C, Haber N, Wall D. Using crowdsourcing to train facial emotion 
machine learning models with ambiguous labels. Jan. 2021. arXiv:2101.03477. 

[14] Washington P, Leblanc E, Dunlap K, Penev Y, Varma M, Jung J-Y, Chrisman B, 
Sun MW, Stockham N, Paskov KM, Kalantarian H, Voss C, Haber N, Wall DP. 
Selection of trustworthy crowd workers for telemedical diagnosis of pediatric 
autism spectrum disorder. Pac Symp Biocomput 2021;26:14–25. 

[15] Leblanc E, Washington P, Varma M, Dunlap K, Penev Y, Kline A, Wall DP. Feature 
replacement methods enable reliable home video analysis for machine learning 
detection of autism. Sci Rep 2020;10(1):21245. 

[16] Washington P, Leblanc E, Dunlap K, Penev Y, Kline A, Paskov K, Sun MW, 
Chrisman B, Stockham N, Varma M, Voss C, Haber N, Wall DP. Precision 
telemedicine through crowdsourced machine learning: testing variability of crowd 
workers for Video-Based autism feature recognition. J Personalized Med Aug. 
2020;10(3). 

[17] Washington P, Tariq Q, Leblanc E, Chrisman B, Dunlap K, Kline A, Kalantarian H, 
Penev Y, Paskov K, Voss C, Stockham N, Varma M, Husic A, Kent J, Haber N, 
Winograd T, Wall DP. Crowdsourced feature tagging for scalable and privacy- 
preserved autism diagnosis. Dec. 2020. 

[18] Levy S, Duda M, Haber N, Wall DP. Sparsifying machine learning models identify 
stable subsets of predictive features for behavioral detection of autism. Mol Autism 
2017;8:65. 

[19] Wall DP, Kosmicki J, Deluca TF, Harstad E, Fusaro VA. Use of machine learning to 
shorten observation-based screening and diagnosis of autism. Transl Psychiatry 
2012;2:e100. 

[20] Duda M, Kosmicki JA, Wall DP. Testing the accuracy of an observation-based 
classifier for rapid detection of autism risk. Transl Psychiatry 2014;4:e424. 

[21] Washington P, Tariq Q, Leblanc E, Chrisman B, Dunlap K, Kline A, Kalantarian H, 
Penev Y, Paskov K, Voss C, Stockham N, Varma M, Husic A, Kent J, Haber N, 
Winograd T, Wall DP. Crowdsourced privacy-preserved feature tagging of short 
home videos for machine learning ASD detection. Sci Rep 2021;11(1):7620. 

[22] Tariq Q, Fleming SL, Schwartz JN, Dunlap K, Corbin C, Washington P, 
Kalantarian H, Khan NZ, Darmstadt GL, Wall DP. Detecting developmental delay 
and autism through machine learning models using home videos of bangladeshi 
children: development and validation study. J Med Internet Res 2019;21(4): 
e13822. 

[23] Tariq Q, Daniels J, Schwartz JN, Washington P, Kalantarian H, Wall DP. Mobile 
detection of autism through machine learning on home video: a development and 
prospective validation study. PLoS Med 2018;15(11):e1002705. 

[24] Khowaja MK, Hazzard AP, Robins DL. Sociodemographic barriers to early detection 
of autism: screening and evaluation using the M-CHAT, M-CHAT-R, and Follow-Up. 
J Autism Dev Disord 2015;45(6):1797–808. 

[25] Kalantarian H, Washington P, Schwartz J, Daniels J, Haber N, Wall DP. Guess 
what?: towards understanding autism from structured video using facial affect. Int 
J Healthc Inf Syst Inf 2019;3:43–66. 

[26] Kalantarian H, Washington P, Schwartz J, Daniels J, Haber N, Wall D. A gamified 
mobile system for crowdsourcing video for autism research. In: 2018 IEEE 
international conference on healthcare informatics. ICHI; 2018. p. 350–2. 

[27] Kalantarian H, Jedoui K, Washington P, Wall DP. A mobile game for automatic 
Emotion-Labeling of images. IEEE Trans Games 2020;12(2):213–8. 

[28] Kalantarian H, Jedoui K, Washington P, Tariq Q, Dunlap K, Schwartz J, Wall DP. 
Labeling images with facial emotion and the potential for pediatric healthcare. 
Artif Intell Med 2019;98:77–86. 

[29] Kalantarian H, Jedoui K, Dunlap K, Schwartz J, Washington P, Husic A, Tariq Q, 
Ning M, Kline A, Wall DP. The performance of emotion classifiers for children with 
Parent-Reported autism: quantitative feasibility study. JMIR Ment Health 2020;7 
(4):e13174. 

[30] Washington P, Kalantarian H, Kent J, Husic A, Kline A, Leblanc E, Hou C, Mutlu C, 
Dunlap K, Penev Y, Varma M, Stockham N, Chrisman B, Paskov K, Sun MW, Jung J- 
Y, Voss C, Haber N, Wall DP. Training an emotion detection classifier using frames 
from a mobile therapeutic game for children with developmental disorders. Dec. 
2020, 08678. arXiv:2012. 

[31] Washington P, Kline A, Mutlu OC, Leblanc E, Hou C, Stockham N, Paskov K, 
Chrisman B, Wall DP. Activity recognition with moving cameras and few training 
examples: applications for detection of Autism-Related headbanging. Jan. 2021. 
arXiv:2101.03478. 

[32] Washington P, Park N, Srivastava P, Voss C, Kline A, Varma M, Tariq Q, 
Kalantarian H, Schwartz J, Patnaik R, Chrisman B, Stockham N, Paskov K, Haber N, 
Wall DP. Data-Driven diagnostics and the potential of mobile artificial intelligence 
for digital therapeutic phenotyping in computational psychiatry. Biol Psychiatry 
Cogn Neurosci Neuroimaging 2020;5(8):759–69. 

[33] Insel TR. Digital phenotyping: technology for a new science of behavior. JAMA 
2017;318(13):1215–6. 

[34] Insel TR. Digital phenotyping: a global tool for psychiatry. World Psychiatr 2018; 
17(3):276–7. 

[35] Huckvale K, Venkatesh S, Christensen H. Toward clinical digital phenotyping: a 
timely opportunity to consider purpose, quality, and safety. NPJ Digit Med 2019;2: 
88. 

[36] Penev Y, Dunlap K, Husic A, Hou C, Washington P, Leblanc E, Kline A, Kent J, Ng- 
Thow-Hing A, Liu B, Harjadi C, Tsou M, Desai M, Wall DP. A mobile game platform 
for improving social communication in children with autism: a feasibility study. 
Appl Clin Inf 2021;12(5):1030–40. 

[37] LoBue V, Thrasher C. The child affective facial expression (CAFE) set: validity and 
reliability from untrained adults. Front Psychol 2014;5:1532. 

[38] Rump KM, Giovannelli JL, Minshew NJ, Strauss MS. The development of emotion 
recognition in individuals with autism. Child Dev 2009;80(5):1434–47. 

[39] Kuusikko S, Haapsamo H, Jansson-Verkasalo E, Hurtig T, Mattila M-L, Ebeling H, 
Jussila K, Bölte S, Moilanen I. Emotion recognition in children and adolescents 
with autism spectrum disorders. J Autism Dev Disord 2009;39(6):938–45. 

[40] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority 
over-sampling technique. Jun. 2011. arXiv:1106.1813. 

[41] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, 
Müller A, Nothman J, Louppe G, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, 
Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. Scikit-learn: machine 
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