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Summary
Background Early and accurate identification of individuals with viral infections is crucial for clinical management 
and public health interventions. We aimed to assess the ability of transcriptomic biomarkers to identify naturally 
acquired respiratory viral infection before typical symptoms are present.

Methods In this index-cluster study, we prospectively recruited a cohort of undergraduate students (aged 18–25 years) 
at Duke University (Durham, NC, USA) over a period of 5 academic years. To identify index cases, we monitored 
students for the entire academic year, for the presence and severity of eight symptoms of respiratory tract infection 
using a daily web-based survey, with symptoms rated on a scale of 0–4. Index cases were defined as individuals who 
reported a 6-point increase in cumulative daily symptom score. Suspected index cases were visited by study staff to 
confirm the presence of reported symptoms of illness and to collect biospecimen samples. We then identified clusters 
of close contacts of index cases (ie, individuals who lived in close proximity to index cases, close friends, and partners) 
who were presumed to be at increased risk of developing symptomatic respiratory tract infection while under 
observation. We monitored each close contact for 5 days for symptoms and viral shedding and measured transcriptomic 
responses at each timepoint each day using a blood-based 36-gene RT-PCR assay.

Findings Between Sept 1, 2009, and April 10, 2015, we enrolled 1465 participants. Of 264 index cases with respiratory 
tract infection symptoms, 150 (57%) had a viral cause confirmed by RT-PCR. Of their 555 close contacts, 
106 (19%) developed symptomatic respiratory tract infection with a proven viral cause during the observation window, 
of whom 60 (57%) had the same virus as their associated index case. Nine viruses were detected in total. The 
transcriptomic assay accurately predicted viral infection at the time of maximum symptom severity (mean area 
under the receiver operating characteristic curve [AUROC] 0·94 [95% CI 0·92–0·96]), as well as at 1 day 
(0·87 [95% CI 0·84–0·90]), 2 days (0·85 [0·82–0·88]), and 3 days (0·74 [0·71–0·77]) before peak illness, when 
symptoms were minimal or absent and 22 (62%) of 35 individuals, 25 (69%) of 36 individuals, and 24 (82%) of 
29 individuals, respectively, had no detectable viral shedding.

Interpretation Transcriptional biomarkers accurately predict and diagnose infection across diverse viral causes and 
stages of disease and thus might prove useful for guiding the administration of early effective therapy, quarantine 
decisions, and other clinical and public health interventions in the setting of endemic and pandemic infectious 
diseases.

Funding US Defense Advanced Research Projects Agency.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Introduction
Acute viral infections are one of the most common 
reasons for visits to primary care physicians in high-
income countries.1 Annually, influenza affects 5–20% of 
the US population, results in more than 400 000 hospital 
admissions, and causes up to 61 000 deaths.2,3 Outbreaks 
of viral infection continue to affect countries worldwide, 
including outbreaks of measles, global pandemics such 
as the 2009 pandemic influenza A H1N1 outbreak, and 
emergence of novel coronaviruses such as severe acute 
respiratory syndrome coronavirus (SARS-CoV) in 2003, 
Middle East respiratory syndrome coronavirus in 2012, 

and most recently severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2).4–7 However, available molec
ular tools that can contribute to outbreak investigation or 
directing early clinical management are insufficient and 
scarce. The usefulness of traditional pathogen-focused 
diagnostic methods for viral infection (eg, culture, sero
logy, antigen detection, and PCR) is limited by the fact 
they can be slow, costly, and restricted in terms of breadth 
of pathogens detected; can require a-priori knowledge of 
the pathogen being tested; might not detect emerging 
strains (eg, the 2009 influenza A H1N1 and current 
SARS-CoV-2 pandemics8); and are often incapable of 
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distinguishing between active infection and colonisation. 
Therefore, there is increasing interest in using host-
derived biomarkers to ascertain the presence or type of 
infection in at-risk hosts, including single-analyte bio
markers such as procalcitonin and composite, multiplex 
biomarker panels, which have been included in an in
creasing number of gene expression-based studies.9–22

Previous research on diagnostics for naturally acquired 
infection has focused on identifying symptomatic 
individuals at the time of clinical presentation for medical 
care,20 which is often late in the time course of many viral 
infections. Identification of infectious causes in earlier, 
presymptomatic phases of illness provides an opportunity 
to optimise and deliver timely, and thus more effective, 
therapy, refine prophylaxis decisions, and guide public 
health interventions such as isolation and quarantine.14,23 
However, identifying individuals who have been exposed 
to infectious viruses but do not yet have symptoms of 
clinical illness is logistically challenging, reflected by the 
paucity of available data and tools to address these 
problems.

We have previously shown that during experimental 
influenza infection of healthy volunteers, the host genomic 
response is robust and detectable before typical symptoms 
become apparent.17,23,24 Much of the genomic response 
seems to be driven by early innate responses at the site 
of infection that drive signalling cascades, resulting in 
the expression of interferon-response genes in peripheral 
blood leucocytes.17,25 Other studies have confirmed that 
these transcriptomic markers in blood can be indicative 
of early viral infection in experimental human challenge 
models and animal models of disease.26–29 However, 

challenge infections are contrived rather than natural, 
typically use laboratory-adapted viral strains, and result in 
a clinical illness that does not entirely resemble that seen 
in naturally acquired infections, all of which can limit the 
broad applicability of findings from human-challenge 
studies.17,23,30–33 To date, the nature of the host response to 
infection during the presymptomatic phase of naturally 
occurring disease has not been defined. We aimed to 
assess the ability of transcriptomic biomarkers to identify 
naturally acquired respiratory viral infection before typical 
symptoms are present.

Methods
Study design and participants
We did an index-cluster, prospective cohort study in 
undergraduate students (aged 18–25 years) at Duke 
University (Durham, NC, USA), most of whom lived in 
dormitories on campus, over a period of 5 academic years 
(appendix p 10). Information leaflets inviting students to 
enrol were distributed around the university campus and 
students were approached and recruited by study staff 
during onboarding activities at the start of each academic 
year. At the time of enrolment, we collected baseline 
biospecimens and asked students to complete standard
ised questionnaires to ascertain demographic, behavioural, 
and other medical characteristics. After enrolment, parti
cipating students completed a web-based survey once a 
day for the duration of the academic year (September to 
May, excluding holidays) to describe the presence and 
severity of eight symptoms (cough, fever, headache, 
malaise, nasal congestion, nasal discharge, sneezing, and 
sore throat) of respiratory tract infection (appendix p 2). 

Research in context

Evidence before this study
We searched PubMed up to Feb 20, 2020, for studies using host 
gene expression for the diagnosis of acute viral infections using 
the search terms “viral infection” AND (“gene expression” OR 
“transcriptome” OR “transcriptomic”) AND (“diagnosis” OR 
“classifier”) without language restrictions. Classifiers for the 
diagnosis of acute viral infections or to differentiate acute viral 
infections from acute bacterial infections based on host-gene 
expression have been successfully developed by more than 
12 groups globally, with classifier sizes ranging from a single 
gene to hundreds of genes. The largest prospectively validated 
transcriptomic classifier had 100% sensitivity (95% CI 85–100) 
and 96% specificity (89–100) for viral infection in 370 children 
at the time of severe illness. However, no studies of naturally 
acquired viral infection have investigated the use of such 
technologies in the context of presymptomatic diagnosis or 
outbreak investigation.

Added value of this study
To our knowledge, this study is the first to show in a 
real-world setting that a blood-based host-gene expression 

assay can accurately predict respiratory viral infection 
before typical symptoms are present. Our data show that 
transcriptomic biomarkers of viral infection are present 
and detectable before clinical disease develops and thus 
could form the basis of novel approaches to early 
treatment and management of emerging viral 
outbreaks and pandemics.

Implications of all the available evidence
The findings of research describing the use of host 
transcriptomic classifiers for the diagnosis of acute infections 
are robust and rapidly expanding. With the addition of our 
data, the literature supports the potential use of such 
technologies for a wide spectrum of viral illnesses from an 
early, presymptomatic stage to clinical presentation and 
eventual disease resolution. When combined with emerging 
nucleic acid detection platforms that offer sample-to-answer 
times of less than 1 h, these approaches offer the potential to 
transform clinical approaches for the diagnosis of viral 
diseases.

See Online for appendix
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Each symptom was scored on a scale of 0–4, with 0 
indicating not present, 1 indicating mild symptoms, 2 
indicating moderate symptoms, 3 indicating severe 
symptoms, and 4 indicating very severe symptoms. Study 
staff monitored the surveys daily for a 6-point increase in 
an individual’s cumulative daily symptom score, which 
triggered an email notification or phone call and site visit 
by study staff for sample and data collection from a 
potential index case9,17,32 (appendix p 2). Study staff then 
assessed suspected index cases to confirm the presence of 
reported symptoms of illness and collected biospecimens. 
On the basis of these sentinel cases of respiratory 
tract infection with suspected viral cause, we identified a 
prospective observational cohort of asymptomatic but 
potentially exposed close contacts (ie, people living in the 
same dormitory or identified by the index case as a close 
contact), who were then asked to complete the daily web-
based survey to monitor the development of any symptoms 
and sampled by study staff who collected biospecimen 
samples at their place of residence or on campus for up to 
5 days (defined as the observation window). This design 
permitted enrichment for, and collection of, samples from 
close contacts during the timeframe between exposure 
(which occurred at an unknown time) and subsequent 
development of symptomatic disease (which occurred 
under observation). The study was approved by 
the Institutional Review Board of Duke University in 
accordance with the Declaration of Helsinki. All 
participants provided written informed consent.

Sample and data collection
Blood (20 mL) and nasopharyngeal swab samples were 
collected daily by study staff from confirmed index cases 
at the time of illness identification. The nasopharyngeal 
samples were tested for the presence of viruses using 
commercial multiplex PCR assays (ResPlex II Panel v2.0 
[Qiagen, Hilden, Germany], xTAG respiratory viral 
panel [Luminex, Austin, TX, USA], or Biofire FilmArray 
Respiratory Panel [BioFire Diagnostics, Salt Lake City, 
UT, USA]; appendix p 3). Asymptomatic close contacts 

identified by index cases provided blood and naso
pharyngeal samples for up to 5 consecutive days and 
were monitored for symptomatic conversion (indicated 
by a 6-point increase in cumulative daily symptom score; 
appendix p 2) and viral shedding using multiplex PCR 
assays.

For detection of transcriptomic responses, we collec
ted peripheral blood in PAXgene Blood RNA tubes 
(PreAnalytiX, Qiagen, Hilden, Germany), and we extrac
ted total RNA using the PAXgene Blood miRNA Kit 
(Qiagen). cDNA was synthesised using SuperScript VILO 
Master Mix (Invitrogen, Carlsbad, CA, USA), according 
to the manufacturer’s instructions. We did RT-PCR 
using custom-built TaqMan Low Density Array 384-well 
microfluidic cards with TaqMan Gene Expression Master 
Mix (Applied Biosystems, Foster City, CA, USA), run on a 
ViiA7 Real-Time PCR System (Applied Bio systems). The 
genes included in the signature are shown in the 
appendix (p 9).

RT-PCR
We previously developed a host response-derived trans
criptomic signature of symptomatic viral infection using 
microarray data.32 Since microarray and bulk RNA 
sequencing platforms are impractical for rapid clinical 
testing, we migrated our previous so-called pan-viral 
signature to an RT-PCR platform with potential 
for more direct translation to point-of-care testing.9,10 
Using sparsity-imposing techniques (appendix p 3), we 
selected 36 pre-designed TaqMan probes representing 
genes comprising the acute respiratory viral signature 
(and normalisation controls) to be used on a TaqMan 
Low Density Array platform.9 We then used a regularised 
(2-norm) logistic regression model to determine co
efficients for each gene in the signature,34 such that the 
output of the model is a probability that a given individual 
will go on to have a symptomatic, viral PCR-positive 
event during the observation window. The performance 
of the RT-PCR signature for classification of symptomatic 
individuals was assessed using a repeated random 

2009–10 (n=70) 2010–11 (n=104) 2011–12 (n=57) 2013–14* (n=12) 2014–15 (n=62) Overall (n=305)

Adenovirus 1 (1%) 1 (1%) 0 1 (8%) 2 (3%) 5 (2%)

Bocavirus 0 0 0 0 2 (3%) 2 (1%)

Coronavirus 11 (16%) 23 (22%) 8 (14%) 3 (25%) 9 (15%) 54 (18%)

Coxsackie or echovirus† 21 (30%) 38 (37%) 12 (21%) 0 0 71 (23%)

Human metapneumovirus 2 (3%) 1 (1%) 3 (5%) 4 (33%) 1 (2%) 11 (4%)

Influenza 9 (13%) 7 (7%) 1 (2%) 1 (8%) 1 (2%) 19 (6%)

Parainfluenza virus 3 (4%) 10 (10%) 1 (2%) 0 7 (11%) 21 (7%)

Respiratory syncytial virus 3 (4%) 1 (1%) 3 (5%) 0 3 (5%) 10 (3%)

Rhinovirus or enterovirus 20 (29%) 23 (22%) 29 (515) 3 (25%) 37 (60%) 112 (37%)

Data are number of times the virus was detected (% of total viral infections per year). Data are shown for 150 index cases, 106 close contacts, and 27 asymptomatic shedders 
who had a respiratory viral infection confirmed by multiplex PCR; 22 participants tested positive for more than one virus (ie, they had co-infections). *Truncated academic 
year with spring enrolment only. †Not detectable by 2013–15 testing assays.

Table 1: Viral causes of respiratory tract infection in the student cohort by academic enrolment year
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subsampling validation strategy on relevant participants 
across all study years.

Statistical analysis
For RT-PCR data the cycle of quantification values were 
transformed into normalised relative quantities using 
reference genes (ie, those with the most stable combined 
coefficient of variation across all samples) and assays 
were run in two experimental batches: FPGS and TRAP1 
were used for the first batch, and DECR1 and TRAP1 
were used for the second batch. Data were normalised as 
previously described.9,10 We used a regularised (2-norm) 
logistic regression model to discriminate symptomatic 
shedders (cases) from asymptomatic nonshedders 
(controls; appendix pp 2–5). The data were split into 
training and testing sets 25 times using repeated random 
subsampling, and each of the 25 models was trained 
using data from all timepoints. We assessed the per
formance of the model at each individual timepoint 
using receiver operating characteristic (ROC) curves 
and calculation of area under the ROC curves (AUROCs). 
All model analyses were implemented in Python 
(version 3.7.4) and Tensorflow (version 1.14.0).35 
Accuracies were calculated using the point on the ROC 
curve that maximises the Youden index,36 while other 
comparisons of model performance (eg, the true positive 
rate) were calculated by selecting operating points along 
the ROC curves that correspond to a threshold or 
fixed value (eg, fixing a desired false positive rate; 
appendix p 5).

The Mann-Whitney U test was used for the comparison 
of means and Spearman’s rank correlation coefficient 
was used to describe the association between variables 
where indicated. Z scores were calculated using 
normalised, log-transformed relative gene expression 
values, as previously described.9

Since the exact time of exposure or transmission 
during naturally acquired infection is unknown, for the 
purpose of analysis, close contact days were aligned to 
the time of maximum symptom severity (ie, day of 

highest symptom score; time [T]) for each individual in 
an attempt to place individuals on broadly similar time 
scales in terms of the host response to infection. For each 
individual close contact, 1 day after peak symptoms was 
defined as T1, 1 day before the highest symptom score 
was defined as T minus 1 (T–1), 2 days before as 
T minus 2 (T–2), 3 days before as T minus 3 (T–3), and 
4 days before as T minus 4 (T–4).

Role of the funding source
The funder of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the manuscript. The corresponding author 

Cough Fever Headache Malaise Nasal 
congestion

Nasal 
discharge

Sneezing Sore throat Total 
symptom 
score

Influenza 3·2 (1·5) 1·9 (1·0) 2·4 (1·3) 3·0 (0·8) 2·5 (0·8) 2·4 (1·2) 1·8 (1·1) 2·7 (1·1) 20·0 (6·2)

Respiratory syncytial virus 2·1 (1·1) 0·7 (0·7) 1·6 (0·9) 2·9 (0·7) 2·6 (0·4) 2·6 (0·9) 1·5 (0·5) 2·6 (1·0) 16·6 (6·4)

Human metapneumovirus 2·6 (1·1) 0·8 (0·7) 1·5 (1·0) 2·5 (0·9) 2·4 (0·7) 2·5 (1·1) 1·9 (0·9) 2·2 (0·9) 16·3 (4·0)

Rhinovirus or enterovirus 2·2 (1·1) 0·5 (0·4) 1·1 (1·0) 2·1 (1·1) 2·3 (0·9) 2·3 (0·9) 1·5 (1·0) 2·1 (1·1) 14·0 (6·1)

Coxsackie or echovirus 2·1 (1·2) 0·5 (0·4) 1·1 (1·1) 2·2 (1·1) 2·4 (1·1) 2·4 (1·1) 1·6 (0·9) 1·8 (1·1) 14·0 (6·8)

Coronavirus 1·8 (1·0) 0·7 (0·6) 1·0 (0·9) 2·1 (1·5) 2·3 (0·9) 2·5 (0·8) 1·6 (0·4) 1·8 (0·8) 13·8 (5·3)

Parainfluenza virus 2·3 (1·1) 0·5 (0·7) 1·2 (1·0) 2·3 (0·9) 1·8 (0·8) 1·7 (0·7) 1·3 (0·9) 2·3 (1·0) 13·4 (4·9)

Adenovirus 2·2 (0·8) 1·5 (0·9) 1·4 (0·9) 2·2 (0·9) 1·6 (0·8) 1·6 (1·0) 0·2 (0·1) 2·2 (1·1) 12·9 (6·2)

Bocavirus 1·0 (0·8) 0 0 1·0 (0·7) 2·0 (1·1) 2·0 (1·1) 1·0 (0·7) 1·0 (0·7) 8·0*

Data are mean symptom score (SD). *Calculation of SD was not possible because only two samples were positive for bocavirus.

Table 2: Clinical characteristics of viral infection at time of maximum symptom severity for index cases and their close contacts

Figure 1: Median symptom scores of index cases and close contacts
Symptom scores of index cases and close contacts who developed PCR-proven 
viral respiratory tract infection under observation. For close contacts, 
T represents the day of maximum symptom severity, T1 represents the day 
after maximum symptom severity, T–1 represents 1 day before maximum 
illness, T–2 represents 2 days before maximum illness, and T–3 represents 
3 days before maximum illness. Box and whisker plots show medians (lines) 
and IQRs (boxes); upper and lower whiskers indicate 1·5 × IQR and diamonds 
indicate outliers. *Index cases were only sampled at one timepoint.
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had full access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
Between Sept 1, 2009, and April 10, 2015, we enrolled 
1465 participants. Biospecimens were collected from 
264 index cases with clinical illness, of whom 150 had a 
respiratory viral cause confirmed by multiplex PCR 
testing of nasopharyngeal samples. Of the 555 close 
contacts enrolled and sampled, 162 developed symptoms 
of respiratory tract infection during the observation 
window, of whom 106 had concomitant confirmatory 
viral PCR. 60 (57%) of 106 close contacts were infected 
with the same virus as their associated index case.

Overall, nine different viral pathogens were identified, 
and viral causes varied substantially across academic years 
(table 1). Co-infection with multiple viruses in a single 
individual was uncommon (22 [7%] of 305 participants), 
and most of these individuals (16 [73%] of 22 participants) 
had a combination of coxsackievirus or echovirus and 
rhinovirus or enterovirus infection, which could represent 
cross-reactivity. Participants with PCR-confirmed viral 
infection had many common symptoms of upper respi
ratory tract infection at the time of peak symptom severity, 
with clinical variation among viruses (table 2).

For all 106 close contacts with confirmed viral infection, 
at the time of maximum symptom severity (T), the 
median total symptom score was 11·0 (IQR 8·25–14·75; 
figure 1), although symptoms varied by virus (table 2). 
The median total symptom score for symptomatic 
shedders was 6·5 (IQR 4·00–9·25) at T–1, 4·0 (3·00–7·00) 
at T–2, and 2·0 (2·00–2·50) at T–3. A daily symptom 

score of 6 represented mild clinical illness and was the 
threshold for defining a symptomatic day. At the T–2 
timepoint and earlier, most close contacts had subclinical 
illness or were asymptomatic (ie, they had a total symp
tom score of less than 6; 26 [90%] of 29 participants were 
asymptomatic at T–3 and 28 [78%] of 36 participants 
at T–2).

The RT-PCR-based host-gene expression assay dis-
tinguished symptomatic, virus-infected individuals 
(n=183; index cases and close contacts) from asympto
matic, viral PCR-negative controls (n=152 samples 
from 35 individuals) with 90% accuracy. However, 
mean accuracy varied depending on the virus, ranging 
from 100% accuracy for respiratory syncytial virus 
and bocavirus infections, to 99% for influenza infection, 
93% for coronavirus infection, and 82% for human 
metapneumovirus infection (figure 2).

Analysis of individual gene components of the model 
showed that many individual genes had similar AUROC 
values to the aggregate model across all iterations 
(appendix pp 11,12). 18 (50%) of 36 individual gene targets 
had mean AUROC values of higher than 0·90 at time T; the 
three top performing genes at time T were IFIT3 (AUROC 
0·96 [95% CI 0·95–0·97]), HERC5 (0·95 [0·94–0·96]), and 
RSAD2 (0·96 [0·95–0·97]). The ten top performing genes 
are shown in the appendix (p 11).

The RT-PCR gene signature correctly identified 
symptomatic individuals with 92% accuracy on the day of 
maximal symptoms (appendix p 16). Accuracy of the 
gene signature decreased to 88% at the T–1 timepoint 
and to 83% at the T–2 timepoint (appendix p 16). 
Although accuracy of the assay varied between viruses at 

Figure 2: Variation in genetic signature strength and accuracy across viral infections and control groups
Quantitative transcriptomic signature strength (bars) and accuracy (red line) at the timepoint of maximum symptom severity for each type of viral infection and for 
asymptomatic non-shedders, asymptomatic shedders, and symptomatic non-shedders. For asymptomatic non-shedders, the timepoint T was unclear due to an 
absence of symptoms, thus timepoints were chosen at random from the observation window, or the date of shedding for shedders was used. Vertical black lines on 
bars indicate 95% CIs.
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time T (figure 2), no significant differences in perfor
mance were identified between viruses at earlier time
points (appendix p 5). For example, only one individual 
with influenza infection had presymptomatic samples 
available for all timepoints, although the signature 
correctly classified that individual at each timepoint (T–1, 
T–2, T–3, and T–4).

To investigate how signature strength correlates with 
overall symptom severity, we assessed the correlation 
between model-derived probabilities of infection and 
symptom scores at each individual timepoint (appendix 
p 5). At each timepoint, gene expression levels were similar 
across symptomatic individuals despite variable symptom 
severity. Thus, gene signature performance varied by 
timepoint (figure 3) but was not affected by symptom 
severity within each timepoint (Spearman’s rank 
correlation coefficient at time T, ρ=0·06 [appendix p 13]). 
When comparing gene signature performance with 
clinical diagnosis (symptom-based), the model outper
formed clinical diagnosis at all timepoints with the 
exception of timepoint T and for index cases (where 
symptom-based diagnosis by definition has 100% 
sensitivity; appendix p 14). 24 (82%) of 29 individuals who 
developed symptomatic respiratory tract infection had no 
detectable viral shedding at T–3, and 25 (69%) of 
36 individuals were negative for any virus by routine 
clinical testing at time T–2.

Asymptomatic shedders (n=27) had significantly higher 
gene expression than asymptomatic non-shedders (n=35; 
p<0·0001, Mann-Whitney U test), but markedly lower 
levels of signature expression than symptomatic shedders 
(p<0·0001; figure 2). Many symptomatic non-shedders 
had predicted probabilities of viral infection that mirrored 

those of either symptomatic shedders or asymptomatic 
non-shedders (data not shown). Overall, the viral signature 
in the 199 symptomatic non-shedders was significantly 
higher than in asymptomatic non-shedders (p<0·0001) but 
significantly lower than in symptomatic shedders (p=0·04).

Discussion
In this study, we have used an innovative index-cluster 
study design with a focus on serial sampling of real-world, 
close contacts of infected individuals to enrich for cases of 
naturally occurring infection during these early, post-
exposure but presymptomatic timepoints. This unique 
design has permitted real-world validation of a trans
criptomic signature in peripheral blood that is capable of 
accurately identifying exposed but apparently healthy 
individuals who will go on to develop symptomatic viral 
infection. In the majority of participants (62%), the gene 
signature was present even before viral shedding was 
detected. The promise of this approach is highlighted 
by the discriminative ability of the genomic signature 
2–3 days before maximum illness, when most individuals 
had minimal or no symptoms (90% and 78% of parti
cipants were asymptomatic or had subclinical illness at 
the T–3 and T–2 timepoints, respectively). Furthermore, 
mild symptoms at early timepoints were clinically vague 
and typical of seasonal allergies, mild chronic obstructive 
pulmonary disorder flares, or even symptoms due to 
sequelae of chronic smoking.37 Thus, genomic analysis to 
classify viral infection among asymptomatic individuals 
or those with common, non-specific upper respiratory 
symptoms would be valuable. The accuracy of the 
transcriptomic signature across nine different respiratory 
viruses, each with specific incubation times and variable 

Figure 3: RT-PCR-based 36-gene signature performance over time
(A) Ability of the model based on the 36-gene RT-PCR assay to detect naturally acquired respiratory viral infection at various stages of infection in index cases and close contacts. (B) Heatmap of 
Z scores for each gene in the RT-PCR assay at each timepoint in close contacts with proven symptomatic viral infection or healthy controls, where T represents the day of maximum symptom severity 
for each participant. T1 represents the day after maximum symptom severity, T–1 represents 1 day before maximum illness, T–2 represents 2 days before maximum illness, and T–3 represents 3 days 
before maximum illness. ROC=receiver operating characteristic. AUC=area under the curve. IC=index case.
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clinical progression and duration, also highlights the 
potential of this approach. Additionally, the gene signature 
used represents conserved antiviral response signalling 
pathways that are active, and thus discriminatory, across 
the spectrum of illness, not only at early timepoints. This 
broad applicability is vital because in a real-world setting, 
the location of an individual along the continuum of 
infection at the moment of testing would be unknown.

Although our transcriptomic signature accurately 
classified a wide spectrum of viral respiratory tract 
infections, it had the highest accuracy in a subset of 
viruses, including influenza and coronavirus. Influenza is 
one of the most important viruses to identify early because 
of its contribution to pandemics, in which existing 
diagnostics might perform poorly (especially for emerging 
strains as observed in 200938), questions of triage and 
quarantine are paramount, and effective therapeutic 
options are readily available and most effective when 
provided early in disease. Similarly, another global 
outbreak of a novel, highly virulent coronavirus—
SARS-CoV-2—is ongoing, and it is evident that tools that 
can aid in assessment of individuals with potential 
exposure, especially tools that can diagnose infection 
before detectable viral shedding, would be a valuable to 
existing epidemiological and molecular approaches in 
outbreak settings. Our experience suggests that the ability 
to accurately detect exposure to these types of emerging 
infections will only become increasingly important over 
time.

A number of other studies have described interferon 
response-based transcriptomic signatures of acute respi
ratory infections that vary by target population, pathogens, 
modelling approaches, and the number of genes required 
to discriminate disease states.10,11,14–19,32 Some of these 
findings have also been validated, combined, or expanded 
upon by secondary ex-vivo analysis of publicly available 
data.12,13,39 Although the signature described in this study 
clearly represents a limited subset of all discriminating 
genes, some observations regarding simplified, interferon-
driven signatures can be made. Our data confirm that that 
some genes identified by previous studies (eg, IFI44L and 
IFI2711,40) perform well as classifiers to distinguish between 
individuals with viral illness and those who are healthy 
(mean AUROC for IFI44L and IFI27 at timepoint T were 
0·92 [95% CI 0·90–0·94] and 0·79 [0·76–0·82], respectively 
[appendix p 12]), with strong upregulation observed in 
cases of viral infection. Additionally, we show that several 
other genes also perform well as classifiers, including 
RSAD2 (AUROC 0·96 [95% CI 0·95–0·97]), IFIT3 (0·96 
[0·95–0·97]), and IFI44 (0·93 [0·91–0·95]; appendix p 12). 
On the basis of our experience and the published literature, 
it seems that some diagnostic classification tasks, in which 
the biological responses are highly conserved, unique in 
character, and of great magnitude, might be reasonably 
addressed with pauci-analyte biomarker panels.11,13,41–43 
However, as population complexity increases by adding 
greater interhost variability (such as immunosuppression), 

discriminating clinically similar groups with more varied 
underlying pathophysiology, or discriminating multiple 
clinical mimics at once, more intricate biomarker panels 
will probably be required to maintain high fidelity in 
real-world settings.10,15,44

Our study has several limitations. First, this study was 
designed to validate the predictive power of a small set of 
genes that already had proven discriminatory capability 
during maximal illness, and thus was not designed to 
ascertain whether additional, untested gene sets could 
offer improved discriminatory performance at early 
timepoints in the course of illness. Studies using RNA 
sequencing on whole blood, single-cell sequencing, or 
other methods are needed to more completely define 
early genomic changes in the naturally infected host. 
Second, our patient cohort was comprised of otherwise 
young, healthy individuals with community-acquired 
viral respiratory tract infection of mild to moderate 
severity. Therefore, application of our findings to 
patient populations from other age groups, people with 
immunological comorbidities, or people with more severe 
viral infections (such as SARS-CoV-2) will need to be 
assessed. Finally, we did not identify any confirmed 
infections due to bacterial or other pathogens. As a 
result, although these transcriptomic markers show 
great promise for differentiating early infection and pre
symptomatic viral exposure from non-infectious states, 
we did not directly validate the ability of these markers to 
differentiate viral exposure from early forms of other types 
of infection.10,11,15,45 As the clinical use of transcriptomic 
biomarkers continues to be assessed, consideration of 
broad applicability and performance across a wide array of 
clinical settings will continue to be paramount.

To the best of our knowledge, this is the first study 
to define the presymptomatic and temporal dynamics 
of transcriptomic biomarkers characterising the host 
response to naturally acquired viral infections in 
humans. Clinic-ready platforms capable of operationalising 
PCR-based signatures of the size tested herein already 
exist, some of which are approved with point-of-care 
functionality, offering a proximal pathway to clinical 
application of these findings.46 Thus, analysis of the 
evolution of gene expression-based biomarkers over time 
shows promise for driving development of diagnostics for 
early detection of viral exposure and infection that could 
prove useful for guiding administration of early effective 
therapy, quarantine decisions, and other clinical and public 
health interventions in the setting of endemic and 
pandemic infectious disease.
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