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Abstract
We consider the nontrivial problem of estimating the health cost repartition among different diseases in the common case where
the patients may have multiple diseases. To tackle this problem, we propose to use an iterative proportional repartition (IPR)
algorithm, a nonparametric method which is simple to understand and to implement, allowing (among other) to avoid negative
cost estimates and to retrieve the total health cost by summing up the estimated costs of the different diseases. This method is
illustrated with health costs data from Switzerland and is compared in a simulation study with other methods such as linear
regression and general linear models. In the case of an additive model without interactions between disease costs, a situation
where the truth is clearly defined such that the methods can be compared on an objective basis, the IPR algorithm clearly
outperformed the other methods with respect to efficiency of estimation in all the settings considered. In the presence of
interactions, the situation is more complex and will deserve further investigation.
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Introduction

Estimating the costs, whether direct or indirect, generated by

the different diseases is a recurrent and nontrivial problem

that one retrieves at various levels of a health-care system.

It is important for choosing the most cost-effective health

services. At country level, the distribution of costs by disease

is necessary to set priorities, to calibrate prevention pro-

grams,1 to prevent the selection of risks by health insurances,2

or to understand the causes of an increase in costs, for exam-

ple.3 At the level of health-care providers, it allows to com-

pare medical practices, evaluate new technologies,4 and better

control expenses.

One complicate issue is that many patients have multiple

diseases at the same time. For instance, 3 quarters of people

older than 80 years had sequelae of more than 5 diseases in

2013 in developed countries.5 It is therefore essential to spread

health costs—whether monetary units or years of healthy life

lost—among all those diseases.6,7 Some costs are specific to a

disease, for example for drugs, a positive screening test, a

tumor biopsy, or a fracture X-ray. Costs are however often

difficult to allocate: 1 day of hospitalization can be justified

by several diseases at the same time, a consultation with a

general practitioner can be due to several simultaneous condi-

tions. Another issue is to ensure that the sum of the costs per

diseases per patient gives back the total health costs,8 avoiding

double counting of certain expenses.9-11

To achieve a cost repartition among diseases present in a

same patient, some authors compare the costs of patients hav-

ing that disease with those who do not.7,12 However, one will

not retrieve the total health costs using that approach in the

presence of interactions, that is, when the cost generated by

the simultaneous presence of 2 diseases is on average different

from (being superior or inferior to) the sum of the costs of the 2

diseases when present individually. Depending on the method

chosen to circumvent this issue, the results may vary a lot.13

Skirting the difficulty, another option consists in reduce com-

plexity using a classification of patients with only one disease.

This option is commonly used with diagnosis-related groups

that categorize patients according to a major pathology (or
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operation), possibly creating subcategories to account for the

presence or absence of significant comorbidities.14 The same

solution is applied when years of life lost due to premature

death are related to a unique “underlying cause of death.”15

This may be acceptable in some simple situations such as cost

of hospitalizations related to childbirth, hip prosthesis or

appendicitis, or for deaths due to road accidents. Complex

situations are nevertheless frequent, especially in developed

countries with an increasing life expectancy. Since most of the

costs occur among elderly patients with multiple conditions,

there is a high risk of underestimating the costs of concomitant

diseases, which often appear as comorbidities.16-19 Finally,

various methods of regression could be considered, such as

ordinary least squares (OLS) multiple regression or generalized

linear models (GLM), which are discussed below.

Alternatively, an iterative proportional repartition (IPR)

algorithm has been applied some years ago to share health costs

by illness in Switzerland.20 This nonparametric method could

be interesting because it is simple to implement and to under-

stand, although its statistical properties (such as unbiasedness

and stability) and a comparison with other methods have not

been investigated so far in the literature. The aim of the present

article is to fill this gap and to propose and motivate the use of

IPR to solve the above-mentioned problem.

Our article is organized as follows. In section 2, we formally

introduce the problem. In section 3, we present and discuss dif-

ferent candidate methods to solve that problem, including IPR. In

section 4, we apply these methods to health costs data from Swit-

zerland. In section 5, we compare the statistical performances of

these methods based on simulated data. Section 6 concludes.

The Problem

We consider n patients and p potential diseases (eg, n¼ 500 000

patients and p ¼ 50 potential diseases). Let Yi the (global) health

cost spent for patient i (eg, in a given year or during a specific

hospital stay, depending on the context considered and of data

availability, for i ¼ 1; . . . ; n, all these costs being strictly pos-

itive). Let Xij a binary variable indicating whether disease j was

diagnosed for patient i, such that Xij ¼ 1 if disease j was diag-

nosed for patient i, and Xij ¼ 0 otherwise (for i ¼ 1; . . . ; n and

j ¼ 1; . . . ; p). In this article, we consider the usual case where

all patients have at least one disease, and where a patient can

(and generally will) have several diseases (eg, up to 20 diseases).

Our first goal is to estimate the mean cost mj of disease j, defined

over all the patients having that disease, for each disease

j ¼ 1; . . . ; p. From there, one can obtain the total cost spent for

disease j (calculated over the patients in our sample) as

tj ¼
Pn

i¼1ðXij mjÞ; as well as the percentage of the total health

cost spent for that disease as pj ¼ tj=
Pp

k¼1tk (for j ¼ 1; . . . ; p),

in what follows the cost contribution of disease j, such thatPp
j¼1pj ¼ 1: In other words, we get a health cost repartition

among the different diseases, which is our ultimate goal.

The natural estimate of mj would be ~mj¼
Pn

i¼1 XijYij
� �

=Pn
i¼1Xij, where Yij would be the specific cost of disease j for

patient i (for i ¼ 1; . . . ; n and j ¼ 1; . . . ; p). The problem is

that we only know the global health costs Yi ¼
Pp

j¼1 XijYij
� �

,

not the detail of the Yij. In the next section, we present different

methods to get estimates m̂j of the mj. For each method, esti-

mates of the tj can then be obtained as t̂j ¼
Pn

i¼1ðXij m̂jÞ, and

estimates of the pj as p̂j ¼ t̂j=
Pp

k¼1t̂k (for j ¼ 1; . . . ; p), such

that
Pp

j¼1p̂j ¼ 1.

Methods

Linear Regression

One idea to solve this problem would be to consider a regres-

sion model with Yi as the response variable and with the Xij as p

binary predictors. In such a model, one decomposes the cost Yi

for individual i as a sum of 2 terms. The first term is the mean

cost of those individuals sharing the same diseases (in what

follows the same “disease pattern”, ie, having the same values

of predictors Xij) as that patient. The second term is the differ-

ence between the cost of a given patient and the mean cost

within his or her disease pattern, called a residual. The notation

is as follows:

Yi ¼ mean YijXij

� �
þ ei: ð1Þ

Equation (1) in its general form is always true since one can

always write A ¼ Bþ A� Bð Þ. However, a model should be

assumed to describe how the first term (the mean cost) depends

on the predictors (the disease pattern), and a probability distri-

bution is needed to describe the second term (which will be

typically different within each disease pattern). In a linear

model, one assumes that:

mean YijXij

� �
¼ b0 þ b1Xi1 þ b2Xi2 þ � � � þ bpXip: ð2Þ

A natural option (which we are following throughout this

article) would be to remove the “intercept” b0 from “model

(2)” since a patient without any disease (ie, with Xij ¼ 0 for

j ¼ 1, . . . , p ) would not have any cost. Without intercept, the

mean cost of those patients having only disease j is given by bj;
whereas the mean cost of those patients having more than one

disease is obtained by summing up the corresponding bj:Under

that model, our problem is thus solved by estimating mj ¼ bj for

j ¼ 1; . . . ; p.

Importantly, the coefficients bj in model (2) can be consis-

tently estimated (ie, without bias and converging to the correct

values with an increasing sample size) via estimates b̂j pro-

vided by OLS regression, whatever the distribution of the resi-

duals ei,
21 yielding consistent estimates m̂j ¼ b̂j of mj.

Estimation is optimal, however, only if the ei are normally

distributed and with the same variance within each disease

pattern (homoscedasticity). In practice, this will never be the

case, the ei being typically skewed, including outliers and hav-

ing different variances (heteroscedasticity), and actually quite

different distributions in the different disease patterns. This

may call for alternative methods to improve estimation. Other
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drawbacks of OLS are that it is possible to get negative esti-

mates of m̂j ¼ b̂j, and that one does not exactly retrieve the total

health cost spent for all the patients by summing up the esti-

mated costs spent for the different diseases, that is,
Pp

j¼1t̂j
6¼
Pn

i¼1Yi: Let us also recall that classical OLS standard errors

might not be valid in the presence of heteroscedasticity. Stan-

dard errors can be here obtained via bootstrap, as for the other

methods considered in what follows.

Note finally that model (2), without an intercept, describes

an “additive” reality. For example, if a first disease alone

would cost on average 10 000 CHF and a second disease alone

would cost on average 100 CHF, having the 2 diseases simul-

taneously would cost on average 10 100 CHF. This does not

appear quite unreasonable, at least as a first approximation. If

not the case, one may consider including interactions in model

(2), although with many diseases and interactions, the model

might become difficult to fit.22 However, having interactions

in the model necessitates the use of a “marginal” approach

(which is described below in the context of a GLM) to achieve

a health cost repartition among the different diseases. Alter-

natively, one may stick with model (2) even in the presence of

interactions and study how an interaction (eg, an “extra” cost

due to the simultaneous presence of 2 diseases for one patient)

will be “allocated” among the different diseases when model

(2) is estimated via OLS. This is what we are studying in a

companion paper.23

Log-Transformation of the Costs

When a distribution is skewed to the right, a natural (and often

successful) approach is to apply a log-transformation. In our

problem, one might thus be tempted to consider the above

decomposition on the log scale, yielding:

LogðYiÞ ¼ mean Log Yið ÞjXij

� �
þ ei: ð3Þ

In a linear model, one would then assume that:

mean logðYiÞjXij

� �
¼ b0 þ b1Xi1 þ b2Xi2 þ � � � þ bpXip: ð4Þ

One serious difficulty with model (4) is that it provides

estimates of mean log-costs by disease, not of mean costs by

disease. Moreover, a “smearing” retransformation to estimate a

mean cost from a mean log-cost would strongly rely on a nor-

mality assumption of the ei in model (3), and thus on the

lognormal distribution of the Yi within each disease pattern.

Even with lognormal distributions, one would need to model

the variance (in addition to the mean) of the log-costs in case of

heteroscedasticity in model (3). On the other hand, if the dis-

tributions are not strictly lognormal, estimates obtained via

smearing retransformation will not be consistent.24 Note also

that assuming a lognormal distribution for the specific costs Yij
would not imply a lognormal distribution for the global costs

Yi; (but a sum of lognormal distributions which shall not be the

same in each disease pattern). In fact, even to determine the

distribution of the sum of only 2 lognormal distributions is

known to be a difficult problem.25

General Linear Model

The difficulties mentioned in the previous paragraph led recent

authors to attempt an estimation of the log of mean costs, rather

than of the mean of log costs, via a GLM. In such a model, Yi is

assumed to follow a given parametric distribution, such as a

Poisson or a Gamma distribution, where:

Log mean YijXij

� �� �
¼ b0 þ b1Xi1 þ b2Xi2 þ � � � þ bpXip: ð5Þ

This implies:

mean YijXij

� �
¼ expðb0Þ � exp b1Xi1ð Þ � exp b2Xi2ð Þ � . . . � exp bpXip

� �
:

ð6Þ

A serious concern of model (6) is that it describes a multi-

plicative reality. For example, in a GLM without an intercept, if

a first disease alone would cost on average 10 000 CHF and a

second disease alone would cost on average 100 CHF, having

the 2 diseases simultaneously would cost on average 1 000 000

CHF, which is hard to believe (and things would become even

worse with more than 2 diseases).

Even if model (6) would hold, one would not have mj ¼ bj as

with model (2), and one could not simply use the (maximum

likelihood) estimates b̂j of the coefficients bj as estimates of the

mj. To get such estimates, one possibility would be to estimate

the average “marginal cost” which would be saved by remov-

ing completely a disease. Such a marginal approach has been

used by Moschetti et al.7, in a context a bit different from ours,

who calculated the following quantity:

m̂j ¼
1
n

Xn
i¼1

exp b̂0

� �
� exp b̂1Xi1

� �
� . . .

� exp b̂j

� �
� 1

� �
� . . . � exp b̂pXip

� �
:

ð7Þ

This quantity is the average difference between the global

health cost with disease j and the global health cost without

disease j, calculated over all individuals, while holding the

disease status constant for all diseases other than j. However,

one will not retrieve the total health cost spent for all the

patients by summing up the estimated costs spent for the dif-

ferent diseases, the discrepancies being even typically (much)

larger than with OLS, as illustrated in our example below. Note

also that it is quite possible to get estimates b̂j which are neg-

ative for some diseases, implying in turn negative estimates m̂j

via equation (7), as it happened in our example below, and as it

also happened in Moschetti et al’s study.7

Another annoying feature of model (6) is that a patient

without any disease would cost expðb0Þ; which cannot be set

to 0 by removing the intercept from the model. In fact, remov-

ing the intercept would imply a cost of exp 0ð Þ ¼ 1 monetary

unit for a patient without any disease, whatever this unit might

be. Thus, contrary to model (2), an intercept is needed in model

(6) to ensure that the results do not depend on the monetary

units considered. Without an intercept in model (6), one would

not get the same health cost repartition among the diseases if

Rousson et al 3



one would express the costs in Swiss francs, or in thousands of

Swiss francs, for example.

Iterative Proportional Repartition

In the present article, we propose to estimate the mean costs by

disease mj via an algorithm yielding an IPR of the global costs

Yi across the different diseases diagnosed for a patient i; before

averaging the specific costs hence obtained for a disease j over

the patients having that disease. Specifically, the IPR algorithm

works as follows:

1. Start with some initial estimates m̂j > 0 of mj (eg, those

estimates provided by OLS if they are all positive, or

m̂j ¼ 1 for j ¼ 1; . . . ; p);

2. Let Ŷ ij ¼ Yi Xij m̂j=
Pp

k¼1 Xik m̂kð Þ (for i ¼ 1; . . . ; n and

j ¼ 1; . . . ; p);

3. Update the current estimate of mj as

m̂j ¼
Pn

i¼1 XijŶ ij

� �
=
Pn

i¼1Xij (for j ¼ 1; . . . ; p) and go

back to step 2 until a stopping criterion.

In our illustration and simulations below, we used as stop-

ping criterion that the updated estimates of mj differ from the

current estimates of mj by less than 1 CHF for all the diseases

(ie, for j ¼ 1; . . . ; pÞ. As for the other methods, standard errors

and confidence intervals can be obtained via bootstrap.

For example, if one would know that a first disease would

cost on average 10 000 CHF and a second disease would cost

on average 100 CHF, the former being 100 times more expen-

sive than the latter, and if the health costs of 1 patient having

the 2 diseases simultaneously would be of 12 120 CHF

(which is 2020 CHF more than the sum of the average costs

of the 2 diseases, due to an interaction), one would not split

the extra amount of 2020 CHF equally among the 2 diseases

(ie, one would not consider 10 000 þ 1010 ¼ 11 010 CHF for

the first and 100 þ 1010 ¼ 1110 CHF for the second disease),

but one would allocate it proportionally to the costs of the 2

diseases (yielding 10 000 þ 2000 ¼ 12 000 CHF for the first

and 100 þ 20 ¼ 120 CHF for the second disease). However,

since one does not know the average costs of the diseases in

reality, one should proceed iteratively, as described in the

algorithm above.

By construction, IPR estimates m̂j of mj will be necessarily

strictly positive and one will retrieve the total health spent for

all the patients by summing up the estimated costs spent for the

different diseases, that is,
Pp

j¼1t̂j ¼
Pn

i¼1Yi (although the total

would no longer be retrieved when applying the IPR estimates

to another representative sample of patients from the same

population).

Another (slight) advantage of IPR is that, contrary to OLS or

GLM, it will not be affected by the potential (numerical) prob-

lems due to a possible multicolinearity among the predictors

Xij: Even in an extreme case of multicolinearity, for example,

where 1 patient would have one disease if and only if he or she

would have another one disease, IPR could still be calculated,

eg, sharing the costs equally among those 2 diseases. Another

problematic situation would arise in a case where each disease

would be classified either as a “principal” or as a “secondary”

disease, such that each patient would have one and only one

principal disease (a system which would be similar to

diagnosis-related groups, although including in addition sec-

ondary diseases). In that situation, including an intercept in a

regression model would yield a multicolinearity issue, whereas

IPR could still be calculated. A similar issue would also arise in

a case where all the patients would have exactly the same

number of diseases (eg, if one would consider a population

of patients with more than one disease, but considering only

the most 2 serious diseases for each patient).

Illustration

In this section, we illustrate and compare the IPR algorithm

with different methods applied to global health costs data from

Switzerland, collected on n ¼ 482 303 patients and involving

p ¼ 49 diseases. These data were representative of the health

costs in Switzerland during the year 2006.

The total health costs calculated over all the patients in our

sample was of 595 661 616 CHF (Swiss Francs). The distribu-

tion of the (global) health costs per patient is shown on the left

panel (A) of Figure 1 (transformed on the log scale, base 10),

ranging from 1 to 455 200 CHF, with a median cost of 422 CHF

and an average cost of 1235 CHF. A total of 1 461 939 diseases

have been diagnosed, yielding an average of 3.03 diseases per

patient. The distribution of the number of diseases per patient is

shown on the right panel (B) of Figure 1. A proportion of 33.2%
patients had just 1 disease, 23.1% had 2 diseases, 14.7% had 3

diseases, and 9.1% had 4 diseases, while 1 patient had up to 24

diseases (the maximum number of diseases observed for a

single patient). Of course, some diseases were less frequent

than other, ranging from 203 to 155 800 occurrences, with a

median of 9906 and an average of 29 840 occurrences. Of note,

the most expensive diseases occurred (fortunately) not very

often, while the Spearman correlation between disease fre-

quency and disease cost was negative (eg, �0.48 according

to the costs estimated via IPR).

Mean costs mj were estimated by 4 different methods: IPR,

OLS, GLM Poisson, and GLM Gamma. All calculations were

done/programmed using the statistical software R (version

3.3.3). For IPR, our stopping criterion was met after 21 itera-

tions of the algorithm (which took about 100 seconds on a

laptop computer from 2013, with a processor 2 GHz Intel Core

i7). Table 1 summarizes the results. For OLS, GLM Poisson,

and GLM Gamma, we got, respectively, 4, 8, and 6 negative

estimates m̂j. For each method, such negative values were set to

half of the smallest among the positive values of m̂j. As

expected, IPR was the only method allowing to retrieve the

total health cost from the estimated mean costs, that is, withPp
j¼1t̂j=

Pn
i¼1Yi equal to 1, the latter quantity being equal to

1.04, 0.63, and 1.17 for OLS, GLM Poisson, and GLM Gamma,

respectively. In particular, the total health cost was

4 Health Services Research and Managerial Epidemiology



overestimated by 17% using GLM Gamma, while it was under-

estimated by 37% using GLM Poisson. Summary statistics

(minimum, maximum, median, and mean) are also provided

in Table 1. We retrieve the fact that estimates were on average

much lower when using GLM Poisson, while they were on

average higher when using GLM Gamma than when using OLS

or IPR.

That the total health cost is not retrieved is not necessarily a

problem when the issue is to estimate the cost contributions pj
of the different diseases, since the estimates p̂j are standardized

to sum to one for each method (and since one knows the true

total health cost). Figure 2 shows the relationships between the

p̂j obtained via the different methods, together with the corre-

sponding Spearman correlations. One can see that IPR was

closer to OLS (Spearman correlation of 0.96) than to GLM

Poisson (Spearman correlation of 0.86) or GLM Gamma

(Spearman correlation of 0.88). Note also that an absolute dif-

ference of more than 1% compared to the p̂j estimated via IPR

was observed for 7 (of the 49) diseases when using OLS, and

for 11 diseases when using either GLM Poisson or GLM

Gamma, the mean absolute difference was 0.4%, 0.7%, and

0.5%, respectively, and the maximum absolute difference was

2.1%, 4.8%, and 3.3%, respectively. Thus, the conclusions

which can be drawn regarding health cost repartition among

the different diseases in Switzerland in 2006 will partly depend

on the method which is used, raising the question of determin-

ing which method is best. In Figure 2, 95% confidence intervals

for the pj based on 500 bootstrapped resamples are also rep-

resented to indicate the variability of the estimates. In general,

one can see that IPR yielded the shortest intervals, and thus the

most stable estimates. This will be further investigated in the

next section via simulations.

Simulations

In this section, we present the results of simulations where cost

data have been generated according to the simulation design

which is presented below. To get a realistic scenario, in partic-

ular in terms of disease pattern frequencies, it is inspired from

the Swiss health cost data described in the previous section.

We considered n¼ 100 000 patients and p ¼ 49 diseases. In

our basic simulation design, we have (randomly) selected 100

000 lines (Xi1; � � � ; XipÞ from the matrix of the Xij observed in

the Swiss health data, such that disease frequencies, and more

generally disease pattern frequencies, resembled those

observed in the Swiss health data (some combinations of dis-

eases being more frequent than others). For each individual

Table 1. Comparison of Mean Cost by Disease (m̂ j ) Estimated via
Different Methods.

OLS
GLM

(Poisson)
GLM

(Gamma) IPR

% negative mean costs 4/49 8/49 6/49 0/49
Minimum (CHF) 28 7 12 87
Maximum (CHF) 30 330 15 730 33 070 29 410
Median (CHF) 444 246 530 486
Mean (CHF) 1991 983 2239 1939
Total health cost

(estimation/truth)
1.04 0.63 1.17 1

Abbreviations: GLM generalized linear models; IPR, iterative proportional
repartition; OLS, ordinary least squares.

Figure 1. Histograms of global health costs (log scale, base 10, left panel) and of numbers of diseases (right panel) calculated from 595 661 616
patients representative of the health costs in Switzerland during the year 2006.
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i ¼ 1; � � � ; n and each disease j ¼ 1; � � � ; p, the specific cost Yij
was generated according to a lognormal distribution with true

mean cost mj; taken as mean cost m̂j estimated via IPR (see the

previous section), and with a (within-disease) coefficient of

variation (CV ¼ standard deviation/mean) of 2. Global costs

were then obtained as Yi ¼
Pp

j¼1ðXijYijÞ (for i ¼ 1; . . . ; n). To

simplify the presentation, diseases were sorted according to

their mean costs, m1 denoting the mean cost from the cheapest

disease, mp the mean cost from the most expensive disease. We

have then considered various variants from this basic simula-

tion design, resulting in the 10 following simulation settings:

1. [Basic design or BD] As just described.

2. [GLM mean costs] Same as BD, except that true mean

costs mj were taken as mean costs m̂j estimated via

GLM Gamma (see the previous section).

3. [Small CV] Same as BD, except that the CV was set to

0.5.

4. [CV decreasing with mean cost] Same as BD, except

that the CV was taken different for each disease, being

2� 1:5 j� 1ð Þ= p� 1ð Þ for disease j.

5. [CV increasing with mean cost] Same as BD, except

that the CV was taken different for each disease, being

0:5þ 1:5 j� 1ð Þ= p� 1ð Þ for disease j:
6. [Gamma distribution] Same as BD, except that the

specific costs were generated according to a Gamma

(instead of a lognormal) distribution.

7. [Frequency decreasing with mean cost] Same as BD,

except that the columns (X1j; � � � ; XnjÞ0 from the

matrix of the Xij have been reordered, such that disease

frequency was monotonically decreasing from the

cheapest to the most expensive disease.

8. [Frequency increasing with mean cost] Same as BD,

except that the columns (X1j; � � � ; XnjÞ0 from the

matrix of the Xij have been reordered, such that disease

frequency was monotonically increasing from the

cheapest to the most expensive disease.

9. [Uniform frequencies] Same as BD, except that the p

elements Xij of each line (Xi1; � � � ; XipÞ from the

matrix of the Xij have been randomly swapped (inde-

pendently for i ¼ 1; . . . ; n), such that disease distri-

bution was uniform.

Figure 2. Scatterplots, together with Spearman (rho) correlations, comparing the estimates of percentages of the total health costs (p̂ jÞ spent for
the 49 diseases obtained by 4 different methods, each panel comparing 2 different methods (IPR, OLS, GLM Poisson, and GLM Gamma, each point
representing 1 disease, an identity line being added as a reference line), for the Swiss health cost data. The length and width of the gray-shaded
rectangles represent 95% confidence intervals (for the corresponding methods) obtained from 500 bootstrapped resamples. GLM indicates
generalized linear models; IPR, iterative proportional repartition; OLS, ordinary least squares. Panel A: IPR vs. OLS, Panel B: IPR vs. GLM Poisson,
Panel C: IPR vs. GLM Gamma, Panel D: OLS vs. GLM Poisson, Panel E: OLS vs. GLM Gamma, Panel F: GLM Poisson vs. GLM Gamma.
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10. [More diseases] Same as the former design but with

twice more diseases per patient (or set back at 24 in

case of more than 24 diseases), resulting in an average

of 6.04 (instead of 3.04) diseases per patient.

We generated N ¼ 1000 data sets under each of these 10

settings. In each generated data set I ¼ 1; . . . ;N , we got esti-

mates m̂j ¼ m̂j Ið Þ of the mean costs by disease mj obtained via

either IPR, OLS, GLM Poisson, or GLM Gamma (the few

negative estimates being treated as in the previous section),

as well as the corresponding estimates p̂j ¼ p̂j Ið Þ of the cost

contributions by disease pj for j ¼ 1; . . . ; pð Þ: For IPR, our

stopping criterion was met after less than 150 iterations (on

average, after 32 iterations) for all generated data sets under

any setting. Figure 3 shows the boxplots of the 1000 esti-

mates obtained for each method and each disease under the

Figure 3. Boxplots of the estimates of mean costs by disease (m̂ j; log scale, base 10) for the 49 diseases obtained by 4 different methods (IPR,
OLS, GLM Poisson, and GLM Gamma, each boxplot representing 1 disease) over 1000 simulated data sets of health costs for 100 000 patients
generated from our basic design. Horizontal lines represent the true mean costs from which data have been generated. GLM indicates
generalized linear models; IPR, iterative proportional repartition; OLS, ordinary least squares.
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basic design (on the log scale, base 10). One can see that

IPR and OLS yielded estimates which were mostly

unbiased, the latter with a higher variability (ie, a worse

accuracy) than the former, while GLM Poisson and GLM

Gamma yielded biased estimates. Although this bias was

mostly negative for GLM Poisson and mostly positive for

GLM Gamma, it was not of the same amplitude (and not

even in the same direction!) for each disease, making a bias

correction problematic.

In order to not overpenalize the GLM methods, which were

thus underestimating (GLM Poisson) or overestimating (GLM

Gamma) the total health cost, and since our ultimate goal is an

estimation of the health cost repartition among the different

diseases, we compare below the methods with respect to bias

and accuracy of the p̂j (instead of the m̂jÞ. Under each setting

and for each disease j ¼ 1; . . . p, methods can be compared via

classical criteria such as bias, standard deviation (ie, variabil-

ity), and root mean square error (RMSE) defined as:

B jð Þ ¼ 1

N

XN
I¼1

p̂j Ið Þ � pj

SD jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
I¼1

p̂2
j Ið Þ � 1

N

XN
I¼1

p̂j Ið Þ
 !2

vuut

RMSE jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 jð Þ þ SD2 jð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
I¼1

p̂j Ið Þ � pj
� �2

vuut
An alternative (close in spirit) to RMSE is the mean absolute

error defined as:

MAE jð Þ ¼ 1

N

XN
I¼1
jp̂j Ið Þ � pjj:

This quantity is interpretable as the expected absolute error

of cost contribution of disease j: Those MAE jð Þ quantities

could then be averaged over all the diseases, yielding what

we shall call the overall absolute error (OAE), a useful sum-

mary of the global performance of a method, obtained as:

OAE ¼ 1

p

Xp
j¼1

MAE jð Þ:

Figure 4 summarizes the performance of the methods in

terms of OAE under the 10 simulation designs described above.

More complete results involving the other criteria above are

available in the supplementary material. Results were pretty

clear-cut with IPR consistently outperforming the other 3 meth-

ods. Second best was OLS with an OAE between 1.5 and 4.7

times higher than for IPR depending on the simulation setting,

whereas it was between 5.6 and 22.9 times higher for GLM

Poisson, and between 4.5 and 19.4 times higher for GLM

Gamma. Various additional simulations from still different set-

tings confirmed these results.

Conclusions

Estimating mean cost and cost contribution by disease from

global health costs is a challenging and nonstandard statistical

problem. One possible approach would be to consider a

regression model. While an additive model certainly repre-

sents a reasonable (first) approximation of the reality, a clas-

sical method of estimation such as OLS is not optimal in

presence of asymmetric and heteroscedastic distributions.

On the other hand, a multiplicative model such as GLM

appears quite unrealistic and provided (not surprisingly) bad

results in the context of an additive model even using a mar-

ginal approach. Finally, we have introduced the IPR method,

which is nonparametric, simple to understand and to imple-

ment, and which turned out to consistently outperform the

other methods considered in our simulation study.

An obvious (in fact inevitable) limitation of our simulation

study is that we have simulated global health costs from a

model without interactions. However, this is only under that

setting that the health cost repartition among the diseases is

clearly defined such that one unambiguously knows the “truth.”

In that context, it becomes possible to compare the different

methods on an objective basis.

In presence of interactions (which in practice will be the

rule rather than the exception), it is no longer clear how an

extra (or an economy of) cost due to the simultaneous pres-

ence of several diseases for 1 patient should be allocated

among those diseases. We are actually studying this far-

reaching question in a companion paper in the simple case

of 2 diseases. It turns out that the different methods will

allocate this extra cost differently among the diseases such

that each method will estimate a different (true) health cost

repartition. In such a context, it is thus not relevant to compare

the performance of the methods via the usual statistical

1 2 3 4 5 6 7 8 9 10 
simulation design

 

GLM Poisson
GLM Gamma
OLS
IPR

Figure 4. Overall absolute errors (OAE) of estimates of percentages
of the total health costs (p̂ jÞ averaged over the 49 diseases obtained by
4 different methods (IPR, OLS, GLM Poisson, and GLM Gamma) over
1000 simulated data sets of health costs for 100 000 patients generated
from the 10 simulation designs described in section 5. GLM indicates
generalized linear models; IPR, iterative proportional repartition; OLS,
ordinary least squares.
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criteria, such as those used in the previous section. In other

words, in presence of interactions, the choice of a method

should not be based on the efficiency of estimation, but on

the relevance of what is estimated, such that a comparison of

methods via simulations would become obsolete.

As mentioned in our method section, IPR is allocating the

extra (or the economy of) cost due to the simultaneous presence

of 2 diseases for 1 patient proportionally to the average cost of

those 2 diseases, which again seems natural to us, but which is

not achieved using another method (see our companion paper).

Other advantages of the IPR method are that it retrieves by

construction the total health cost by summing up the estimated

costs spent for the different diseases (whether interactions are

present or not), and that it does not face neither the potential

issues of multicolinearity nor the problem of the negative esti-

mates, whereas other methods should be updated accordingly

(in some more or less artisanal way) to accommodate these

issues. This is why we see IPR as the natural method to achieve

a health cost repartition and we would like to encourage its use.

We end up by mentioning 2 (related) open problems raised

by the reviewers for interested readers. One would be to study

which (simple) objective function is formally minimized using

IPR. Another one would be to prove mathematically that the

IPR algorithm does always converge, which we were not able

to demonstrate, despite the fact that our stopping criterion was

met in 100% of our simulations.

Finally, we would like to underline that our problem of

estimating the repartition of health cost among the diseases is

based on a classification system (into p diseases) which is not

necessarily straightforward to define. One issue is that some

diseases might be the consequences of other. For instance, an

impaired renal function is a frequent consequence of a conges-

tive heart failure. In that case, one may wish to entirely allocate

the cost of the former to the latter. This can be solved by an

appropriate choice of classification system (for example, by

occulting the former disease in those cases or by considering

a “new” disease which would be the combination of the 2).

Another point is that it might be desirable to consider several

episodes of illnesses per patient to take into account time dis-

eases overlap. Of course, changing the classification system or

the number of episodes per patient will change the health cost

repartition whatever the method which is used.
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