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Purpose: Manufacturers of surgical instrumentation have increasingly sought to
decrease the size of ophthalmic surgical instruments. We have used finite element
modeling to model the stress and strain present in a fragmatome as a function of
driving frequency and fragmatome dimensions.

Methods: Finite element calculations using the COMSOL Multiphysics system v3.5
were used to elucidate the influence of wall thickness, length, and excitation
frequency on a titanium fragmatome tube with outer diameters of 20, 23, 25, and 27
gauge.

Results: By coupling structural mechanics, fluid mechanics, and acoustical physics, we
were able to determine the eigenfrequencies (resonant frequencies) as well as
parameters in which the von Mises stress in a fragmatome tube exceeds the yield
strength, leading to destruction of the instrument.

Conclusion: Solid fragmatomes have far fewer possible failure modes than
fragmatomes with a standard wall thickness. Eigenfrequency analysis and finite
element calculations can be critical in predicting potentially catastrophic designs in
modern surgical instruments.

Translational Relevance: Instruments developed for microsurgical applications
cannot always simply be scaled down versions of conventional instruments. Such
an approach can lead to potentially dangerous intraoperative failures, such as a
fragmatome shattering inside the eye. Modern engineering techniques are
increasingly necessary to investigate potential instrument failure mechanisms and
to optimize device performance in a design in silico before in vivo testing.

Introduction

Decrease in the size of an incision in surgery is
associated with decreased pain,1–3 decreased rates of
infection,4–9 better healing at the site of incision,9

and faster recovery1,5 in various surgical settings.
Thus, the design, safety, and efficacy of smaller-
diameter, modern surgical instruments are of grow-
ing interest.

In vitreoretinal surgery, with a decrease in
incision size, the instrument gauge also must
increase (i.e., the diameter of the instrument must
decrease). In the case of retained lens material, a
complication of cataract surgery, the retained lens
fragments often are removed from the vitreous
cavity by a fragmatome, a long tube that can apply
ultrasonic energy to a lens fragment to emulsify it as

well as to aspirate the resulting small lens particles.
While modern vitrectors often can be used to
remove soft nuclei and lens cortex, a fragmatome
continues to be helpful in the management of hard
nuclei. The advantages of a thinner fragmatome,
such as a 23- and 25-gauge versus conventional 20-
gauge fragmatome, have been well documented in
terms of surgical efficiency,5 absence of sclerotomy
sutures, which may then lead to reduced suture-
induced astigmatism10 inflammation and pain post-
operatively,11–13 as well as reduced intraocular
inflammation.14 A retrospective study comparing
the use of a 23-gauge fragmatome with and without
a 20-gauge trocar reported that the tip of the
fragmatome fractured and had to be surgically
retrieved.15 This incident highlights a possible safety
concern with smaller gauge instrumentation and, in
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particular, a smaller gauge fragmatome. We used
finite element modeling to study the von Mises stress
and strain present in a fragmatome as a function of
frequency and fragmatome dimensions to predict
potentially catastrophic designs. Finite element
analysis is a computational tool that can be used
for calculating forces, deformations, stresses, and
strains at any point in a structure, such as a
fragmatome.

Methods

Finite element calculations using the COMSOL
Multiphysics system v3.5 (Palo Alto, CA) were used
to elucidate the influence of wall thickness, tube
length, and excitation frequency on a titanium alloy
fragmatome tube with outer diameters of 20, 23, 25,
and 27 gauge. By coupling a linear elastic model of
structural mechanics, fluid mechanics, and acoustical
physics, we were able to determine the eigenfrequen-
cies as well as parameters in which the internal von
Mises stress (force/area) in the fragmatome exceeds
the yield strength and, thus, according to the von
Mises yield criterion,16 the fragmatome can break
apart. The finite element calculations allowed for
visualization of the von Mises stress and volumetric

strain (change in volume/volume) of the fragma-
tome. The fragmatomes simulated were made of
titanium.

Typical driving frequencies for phacoemulsifica-
tion systems and fragmatomes vary from 35 to 55 kHz
and, for some of our calculations, we chose a
‘‘typical’’ ultrasonic frequency of 45 kHz. For
comparison with the calculations included in this
study, the fragmatome used with Alcon’s Constella-
tion system operates at a frequency of 39.0 6 1.9 kHz
and has a length of 30.5 mm. Relevant engineering
terms used in this study, with their definition, can be
found in Appendix Table A1.

Results

In our simulations, the undamped eigenfrequencies
of a fragmatome are nearly independent of the gauge
and wall thickness. Indeed, the relationship between
eigenfrequency and length for 20-, 23-, 25-, 27-gauge
fragmatomes of standard needle gauge wall thickness
can be fit to an exponential one phase decay function
with an R2 of 0.9996 (Fig. 1, Table 1) for all gauges.
The exponential one phase decay fit for 20-, 23-, 25-,
27-gauge curves are statistically not different from
each to other (Table 1). Likewise for a solid

Figure 1. For a given fragmatome length, there is one undamped eigenfrequency (characteristic frequency) that does not depend upon
gauge or wall thickness. The solid line represents the exponential one phase decay fit for the combined data points from 20-, 23-, 25-, and
27-gauge fragmatomes with a standard needle wall thickness. The constant, coefficient, and the goodness of fit for this exponential one
phase decay fit are given in Table 1 under ‘‘All gauges combined.’’ As the fragmatome is made longer, the undamped eigenfrequency
crosses 45 kHz (a frequency often used for clinical phacoemulsification) at approximately 25 mm length, leading to unexpected
resonances in clinical instruments.
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fragmatome, the relationship between eigenfrequency
and tube length for 20-, 23-, 25-, and 27-gauge
fragmatomes also can be fit with an exponential one
phase decay function all with an R2 greater or equal
to 0.999 (Table 2) and the exponential one phase
decay fit for 20-, 23-, 25-, and 27-gauge are
statistically not different from each other (Table 2).
Comparing the decay constant K of an exponential
one-phase decay fit of the solid fragmatomes to that
of the hollow standard wall thickness fragmatomes,
the decay constants are statistically not different
between a solid and a hollow fragmatome for all
gauges (Tables 1, 2). Based on analysis of variance
(ANOVA) of the undamped eigenfrequencies at
various fragmatome lengths, we did not find a
statistically significant interaction between the groups
analyzed, including different gauges, wall thicknesses,
or the interaction between gauge and wall thickness
(Table 3).

As the length of the fragmatome increases, the
undamped eigenfrequency decreases and eventually

crosses 45 kHz, the driving frequency often used for
clinical phacoemulsification, at a length of approx-
imately 25 mm (Fig. 1). When the driving frequency,
45 kHz, is equal to the eigenfrequency, the system is
considered to be at the resonant frequency of the
fragmatome. At the resonant frequency, the maxi-
mum amplitude of displacement of the tip of the
fragmatome is the greatest. Thus, as the fragmatome
is made longer, the eigenfrequency of a given length
of fragmatome approaches 45 kHz, leading to
unexpected resonances in clinical instruments. Clear-
ly, it also can be seen that the resonant frequency is
less than 39 kHz for a fragmatome length of 30.5
mm, so Alcon’s fragmatome is not driven at its
resonant frequency.

Figure 2 shows eigenfrequencies of different
eigenmodes, which describe the normal modes of
vibration of a 20-gauge standard wall thickness
(0.1524 mm) fragmatome (Fig. 2A) for the first to
ninth eigenmodes of vibration and of a 20-gauge solid
fragmatome (Fig. 2B) for the first to eighth eigen-
modes of vibration. These eigenfrequencies are used
in the finite element calculation to determine which
eigenfrequency generates larger (here, we have
produced figures for all eigenfrequencies .20 MPa)
von Mises stress (Figs. 4A, 5A). ANOVA demon-
strates that standard wall thickness and solid fragma-
tomes have statistically similar eigenfrequencies at
various length for eigenmodes: first to third and fifth
to eighth (Table 4). At the fourth eigenmode, the
standard wall thickness and solid fragmatomes had
statistically different eigenfrequencies at various
lengths (Table 4).

Keeping the length (20 mm) and the gauge (20-

Table 2. Exponential One Phase Decay Fit: [y¼ (Y0�
Plateau) 3 e�K 3 Lengthþ Plateau] of Eigenfrequency vs.
the Length of Solid Fragmatome for 20-, 23-, 25-, and
27-Gauges.

Gauge
Y0

(kHz)
Plateau

(kHz) K (95% CI) R2

20 207 29.3 97 (91–103) 0.9996
23 207 29.3 97 (91–103) 0.9996
25 207 29.2 97 (91–103) 0.9996
27 207 29.3 97 (91–103) 0.9996
All gauges

combined
207 29.3 97 (91–103) 0.9996

Table 1. Exponential One Phase Decay Fit: [y¼ (Y0�
Plateau) 3 e�K 3 Lengthþ Plateau] of Eigenfrequency vs.
the Length of Standard Wall Thickness Fragmatome
for 20-, 23-, 25-, and 27-Gauges.

Gauge
Y0

(kHz)
Plateau

(kHz) K (95% CI) R2

20 223 30.0 100 (93–106) 0.9996
23 218 29.8 99 (92–106) 0.9996
25 216 29.8 99 (92–106) 0.9996
27 217 29.8 100 (92–106) 0.9996
All gauges

combined
218 29.8 100 (93–106) 0.999

Table 3. Two-Way ANOVA of Eigenfrequency at
Various Fragmatome Length as Indicated in Figures 1
and 2 Comparing Various Gauges (20-, 23-, 25-, 27-
gauge) and Comparing Standard Wall Thickness vs.
Solid Fragmatome

Source of
Variation df F P Value Fcrit

Wall thickness 1 0.096585 0.756775 3.960352
Gauge 3 0.00319 0.999749 2.718785
Interaction of

gauge x wall
thickness

3 0.003249 0.999742 2.718785

Alpha ¼ 0.05. P , 0.05 indicates statistically significant
variance between different groups.
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gauge) of the fragmatome constant, the wall thickness

can influence the maximum displacement of the tip of

the fragmatome (Fig. 3). The displacement of the tip

is 484.3 lm for a solid fragmatome at its resonance

frequency. This displacement value is more than four

times greater than that of hollow fragmatome of

double the standard needle wall thickness, of the

standard needle wall thickness, and of half the

standard needle wall thickness (Fig. 3). The resonance

frequencies are clustered around 56 kHz in concor-

dance with the evidence that the undamped eigenfre-

quency is independent of wall thickness (Fig. 3).

To predict potential failure, the von Mises stress

was calculated for 20-, 23-, 25-, and 27-gauge hollow

fragmatomes at all predicted eigenfrequencies and at

45 kHz at a series of lengths (Fig. 4A). Figure 4A

demonstrates the frequencies that generate larger von

Mises stress, at least 25 MPa, for a given fragmatome

length. Larger von Mises stress was found for hollow

fragmatomes, driven at 45 kHz, of dimensions: 20-

Figure 2. Calculated eigenfrequencies as a function tube length for (A) a hollow 20-gauge tube with a standard needle wall thickness in
nine different families of eigenmodes and for (B) a solid 20-gauge tube in eight families of eigenmodes. The exponential one phase decay
fit for the undamped eigenfrequencies of all gauges studied (20-, 23-, 25-, and 27-gauge) is drawn as a solid line. It is notable that the
undamped eigenfrequencies at different fragmatome lengths belong to different families of eigenmodes. The normal excitation
frequency used in most clinical instruments (45 kHz) is noted with a dashed line. These two lines are for reference and comparison.
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gauge at 26 mm, 23-gauge at 14 and 30 mm, and 27-
gauge at 20 mm (Fig. 4B).

At the tip of a 26 mm long, 20-gauge hollow
fragmatome, driven at a frequency of 44.8 kHz, the
volumetric strain calculation shows greatest compres-
sion at the tip and greatest extension at the base of the
fragmatome (Fig. 4C). Driving such a fragmatome at
a frequency of 44.8 kHz generates the maximal von
Mises stress: 877.8 MPa, nearing the tensile strength
of titanium, 880 MPa (Fig. 4B). This result predicts
changes in shape (ductile failure17) or breakage during
use (sudden failure17).

At the tip of a 14 mm long, 23-gauge hollow
fragmatome, driven at a frequency of 45 kHz, the
volumetric strain calculation shows greatest stretching
at the tip of the fragmatome (Fig. 4D). Driving such a
fragmatome at a frequency of 44.8 kHz generates the
maximal von Mises stress: 1818 MPa, exceeding the
tensile strength of titanium (880 MPa; Fig. 4B). This
result predicts potential failure of a fragmatome with
these properties when operated at approximately 45
kHz.

At the distal shaft of a 30 mm long, 23-gauge
hollow fragmatome, driven at a frequency of 45 kHz,
the volumetric strain calculation shows greatest
stretching at the distal shaft of the fragmatome (Fig.
4E.1). As mentioned in the introduction, in a
retrospective study, Kim et al.15 reported a case of a

23-gauge fragmatome fracturing at the distal shaft
near the tip during the surgery; as can be seen in the
photo of the broken fragmatome in that study, the
length of fragmatome was approximately 30 mm (Fig.
4E.2).15 This catastrophic event provides supports for
the validity of our finite element calculations.

At the distal shaft and tip of a 20 mm long, 27-
gauge hollow fragmatome at a frequency of 45 kHz,
the volumetric strain calculation shows greatest
compression at the distal shaft and greatest stretching
at the tip of the fragmatome (Fig. 4F).

To predict potential failure, von Mises Stress was
calculated for 20-, 23-, 25-, and 27-gauge solid
fragmatomes at all predicted eigenfrequencies and at
45 kHz at a series of lengths (Fig. 5A). Figure 5A
demonstrates the frequencies that generate larger von
Mises stress, at least 25 MPa, for a given fragmatome
length.

Larger von Mises stress was found only in a 25-
gauge, 24 mm long fragmatome, near 45 kHz (Fig.
5B). This fragmatome, when driven at a frequency of
47,019 Hz, develops a von Mises stress of 944 MPa,
exceeding the tensile strength of titanium, 880 MPa
(Fig. 5B). This result predicts that a fragmatome with
these dimensions, when driven at 47,019 Hz, may
undergo ductile failure or sudden failure during use.
The maximal von Mises is present at the distal shaft
of such a solid fragmatome and the volumetric strain
shows greatest compression at the distal shaft of the
fragmatome and greatest extension at the tip (Fig.
5C).

Figure 3. Plot of the displacement of the tip as a function of
excitation frequency, demonstrating shifting amplitude
(displacement from the tip of fragmatome) of the resonance
with fragmatome tube construction. A 20-gauge tube has an outer
diameter of 0.9081 mm. The wall thicknesses used in this
simulation are: regular thickness ¼ 0.1524 mm, half thickness ¼
0.0762 mm, double thickness ¼ 0.3048 mm, solid is a solid rod.

Table 4. One-Way ANOVA of Eigenfrequency at
Various Fragmatome Lengths, as Indicated in Figures
1 and 2, Comparing a Standard Wall Thickness vs. a
Solid 20-Gauge Fragamatome in the First to Eighth
Eigenmodes

Eigenmode F P Value Fcrit

First 0.598846 0.44807 4.351244
Second 1.898533 0.183465 4.351244
Third 3.718177 0.068141 4.351244
Fourth 5.305936 0.032116 4.351244
Fifth 3.663355 0.070041 4.351244
Sixth 2.822174 0.108525 4.351244
Seventh 1.276445 0.27193 4.351244
Eighth 1.010908 0.33453 4.747225

Alpha ¼ 0.05. P , 0.05 indicates statistically significant
variance between the standard wall thickness vs. the solid
fragmatome in that eigenmode.
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Figure 4. (A) Calculated elevated von Mises Stress for 20-, 23-, 25-, 27-gauge hollow fragmatomes at all predicted eigenfrequencies and
45 kHz. Note that at only a few combinations of fragmatome length and driving frequency are there resonances sufficiently strong to
produce a von Mises stress above 40 MPa. (B) A plot of resonances near 45 kHz, as predicted in (A). (C) Von Mises stress (left) and

!
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Discussion

We find that the resonant frequencies at which a
given fragmatome can vibrate vary strongly with the
length of the fragmatome, and do not vary signifi-
cantly with thickness or gauge. On the other hand, the
thickness of the wall and the gauge strongly influence
the internal stress and strain that develops in the
device. Only by performing detailed computational
modeling is it possible to determine sharp resonances
in the response of a given fragmatome to a given
ultrasonic frequency. It should be mentioned that
simulations at different fragmatome length should be
performed because, if the fragmatome is held firmly
by the trocar in the sclera, the effective length of the
fragmatome will be shortened and the eigenfrequen-
cies of that shortened fragmatome are critical
(analogous to a guitar string). In addition, if the
driving force is not at an eigenfrequency, vibrations at
an eigenfrequency will be induced as there is a
coupling between the driving frequency and eigen-
frequencies of the system.

There is a significant risk of intraoperative
instrumentation failure, including having the end of
the instrument move in an uncontrolled and large-
amplitude manner or having a piece of a given
fragmatome break off. These failure modes can be
predicted using advanced computational modeling.
We find, in our simulations, that these risks may be
minimized by reducing the size of the fragmatome
lumen.

Note that this analysis does not discuss failure due
to fatigue, where the fragmatome is subject to
repeated cyclical loading. Fatigue often results in the
maximal stress that results in failure being much
lower than the yield stress, considered here. In this
way, our results are an upper limit on the stress
needed to cause failure in a new fragmatome and the
actual risk of failure is is often computed using
statistical considerations.

Eigenfrequency analysis and finite element calcu-
lations can be critical in optimal instrument design
and in predicting potentially catastrophic designs in

modern surgical instruments. For example, the
calculated stress and strain for a 30 mm long, 23-
gauge hollow fragmatome at a frequency of 45 kHz
demonstrates a maximal von Mises stress that exceeds
tensile strength of titanium, (880 MPa) at the distal
shaft of the fragmatome. Our calculations, thus,
predict the fracture of such a fragmatome, as has
been noted in a published report of fracture of a 23-
gauge fragmatome.15 As the trend toward miniatur-
ization of surgical instrumentation proceeds, such
modern engineering analysis will become increasingly
crucial. In addition, such techniques may allow
optimization of a device under design.

Summary

It is possible to use finite element calculations to
predict the complex motion of a surgical device, such
as a fragmatome, as the thickness of the wall of the
fragmatome tube or the length of the fragmatome
tube is changed. We found that changing the
thickness of the wall of the fragmatome did not
change the primary frequency that the device vibrated
at and the length of the fragmatome changed the
primary frequency in a predictable manner. In
addition, there were very narrow ranges of frequen-
cies over which the vibration of the device suddenly
became large (a resonance), sometimes large enough
to break apart a titanium device. In fact, we were able
to predict the failure of a 30 mm fragmatome, which
occurred clinically and was previously reported. Such
resonances require a calculation and cannot be easily
predicted. Thus, instruments developed for microsur-
gical applications cannot always be simply scaled
down versions of conventional instruments. Such an
approach can lead to potentially dangerous intraop-
erative failures, such as a fragmatome shattering
inside the eye. Modern engineering techniques are
increasingly necessary to investigate potential instru-
ment failure mechanisms and to optimize device
performance in a design in silico before in vivo
testing.

 
volumetric strain (right) for a 26 mm long, 20-gauge hollow fragmatome at a frequency of 45 kHz. (D) Von Mises stress (left) and
volumetric strain (right) for a 14 mm long, 23-gauge hollow fragmatome at a frequency of 45 kHz. (E.1) Von Mises stress (left) and
volumetric strain (right) for a 30 mm long, 23-gauge hollow fragmatome at a frequency of 45 kHz. (E.2) Picture of an actual 23-gauge
fragmatome that fractured during an operation,16 reproduced with permission of Kim et al.15 (F) Von Mises stress (left) and volumetric
strain (right) for a 20 mm long, 27-gauge hollow fragmatome at a frequency of 45 kHz.
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Figure 5. (A) Calculated elevated von Mises Stress for 20-, 23-, 25-, and 27-gauge solid fragmatomes at all predicted eigenfrequencies
and 45 kHz. Note again that at only a few combinations of fragmatome length and driving frequency are there resonances sufficiently
strong to produce a von Mises stress above 40 MPa. (B) The one resonance near 45 kHz, predicted in (A) is shown. (C) Von Mises stress
(left) and volumetric strain (right) for a 24 mm long, 25-gauge solid fragmatome at a frequency of 47 kHz.
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Appendix

Table A1. Table of Engineering Terms Used in this Study

Term Definition

Finite element
calculation

A form of performing calculations using a computer in which the system being
modeled (for example, a fragmatome needle in water) is broken up into a fine
grid where the motion of each point in the grid is computed using the
equations that describe structural mechanics, fluid mechanics, and also
acoustical physics at the same time (i.e., coupled). The motion of the entire
system is calculated over a short period of time and, in this way, the motion
of the entire system is predicted. Discussion of technical details (such as the
size of the grid or the time step) are carefully determined but are beyond the
scope of this study.

Eigenfrequency The characteristic or resonant frequency at which an item will ’ring’ or vibrate.
Note that the name is from German, where eigen means inherent or
characteristic. The term eigenfrequency is, according to the Merriam-Webster
dictionary,18 ‘‘One of the frequencies with which a given oscillatory system is
capable of vibrating.’’ The motion of a given system, such as a fragmatome,
can be described by a combination of its eigenfrequencies in the same way as
a musical sound can be described by the frequencies that make up that
sound.

Consider that a stick that can oscillate at a given frequency, such that the entire
stick moves except the ends; or it can oscillate at a frequency such that there
is a point in the center of the stick that also does not move ... Each such
frequency at which the stick can oscillate is an eigenfrequency and the stick,
when struck, will oscillate at a combination of these eigenfrequencies.

Another way to think about this is the equalizer on a stereo system. There often
is a screen that displays frequency (along the x-axis) versus power (along the
y-axis). This shows that sound (or any function) can be broken down into a
number of frequencies. Critically, many frequencies will be quickly damped out
and only certain frequencies, the eigenfrequencies, will persist and these
frequencies determine the behavior of the system.

Undamped
eigenfrequencies

The eigenfrequencies that are present and would be present if there were no
damping from the surrounding fluid.

Damped
eigenfrequency

It is possible to calculate how rapidly a particular vibration (eigenfrequency) will
lose energy to the surrounding fluid, and, thus, will have lower amplitude
vibration because of how the fragmatome moves. We use this term to denote
eigenfrequencies that lose energy.
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