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Background: Aortic valve stenosis (AS) is a common, lethal cardiovascular disease. There is

no cure except the valve replacement at last stage. Therefore, an understanding of the

detail mechanism is imperative to prevent and intervene AS. Metabolic syndrome (MetS) is

one of the major risk factors of AS whereas fructose overconsuming tops the list of MetS

risk factors. However, whether the fructose under physiological level induces AS is

currently unknown.

Methods: The human valve interstitial cells (hVICs), a crucial source to develop calcification,

were co-incubated with fructose at 2 or 20 mM to mimic the serum fructose at fasting or

post-fructose consumption, respectively, for 24 h. The cell proliferation was evaluated by

WST-1 assays. The expressions of osteogenic and fibrotic proteins, PI3K/AKT signaling,

insulin receptor substrate 1 andmitochondrial dynamic proteins were detected byWestern
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upregulated PI3K p85, AKT, phospho(p)S473-AKT, and pS636-insulin receptor substrate 1
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mitochondrial fission 1 and optic atrophy type 1 were increased.
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Aortic valve stenosis (AS), a status of aortic valve disease, is a

common, lethal cardiovascular disease in the elderly. The

development of AS is often subtle at first and progresses over

time until months or years after the beginning. Once the

progression of AS initiated, it is considered as irreversible.

Fibrosis and calcification are the two hallmarks of aortic ste-

nosis whereas valve interstitial cells (VICs) differentiated

myofibroblasts and osteoblasts are considered as their origin,

respectively [1]. The limited knowledge makes AS currently

unable to be earlier diagnosis for intervention. Therefore, a

precise delineation of the mechanism of the AS progression is

imperative.

Several risk factors are involved in the progression of AS

including age, hypertension and dyslipidemia [2e4] which are

the major criteria of metabolic syndrome [5]. Under physio-

logical status, insulin binds to membrane-bonded insulin re-

ceptor to phosphorylate insulin receptor substrate (IRS)-1 for
the activation of the phosphoinositide 3-kinase (PI3K)/phos-

phoinositide-dependent kinase 1 (PDK-1)/Akt pathway for

glucose uptake [6] in response to the carbohydrate supply. Any

disturbance in this cellular pathway, for instance, the upre-

gulation of IRS-1 and PI3K p85, could initiate the progression

of metabolic syndrome [7]. Notably, the PI3K/AKT signaling

promotes osteogenic differentiation of mesenchymal stem

cells [8,9] though the downstream signaling is inconclusive.

AKT signaling regulate mitochondrial oxidative phos-

phorylation [10,11]. Mitochondrion is the major source of

cellular energy support by oxidative phosphorylation

(OXPHOS). Intriguingly, the activation of OXPHOS drives cal-

cium accumulation in mitochondria (Reviewed by Carafoli

2010 [12]). Recently, accumulating evidence indicated that

active mitochondria positively regulate osteogenic differenti-

ation of mesenchymal stem cells [13,14]. It is conceivable that

the AKT-activated mitochondrial OXPHOS may play roles in

the osteogenic differentiation in hVICs.

High activation results in large-scale impairment of mito-

chondria. To maintain the quality, mitochondria are highly

dynamics and are strictly regulated by mitochondrial fission/

fusion, and mitochondrial autophagy (mitophagy) in response

to environmental nutrition [15,16]. Mitochondrial fission is

controlled by dynamin-related protein 1 (DRP1), fission protein

1 (FIS1) and mitochondrial fission factor (Mff). Overnutrition

may result in mitochondrial fission and the increased number

of damaged mitochondria. The impaired mitochondria are

divided by fission, engulfed bymitophagy [17,18]. Inmammals,

the best-studied proteins involved in mitochondrial fusion are

the optic atrophy type 1 (OPA1), mitofusin 1 (Mfn1) and Mfn2.

Mitophagy is responsible for the clearance of damaged mito-

chondria. The best-studied proteins involved inmitophagy are

the PTEN-induced kinase 1 (PINK1) and Parkin [19]. Under

physiological status, PINK1 is cleaved by presenilin-associated

rhomboid-like serine protease (PARL) in mitochondria [20]

while full length PINK1 recruits Parkin to initiate mitophagy

[19]. However, rare study has been focused on the role of valve

mitochondrial fission/fusion and mitophagy in response for

the nutrient supply.

Fructose is a common sweetener in nature fruits and in our

daily desserts. Overconsumption of fructose is a pressing

worldwide health issue. A large body of evidence from both

https://doi.org/10.1016/j.bj.2021.06.008
https://doi.org/10.1016/j.bj.2021.06.008


b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 4 9 1e5 0 3 493
human and animals suggest that high fructose intake induces

metabolic syndrome (MetS) [21e25] while metabolic syndrome

is one of the major risk factor of valve stenosis [5]. It is

conceivable that excessive fructose may contribute to the

progression of valve stenosis. Moreover, high fructose diet-

altered mitochondrial function has been documented in MetS

[26]. In this study, we conducted the in vitro model to investi-

gate the initiation of valve stenosis at different time points by

using the human valve interstitial cells (hVICs) co-incubated

with various concentrations of fructose. The levels of cell

proliferation, cell fibrotic markers (e.g. a-smooth muscle actin,

and collagen III), cell osteogenic markers (e.g. alkaline phos-

phatase, and osteocalcin), the PI3K/AKT signaling, mitochon-

drial OXPHOS, and mitochondrial dynamic proteins were

detected by Western blot analysis. The level of calcium depo-

sition was evaluated by Alizarin Red staining.
Materials and methods

Human valve interstitial cell culture

The human valve interstitial culture cells (hVICs) were pur-

chased from Innoprot (Bizkaia Spain) and the hVICs specific

medium (Fibroblast Medium II) were used. The cells from

passage five were seeded into 6-cm culture dish coated with

Poly-L-Lysine at a density of 1.0� 105 cells/mL and grow for 4 h

in the serum-free medium with FGF for further study. Cells

were incubated in a humidified incubator at 37 �C in 5% CO2.

After dripping fructose (0, 0.2, 2, or 20 mM) into cells, the cells

were incubated at 37 �C in a CO2 incubator for 24, 48, 72, or 96

hours (h) prior test.

WST-1 cell proliferation assay

WST-1 cell proliferation assay kit (Takara Bio Inc., Shiga,

Japan) was used to evaluate the cell proliferation following the

guideline of the kit. 1 � 104 hVICs were seeded into a 96-well

flat-bottomed plate for 24 h at 37 �C with 5% CO2 then sub-

jected to various fructose (0, 0.2, 2 or 20 mM). At 24, 48, 72 and

96 h incubation, the cells were washed with PBS and replaced

with 100 mL fresh medium. After washed by PBS, 100 mL of

WST-1 Reagent were added to each well, and the plate was

incubated for 2 h on an orbital shaker at room temperature.

The Luminescence was detected by spectrophotometer. The

luminescence of wells with no reagent were measured as

Blank control. The value of Blank control were deducted from

the values of the experimental wells. Values of proliferation of

the treated-cells were expressed as a percentage of that from

corresponding control cells. All experiments were repeated in

triplicates.

Mitochondrial respiratory rate detection by the XF analyzer

XF24 Extracellular Flux Analyzer were used to perform all XF

assays (Seahorse Bioscience; MA, USA). The sensor cartridge

contains four reagent delivery chambers per well for injecting

compounds, including inhibitors of mitochondrial respiratory

complex I (rotenone), III (antinomycin A, AMA), and V (oligo-

mycin) aswell as an uncoupling agent that disrupts the proton
gradient (FCCP), into the wells during an assay to evaluate the

rates of O2 consumption rate (OCR). 1� 105 hVICs were seeded

into 24-well XF24 plates for overnight attachment (except for

background correction wells). After 24 h co-incubation with

fructose (e.g. 0, 2, 20 mM), culture mediumwas washed out by

PBS and substituted by 1X MAS buffer (Seahorse Bioscience)

with substrate. The plate was then transferred to the XF24

instrument to initiate the measurement.
Total protein isolation

For Western blotting analysis, hVICs from each treatment

were harvested after 3 times wash with PBS. Samples were

homogenized with a Dounce grinder with a tight pestle in

ice-cold lysis buffer (15 mMHEPES, pH 7.2, 60 mM KCl, 10 mM

NaCl, 15 mM MgCl2, 250 mM Sucrose, 1 mM EGTA, 5 mM

EDTA, 1 mM PMSF, 2 mM NaF, 4 mM Na3VO4). A protease

inhibitor cocktail (SigmaeAldrich) was included in the

isolation buffer to prevent protein degradation. The lysate

was stored at �80 �C for later use. The concentration of the

total protein extracted was estimated by Micro Bicinchoninic

acid (BCA) Protein Assay kit (Thermo Fisher Scientific Inc.,

Waltham, MA, USA).
Western blotting

Samples from each group contain equivalent total protein

concentration. Total proteins were separated by sodium

dodecyl sulfate (SDS) polyacrylamide gel electrophoresis

(SDS-PAGE), using 8, 10 or 12% gels and a running buffer of

24 mM TriseHCl, 0.19 M glycine, 0.5% SDS, pH 8.3. The elec-

trophoretical proteins were transferred onto polyvinylidene

difluoride (PVDF) membrane (Immobilon-P membrane; Milli-

pore; Bedford, MA, USA) and probed with specific antibodies

against a-SMA (1:1000, Abcam, Cambridge, UK), MMP9 (1:1000,

Abcam), ALP (1:1000, Abcam), osterocalcin (1:1000, Abcam),

IRb (1:1000, Abcam), phospho-IRS1 (S312) (1:1000, Abcam),

PI3K p85 (1:1000, Abcam), AKT (1:1000, Abcam), phospho-AKT

(T308) (1:1000, Abcam) and phospho-AKT (S473) (1:1000,

Abcam). Membranes were then incubated with appropriate

horseradish peroxidaseeconjugated secondary antibody.

Specific antibodyeantigen complex was detected using an

enhanced chemiluminescenceWestern Blot detection system

(Thermofisher Bioscience). The amounts of detected proteins

were quantified by ImageJ software (NIH, MD, USA), and were

normalized by b-actin protein.
The alizarin red staining

Human valve interstitial cells from different treatments were

stained by alizarin red. The cells were fixed with 10% form-

aldehyde for 1 h. The cells was washed with PBS (pH 7.4) for 3

times followed by 3 times wash with PBS (pH 4.1). After in-

cubation with alizarin red solution for 1 h, excessive dye was

removed by washing with PBS (pH 4.1) then PBS (pH 7.4). The

calcified nodules were observed by Olympus light microscope

(IX51, Tokyo, Japan).

https://doi.org/10.1016/j.bj.2021.06.008
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Statistical analysis

Data are expressed as means ± SEM. Nonparametric,

KruskaleWallis test followed by the Dunn post hoc method

was used for comparisons between groups. The differences

were considered statistically significant when p < 0.05. Cal-

culations were performed by GraphPad Prism (version 5)

software (GraphPad Software, San Diego, CA).
Results

Fructose suppressed proliferation of human valve
interstitial cells at high concentration

Fructose overconsuming is one of the major risk factor of

metabolic syndrome [27,28], which plays important role in

the progression of aortic valve stenosis [3,29,30]. The valve

interstitial cell (VIC) is the predominant cell type in the

aortic valve [31,32]. As a fibroblast-like cell type, VICs is

responsible for the valvular calcification [33,34]. However,

whether high fructose provides direct effect to drive the

human valve interstitial cells (hVICs) to calcification is

unknown. According to previous study, the fasting serum

fructose concentration is 1.9 ± 0.4 mM, and the peak of

postprandial serum fructose concentration is 17.2 ± 1.1 mM

in healthy volunteers [35].Therefore, the fructose concen-

tration used for in vitro study were ranged between 0 and

20 mM. To evaluate whether fructose impairs the cell pro-

liferation of hVICs, the cells were co-incubated with various

fructose concentration (e.g. 0, 0.2, 2, 20 mM) for 24, 48, 72 or

96 h for proliferation assays. The results indicated that the

hVICs proliferation was significantly suppressed in these

groups with extra added 20 mM fructose at 24, 48 and 96 h

[Fig. 1]. At lower fructose dosage (e.g. 0.2 or 2 mM), hVICs

proliferation showed the trends of decrement without
Fig. 1 The cell proliferation of human valve interstitial cells

was suppressed by fructose at high concentration. The cell

proliferation of human valve interstitial cells (hVICs) after

24, 48, 72 and 96 h incubated with 0, 0.2, 2, or 20 mM fructose.

Values are mean ± SEM, n ¼ 3e4 in each experimental group.

The sample size of each group was noted on the bar.

*p < 0.05 versus 0 mM fructose, time-matched group using

the nonparametric, KruskaleWallis test followed by the

Dunn post hoc method.
statistical significant. Based on these results, the time point

of 24-h was selected to further reveal the underlying

mechanism of fructose (0, 2, 20 mM)-induced impairment.
Fructose induced the expressions of alkaline phosphatase
and osteocalcin in human valve interstitial cells at high
concentration

The VICs can be differentiated as osteoblast or myofibro-

blasts. Valvular calcification is the primary cause of AS.

Alkaline phosphatase (ALP) is an early calcification marker,

and osteocalcin is an indicator of later-stage calcification

[31,32]. We, therefore, examined the expressions of ALP and

osteocalcin in hVICs co-incubated with various fructose

concentration (0, 2, and 20 mM) at 24-h. The results indicated

that the expressions of ALP [Fig. 2A] and osteocalcin [Fig. 2B]

were significantly increased at high fructose (20 mM) group.

At lower fructose group (2 mM), the expressions of ALP or

osteocalcin showed the trends of increment without statis-

tically significant. On the contrary, the expressions of fibrotic

markers, a-smoothmuscle actin (a-SMA, Fig. 2C) and collagen

III [Fig. 2D], showed no significant difference between groups.

These results suggested that high fructose stimulationmaybe

dominate the progression of calcification in hVICs rather

than fibrosis. Further, the results of the Alizarin-Red staining

indicated that the mineral deposition was slightly increased

in the high fructose-dose (20mM) groupwhen comparedwith

the control (0 mM) and the low fructose-dose (2 mM) groups

[Fig. 2E].
Fructose induced the expression of PI3K/AKT signaling and
serine phosphorylation of insulin receptor substrate-1 in
human valve interstitial cells at high concentration

The activation of PI3K/AKT signaling contributes to the oste-

ogenic differentiation [8,9]. In addition, the increase of p85

subunit of phosphatidylinositol 3-kinase (PI3K) involves in the

progression of MetS [7]. We detected the expressions of p85

subunit of PI3K, AKT and phospho(p)-AKT in hVICs by West-

ern blotting. The results indicated that the expressions of PI3K

p85 [Fig. 3A], AKT [Fig. 3B] and pS473-AKT [Fig. 3C] were

significantly increased at high fructose group while no sig-

nificant change was detected in the expression of pT308-AKT

[Fig. 3D]. At lower fructose group, only the expressions of

pS473-AKT [Fig. 3C] was significantly increased whereas PI3K

p85 [Fig. 3A] and AKT [Fig. 3B] showed the trends of increment

without statistically significant. These results suggested that

PI3K/AKT cascade may mediate the high fructose-triggered

progression of osteogenesis in hVICs at early stage.

The activated AKT exhibits the capability to phosphorylate

insulin receptor substrate-1 (IRS-1) leading to the attenuation

of T308-AKT phosphorylation [36]. Therefore, we examined

the expressions of IRS-1 and p-IRS1 in hVICs by Western

blotting. The expression of pS636-IRS1 [Fig. 3F] were signifi-

cantly increased at high fructose group while no significant

change was detected in the expression of IRS1 [Fig. 3E]. At

lower fructose group, the expression of pS636-IRS1 [Fig. 3F]

showed the trends of increment without statistically signifi-

cant. These results provided the possibility that high fructose-

https://doi.org/10.1016/j.bj.2021.06.008
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Fig. 2 The expressions of alkaline phosphatase and osteocalcin as well as mineral deposition in human valve interstitial cells

were increased by fructose at high concentration. Representative gels and densitometric analyses of (A) alkaline phosphatase

(ALP) (B) osteocalcin (C) a-smooth muscle actin (a-SMA) and (D) collagen III detected at 24 h incubated with 0, 2, or 20 mM

fructose (E) Mineral deposition detected by Alizarin Red staining. Values are mean ± SEM, n ¼ 4e6 in each experimental group.

The sample size of each group was noted on the bar. *p < 0.05 versus 0 mM fructose group using the nonparametric,

KruskaleWallis test followed by the Dunn post hoc method. Arrow head: mineral deposition. Scale: 100 mm.
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increased pS473-AKT may in turn activate IRS-1 to suppress

the phosphorylation of T308-AKT in hVICs.
Fructose enhanced mitochondrial oxygen consumption rate
in human valve interstitial cells at high concentration

The activation of AKT signaling promotes mitochondrial

oxidative phosphorylation [10,11]. Intriguingly, the activation

of mitochondrial respiration enhance calcium accumulation

[12]. Oxygen consumption rate is an important index of

mitochondrial aerobic respiration. To examine whether the

mitochondrial respiration was altered by high fructose incu-

bation, the oxygen consumption rate (OCR) of each group was
measured by the XF24 Extracellular Flux Analyzer (Seahorse).

The maximal respiratory capacity, basal respiratory capacity,

and ATP production capacity of hVICs were further dissected

from OCR curve.

The results indicated that OCR of hVICs was reduced to

~78% of baseline rates after oligomycin A (a mitochondrial

ATP synthase inhibitor) in control group (common medium

with 0 mM fructose) indicating that ~22% of oxygen con-

sumptionwas related to ATP production. Carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP) is a mitochon-

drial protonophoric uncoupler. FCCP application eliminated

the proton gradient across mitochondrial inner membrane

and enhanced OCR to the maximal of baseline rate

https://doi.org/10.1016/j.bj.2021.06.008
https://doi.org/10.1016/j.bj.2021.06.008


Fig. 3 The expressions of insulin receptor b and phospho-S636 insulin receptor substrate 1 in human valve interstitial cells

were increased by fructose at high concentration. Representative gels and densitometric analyses of (A) PI3K p85 (B) total AKT

(C) phospho(p)-S473-AKT (D) pT308-AKT (E) insulin receptor substrate 1 (IRS1), and (F) p-S636 IRS1 detected at 24 h incubated

with 0, 2, or 20 mM fructose. Values are mean ± SEM, n ¼ 4e6 in each experimental group. The sample size of each group was

noted on the bar. *p < 0.05, **p < 0.01 versus 0 mM fructose group using the nonparametric, KruskaleWallis test followed by the

Dunn post hoc method.
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(~117.15%). These results suggested that the maximal respi-

ratory capacity of hVICs is about 1.2 times higher than the

basal respiration [Fig. 3A and B]. In the high fructose (20 mM)

group, the FCCP-treatment significantly decreased the OCR

values when compared with the control group [Fig. 3B]. These

results indicated that the capacity of maximal (~33.69%) ox-

ygen consumption were enhanced by high fructose co-

incubation [Fig. 3B].
To further evaluate the detail alteration in mitochondrial

OXPHOS, the elements of oxygen consumption capacity were

dissected from the area under curve of OCR as previous study

described [37e39]. The area under curve before oligomycin A

(Oligo.) treatment (area I) was defined as the basal respiration.

The values between basal state and oligomycin A treatment

of OCR curve and the time-period between oligomycin and

FCCP treatment (area II) is regarded as the ATP production

https://doi.org/10.1016/j.bj.2021.06.008
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Fig. 4 The mitochondrial oxygen consumption rate in human valve interstitial cells were enhanced by fructose at high

concentration (A) Schematic illustration of the elements of basal respiration, ATP production capacity and maximal respiratory

capacity calculated from the curve of oxygen consumption rate (OCR) (B) The profile of oxygen consumption rates (OCR) of

hVICs (C) basal respiration (area under curve of OCR before oligo. Injection; area I) (D) ATP production capacity (area under

curve of OCR between oligo. and FCCP injection; area II), and (E) maximal respiratory capacity (area under curve of OCR between

FCCP and AMA injection; area III) of hVICs detected at 24 h incubated with 0, 2, or 20 mM fructose. OCR was measured under

basal conditions followed by the sequential addition of oligomycin (oligo.; 0.25 mM), FCCP (1 mM), and antimycin A (AMA 1 mM; as

arrow indicated). Each data point represents an OCR measurement. Values are mean ± SEM of analyses (n ¼ 9e11 independent

experiments). The sample size of each group was noted on the bar. *p < 0.05 versus the common medium with 0 mM fructose

using the nonparametric, KruskaleWallis test followed by the Dunn post hoc method.
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capacity of the cells. The area under curve between the oli-

gomycin A and antinomycin A (AMA) treatment (area III) was

defined as the maximal respiration capacity. The results

indicated that ATP production capacity [Fig. 3D] and maximal

respiratory capacity [Fig. 3E] were significantly increased in

the high fructose group while the basal respiration [Fig. 3C]

showed no significant difference between groups. These re-

sults suggested that high fructose treatment induced oxida-

tive phosphorylation in the hVICs. Fig. 4.
Fructose induced the expression of mitochondrial fission 1
protein in human valve interstitial cells at high
concentration

Mitochondria produce reactive oxygen species during the

processes of ATP production [40e42]. Accumulated oxidative

stress damages mitochondria in turn. Mitochondrial fission

works to maintain the mitochondrial function by eliminating

the damaged fraction of mitochondria [43]. Therefore, we

https://doi.org/10.1016/j.bj.2021.06.008
https://doi.org/10.1016/j.bj.2021.06.008


Fig. 5 The expressions of FIS1 in human valve interstitial cells was increased by fructose at high concentration. Representative

gels and densitometric analyses of (A) mitochondrial fission 1 protein (FIS1) (B) mitochondrial fission factor (Mff) (C) dynamin-

related protein 1 (DRP1) and (D) p-DRP1 detected at 24 h incubated with 0, 2, or 20 mM fructose. Values are mean ± SEM, n ¼ 4e6

in each experimental group. The sample size of each group was noted on the bar. ***p < 0.001 versus 0 mM fructose group using

the nonparametric, KruskaleWallis test followed by the Dunn post hoc method were used for comparisons between groups.
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further examined the expressions of three key factors of

mitochondrial fission, including FIS1, Mff, DRP-1 and p-DRP-1

in the hVICs by Western blotting. The results indicated that

the expressions of FIS1 [Fig. 5A] was significantly increased at

high fructose group while no significant change was detected

in the expressions of Mff [Fig. 5B], DRP1 [Fig. 5C] or p-DRP1

[Fig. 5D]. At lower fructose group, FIS1 [Fig. 5A] only showed

the trends of increment without statistical significant. These

results suggested that high fructose may trigger the FIS1-

associated mitochondrial fission in hVICs.
Fructose induced the expression of optic atrophy type 1 in
human valve interstitial cells at high concentration

Mitochondrial fusion works to maintain the mitochondrial

function by fusing the health and functional mitochondria

[43]. Recently, optic atrophy type 1 (OPA1)-mediated mito-

chondrial fusion has been demonstrated to protects cells

from calcium deposition [44]. Therefore, we examined the

expressions of three key proteins of mitochondrial fusion,

including OPA1, mitofusin (MFN1), and MFN2 in hVICs by
Western blotting. The results indicated that the expressions

of full length OPA1 and cleavage OPA1 [Fig. 6A and B] were

significantly increased at high fructose group while no sig-

nificant change was detected in the expressions of MFN1

[Fig. 6C], or MFN2 [Fig. 6D]. These results suggested the

OPA1-associated mitochondrial fusion in hVICs with high

fructose.
Fructose induced the expression of optic atrophy type 1 in
human valve interstitial cells at high concentration

Mitochondrial autophagy is a protective mechanism for

mitochondrial quality control [45]. Under physiological status,

the process ofmitophagy is strictly regulated. In this study, we

examined the expressions of the key proteins of mitophagy,

including phosphatase and tensin homologue-induced kinase

1 (PINK1), and Parkin in hVICs byWestern blotting. The results

indicated that the expression of cleaved PINK1 [Fig. 7B] was

significantly increased at high fructose group while no sig-

nificant change was detected in the expressions of full length

PINK1 [Fig. 7A], full length Parkin [Fig. 7C], or short form Parkin
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Fig. 6 The expressions of OPA1 in human valve interstitial cells was increased by fructose at high concentration.

Representative gels and densitometric analyses of (A) full length optic atrophy 1 (OPA1) (B)cleaved OPA1 (C) mitofusin 1 (MFN1)

and (D) MFN2 detected at 24 h incubated with 0, 2, or 20 mM fructose. Values are mean ± SEM, n ¼ 4e6 in each experimental

group. The sample size of each group was noted on the bar. *p < 0.05, **p < 0.01 versus 0 mM fructose group using the

nonparametric, KruskaleWallis test followed by the Dunn post hoc method.
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[Fig. 7D]. These results suggested that the mitophagy function

was maintained in hVICs with high fructose co-incubation.
Discussion

This study provided novel evidence to demonstrate that high

fructose has direct effect on upregulating the calcification-

related genes, ALP and osteocalcin, of hVICs after 24 h incu-

bation. The underlying mechanisms involve the activation of

PI3K/AKT signaling, the enhancement of mitochondrial

OXPHOS, and the increase of mitochondrial fission/fusion

concurrent with the limited proliferation ability. This finding

suggested that the high fructose initiated an early onset of

hVICs calcification via the activation of PI3K/AKT/mitochon-

drial OXPHOS pathway. This study provides new insights into

the progression of valve stenosis accelerated by fructose

overconsuming.

Fructose is a common sweetener in our daily diet and has

been linked to the progression of metabolic disorder,

including cardiovascular diseases. In the human study [35],

the mean serum fructose concentration in fasting healthy
volunteers was 1.9 ± 0.4 mM and after ingestion of fructose

and glucose-containing drink dose to 16.3 ± 1.2 mM at 15 min

and peaked at 30minwhen serum fructose was 17.2 ± 1.1mM.

Valve interstitial cells are critical for the development of

calcific aortic valve disease. Therefore, we examined the

adverse effect of fructose stimulation on the hVICs calcifica-

tion at the levels of 2 and 20 mM to mimic the serum fructose

levels of fasting (e.g. 2 mM) and of post-fructose consuming

(20 mM) in human. The results indicated that high fructose

triggered the progression of calcification in the hVICs by

upregulation of ALP and osteocalcin as well as the mineral

deposition. These data further implied that the repeated high

fructose stimulation during daily life may initiate the devel-

opment of calcified aortic valve disease.

Aortic valve stenosis is a common valvular heart disease.

According to the conventional wisdom, the progression of

valve stenosis is thought to be initiated from the valve fibrosis

and gradually transformed into calcification. The progression

of AS is strongly bounded to the differentiation of VICs to

osteoblast [46]. In human study, high dietary fructose

increased the concentration of serum ALP [47]. In line with

previous evidence [47], our data further indicated that as early

https://doi.org/10.1016/j.bj.2021.06.008
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Fig. 7 The expressions of cleaved PINK1 in human valve interstitial cells was increased by fructose at high concentration.

Representative gels and densitometric analyses of (A) full length phosphatase and tensin homolog (PTEN)-induced putative

kinase protein 1 (PINK1) (B) cleaved PINK1 (C) full length Parkin, and (D) cleaved Parkin detected at 24 h incubated with 0, 2, or

20 mM fructose. Values are mean ± SEM, n ¼ 4e6 in each experimental group. The sample size of each group was noted on the

bar. **p < 0.01 versus 0 mM fructose group using the nonparametric, KruskaleWallis test followed by the Dunn post hocmethod.
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after 24 h incubation, high fructose increased the expressions

of ALP and osteocalcin, the initial and finalized markers of

calcification, respectively. These results suggested that high

fructose could induce an early onset of valve stenosis through

the calcification of VICs. Consist with previous study [48],

these results indicated that hVICs do not need to progress

through a fibrotic stage before reaching an osteogenic stage. In

other cell types, high fructose-induced cell proliferation and

the fibrosis have been reported [49,50]. Different from those

cell types, reduced proliferation of hVICs by high fructose at a

series of time points was constantly detected in this study.

The hVICs is a cell type prone to differentiate to osteoblasts or

myofibroblasts in response for the metabolic stress. Our data

further demonstrated the upregulation of ALP and osteo-

calcin, which are essential for the differentiation of osteo-

blast. Follow this line, we reason that the high fructose

incubation might promote the switch from proliferation to

osteogenic differentiation.

hVICs from healthy and calcified valves have various sen-

sitivities when encounter the osteogenic stimuli. Cultured

with common medium, hVICs from calcified valves appeared
positive calcium deposits with Alizarin Red staining, but not

significantly different from healthy hVICs. Stimulating with

osteogenic medium, hVICs from calcified valves increased

calcification [51]. The evidence suggests that hVICs may be

more vulnerable for calcification under environmental stim-

ulation. Therefore, we used a commercial primary hVICs to

avoid the bias from the selected subject. The pathogenesis of

aortic valve stenosis (AS) is a life-long progression. Repeated

stimulation could be a risk factor to initiate AS. Fructose is a

common sugar in beverages, desserts and even fresh fruits.

Overconsumption of fructose has been demonstrated to

induce metabolic syndrome which is a top risk factor of AS

[2e5]. Valve interstitial cells (VICs) play important role in the

development of calcific aortic valve disease. In this study, we

investigated that whether high fructose (~20 mM, the post-

prandial level of serum fructose [35]) might be a risk factor to

initiate the progression of fibrosis and calcification of valve

interstitial cells. In this study, the results indicated that high

fructose triggered the expressions of ALP and osteocalcin, the

downstream candidates of the calcification-related genes,

instead of the fibrosis-related genes. These results further
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imply that as a common sweetener in our daily life, fructose

could be a silent inducer of valve calcification. Although the

increments of ALP and osteocalcin were not drastic, the stable

accumulation of these calcification-related proteins in the

hVICs could lead to calcification in the long run by repeated

high fructose stimulation.

The upregulation of p85 subunit of PI3K involves in the

progression of metabolic disorders [7]. In addition, the acti-

vation of PI3K/AKT signaling has been linked to the osteo-

genic differentiation of mesenchymal stem cells [8,9]. The

involvement of PI3K/AKT signaling in the progression of

calcification in various cells has been reported recently

[52,53]. ALP and osteocalcin have been suggested to be the

downstream candidates of the calcification-related genes.

Accordingly, it is reasonable that the high fructose-increased

PI3K p85 concurrent with the upregulation of ALP and

osteocalcin. Recently, the role of pS473-AKT in positive

regulation of osteogenesis has been reported [54]. Consis-

tently, our results demonstrated that the high fructose-

induce AKT expression and phosphorylation at S473 accom-

panied with the increment of ALP and osteocalcin. These

results implied the linkage between the activation of PI3K/

pS473-AKT signaling and osteogenic differentiation in the

high fructose-stimulated hVICs. On the other hand, accu-

mulating evidence suggests that the increased pS473-AKT in

turn activates the MTORC1 cascade to phosphorylate insulin

receptor substrate-1 (IRS-1) leading to the attenuation of

T308-AKT phosphorylation [36]. Our results further indicated

that the p-IRS-1 was increased by high fructose. Follow these

lines, we reasoned that the unchanged pT308-AKT could be a

result of the increased pS473-AKT.

Valve is a thin, passive tissue with rare blood vessels sup-

port. These characteristics might make the hVICs exhibit

different features of energy support from other energy-

dependent cells. According to the seahorse data, mitochon-

dria in hVICs only responded for ~22% of ATP production. The

data implied the characteristic of the energy support in hVICs

as the glycolysis dominant. Whereas high fructose enhanced

the mitochondrial OXPHOS. These results suggested that

increased dietary fructose could boost the energy production

of mitochondria in hVICs. Previous study indicated that the

metabolic activity of VICs is enhanced when the cells are

exposed to diabetic conditions [55] which may lead the VICs

towards differentiation and sequel pathogenesis. Similarly,

our data demonstrated that the maximal respiratory capacity

and ATP production capacity were enhanced in hVICs con-

current with the markers of osteogenesis at the fructose level

of post-fructose consumption. These lines of evidence support

that the enhancement of mitochondrial activity in hVICs

could be a landmark of valve stenosis at early stage.

The activity of mitochondrial oxidative phosphorylation

could be enhanced by the activation of AKT signaling [10,11].

In this study, we further indicated that the impairment of

mitochondrial bioenergetics correlate to the PI3K/AKT signal

in the high fructose-induced progression of hVICs calcifica-

tion. Under physiological status, mitochondria uptake large

amounts of calcium driven by respiratory energy [56].

Intriguingly, as one of the major storage organelles of Ca2þ,
the activation of mitochondrial respiration enhance Ca2þ

accumulation [12]. However, the role of mitochondrial
respiration in the development of valvular calcification has

not been carefully evaluated. In this study, we assayed the

fructose-associated change of mitochondrial respiration of

hVICs. The results indicated that high fructose enhanced the

maximal capacity and ATP production capacity of mitochon-

drial oxidative phosphorylation. Most importantly, the incre-

ment of mitochondrial aerobic respiration were consistent

with the upregulation of ALP and osteocalcin in a fructose

dose-dependent manner. These lines of evidence implies that

high fructose may initiate a vicious circle of valvular calcifi-

cation via high fructose-boosted activity of mitochondrial

respiration in a long run.

Mitochondrial fission and fusion are critical regulators for

maintaining the function of mitochondria in response to the

environmental nutrient support [16]. Overnutrition may

enhance mitochondrial activity to accelerate mitochondrial

oxidative damage [41,42,57]. Mitochondrial fission is essential

for the elimination of damaged mitochondria. Although rare

study has been conducted in the role of mitochondrial fission

in the valve calcification, our results indicated that the high

fructose-induced FIS1 was concurrent with the upregulation of

ALP and osteocalcin implying the involvement of FIS1-

mediated mitochondrial fission in the development of

valvular calcification. Consist with this research, our results

further indicated that the upregulation of OPA1 in hVICs may

be a compromise results in response to the increased mito-

chondrial OXPHOS in the first place. Furthermore, OPA1 has

been linked to the progression of calcification [44]. It is

conceivable that the high fructose-increased mitochondrial

dynamic signals could initiate a vicious cycle to develop valve

stenosis. We, therefore, linked the increment of mitochondrial

aerobic respiration and dynamics as themediator of PI3K/AKT-

induced ALP and osteocalcin upregulation. Follow these lines,

it is possible that the activation of PI3K/AKT/mitochondria axis

could be the key mechanisms to shift hVICs from healthy to

the calcification-prone status.

Mitophagy strictly controls the mitochondrial quality [58].

In healthy mitochondria, PINK1, which translocates from

cytosol to mitochondria is rapidly cleaved by PARL [20] while

uncleaved PINK1 recruits Parkin to initiate mitophagy [19].

Previous study indicated that the suppression of mitophagy

contributes to vascular calcification [59]. In this study, the

PINK1 cleavage was increased in response to the increase

fructose concentration. These results suggested that the

mitochondria function properly under high fructose at 24 h

incubation. These results implied that the mitophagy mech-

anism may not be altered by high fructose at the early stage.
Conclusions

By using a cell model to mimic the fasting and post fructose-

consuming for the study of the progression of AS, we

demonstrated that the proliferation of hVICs was reduced by

high fructose concurrent with the activation of PI3K/AKT

signaling, the increased capacity of mitochondrial respiration,

and the enhancement of mitochondrial dynamics to initiate

the calcification even at the physiological level of post-

fructose consuming. Together, these results imply that PI3K/

AKT/mitochondrial respiration of hVICs might be a feasible
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therapeutic target of aortic valve stenosis as early at the

initiation of AS progression.
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