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Analysis of renal cancer cell lines from two
major resources enables genomics-guided cell
line selection
Rileen Sinha1,2, Andrew G. Winer3, Michael Chevinsky3, Christopher Jakubowski3, Ying-Bei Chen4, Yiyu Dong5,

Satish K. Tickoo4, Victor E. Reuter4, Paul Russo3, Jonathan A. Coleman3, Chris Sander6, James J. Hsieh7

& A. Ari Hakimi1,3

The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here

we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line

Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The

Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal

clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe

(chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number

alterations shows that most cell lines resemble ccRCC, a few (including some often used as

models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours

clustering with cell lines display clinical and genomic features of more aggressive disease,

suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy

number alterations for important kidney cancer genes by the consistency between databases,

and classify cell lines into established gene expression-based indolent and aggressive

subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.
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O
ver the past six decades, immortalized cancer cell lines
have had an increasingly important role in the study of
cancer biology and response to therapeutics. Ideally, a cell

line should closely resemble the particular cancer type of interest
in order to serve as a suitable in vitro model for investigation.
However, studies have identified molecular differences between
commonly used cancer cell lines and human tumour samples1–5.
With the maturation of various Cancer Genome Atlas (TCGA)
studies, genomic characterization and expression data for more
than 30 cancer types have been reported to date6. In addition, the
Broad-Novartis Cancer Cell Line Encyclopedia (CCLE)7,8 and
the COSMIC Cell Lines Project (CCLP)8–10 each provide publicly
available mutation information, DNA copy number, and mRNA
expression profiles for more than 1,000 cancer cell lines.

With such data now publicly accessible, efforts have been
initiated to compare the genomic similarity of commonly used cell
lines to known tumour samples. Previous work from our
laboratory comparing data from TCGA and CCLE for high-grade
serous ovarian cancer (HGSOC) revealed differences between some
of the most commonly used cell lines and HGSOC tumour profiles.
Additionally, we demonstrated that several cell lines initially
classified or widely used as HGSOC were probably derived from
other ovarian cancer subtypes11. A similar analysis was reported on
head and neck squamous cell carcinoma cell lines12.

Renal cell carcinoma (RCC) is the eighth leading cause of
cancer-related death in the US and has an annual incidence of
more than 270,000 new cases globally13. RCC is subdivided into
several histological subtypes with unique genomic profiles and
clinical implications14. Ongoing efforts by the TCGA continue to
identify the most common mutational aberrations for the various
histological subtypes. Clear cell RCC (ccRCC) is the most
common (B80%) subtype and is characterized by bi-allelic loss
of tumour suppressor genes on chromosome 3p, the most
common of which are VHL, PBRM1, SETD2 and BAP1
(refs 15,16). Recurrent copy number alterations (CNAs) of
chromosomes 5, 8 and 14 have been identified as additional
pathogenic mechanisms of ccRCC15,17,18. With a frequency of
B15%, papillary RCC (pRCC) is the second most common
subtype of malignant kidney tumours19. Activating germline and
somatic mutations of the MET oncogene at 7q31 and
amplifications of chromosomes 7 and 17 have been implicated
in the oncogenesis of type I pRCC20–22. Finally, chromophobe
RCC (chRCC) accounts for B5% of all RCCs and is typically
more indolent in disease course than ccRCC and pRCC23. TCGA
analysis has revealed that chRCC has a unique molecular pattern
based on loss of one copy of the entire chromosome for most or
all of chromosomes 1, 2, 6, 10, 13, and 17; however, focal copy
number events were absent indicating a less complex genetic
profile than other kidney cancers24.

Utilizing these three rich data sets (CCLE, CCLP and TCGA)
we characterize commercially available RCC cell lines with
respect to genomic resemblance to human RCC. We further
classify the cell lines resembling ccRCC into prognostic groups
based on the validated ccA and ccB expression-based
subtypes25,26.

In our comparison of RCC molecular profiles from TCGA,
CCLE and CCLP data, we characterize individual commercially
available RCC cell lines and help to distinguish their sub-
histology as well as their resemblance to human RCC. These
findings may help future investigators select the most appropriate
cell line tailored to the RCC subtype under examination.

Results
Similarity of cell lines common to CCLE and CCLP. We
compared the kidney cell lines from CCLE and CCLP using

mutation, CNA and gene expression data (Table 1), after
pre-processing to make the data comparable (see Methods).
While the similarity between the 14 cell lines common to CCLE
and CCLP is higher than their similarity to all other cell lines for
CNA and gene expression data, the mutation data agrees to a
lesser extent (Fig. 1). However, the inter-dataset similarity is
nonetheless higher for common cell lines, albeit lower than that
for gene expression and CNA data. This is in agreement with
recent work27 reporting discrepancies in the detection of
missense mutations in cell lines common to CCLE and CCLP
(57% conformity). SK-NEP-1 was strikingly unlike the other cell
lines, showing near-zero or even slight negative correlation with
most other cell lines using gene expression data (Fig. 1c) – this
might not be surprising as it has been reported to be an Ewing
family tumour line28, even though CCLP only lists it as a kidney
cell line of unspecified histological subtype (NS).

Clustering by CNAs reveals distinct RCC subtypes. Due to the
distinct copy number profiles of the common subtypes of RCC,
we compared 33 kidney-derived cell lines from CCLE and 32
from CCLP to all 728 TCGA kidney cancer tumours (504 ccRCC,
158 pRCC and 66 chRCC) using CNA data. Our analysis reveals
that the cell lines cluster according to well-described RCC sub-
types (Fig. 2). After excluding the CCLE cell lines that originate
from normal renal epithelium (HEKTE and HK-2), the vast
majority (28/31, 90% of CCLE, and 28/32, 87.5% of CCLP) cluster
with the ccRCC sub-histology. ACHN and CAL54 (from both
CCLE as well as CCLP), as well as U031 from CCLP cluster with
pRCC, while SN12C from CCLP and SLR20 from CCLE cluster
on their own, as outliers with some similarity to pRCC. Of note,
none of the available cell lines in the CCLE or CCLP cluster with
the chRCC subtype.

Intriguingly, our comprehensive review of the literature in
PubMed Central identified ACHN as the third most highly cited
RCC cell line despite the fact that it clusters with pRCC (Fig. 2a
and Supplementary Table 1). SN12C is another highly cited cell
line that does not cluster with ccRCC—which might be due to it
having been established from a RCC with extensive invasion of
perinephric fat, and displaying a mix of clear cell and poorly
differentiated RCC29. The remaining eight out of the top 10 most
highly cited cell lines cluster with ccRCC, but it is worth noting
that TK-10, while displaying 3p loss, shows a rather unusual CNA
landscape, with several arm-level gains and losses that are not
characteristic of ccRCC. TK-10, while often used as a ccRCC cell
line, was originally reported to be from a tumour with cells of an
epithelial nature, with papillary and glandular structure, as well as
a spindle pattern30—characteristics that are suggestive of
aggressive sarcomatoid RCC. Figure 2b shows CNA heatmaps
for all the cell lines, along with kidney renal clear cell carcinoma
(KIRC), kidney papillary (KIRP) and kidney chromophobe

Table 1 | Number of kidney cell lines and the data types
available in CCLE and CCLP.

Source No.
kidney

cell lines

Mutation
data

Copy
number

data

Gene
expression

data

No. Cell lines
with all three

data types

CCLE 36 22 (1,651
Genes)

33 36 22

CCLP 33 33
(Whole
exome)

32 32 31

CCLE, Broad-Novartis Cancer Cell Line Encyclopedia; CCLP, COSMIC Cell Lines Project.
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(KICH) tumours, illustrating shared alterations among the cell
lines as well as their resemblance to the tumour CNA profiles.

Tumours resembling cell lines bear hallmarks of aggression. It
is evident that clustering analysis based on CNAs demonstrated
that a subset of ccRCC tumours clusters away from the cell lines,
while others cluster with cell lines. We compared these subsets in
order to determine the properties of tumours that cell lines might
best represent. This revealed that the tumours clustering with
cell lines tend to be of higher stage (Stages 1/2: 43.6 versus 67.2%,
Stages 3/4: 56.3 versus 32.8%, P value 0.003, Fisher’s exact test),
higher grade (grades G1/G2: 31.2% vs 51.9%, grades G3/G4:
68.7% vs 48.1%, P value 0.049, Fisher’s exact test). These tumours
also display a higher extent of copy number aberrations
(mean fraction genome altered: 19% versus 12%), and more
frequent mutations in genes such as BAP1 (12.3% versus 5.4%),
SETD2 (12.7% versus 8.1%) and MTOR (6% versus 4.7%), which
are associated with more aggressive disease (though only BAP1
has a statistically significant difference—P value 0.025, Fisher’s
exact test).

These results indicate that the tumours that are likely to better
represented by the cell lines display clinical and genomic features
corresponding to more aggressive disease.

Since the subset of tumours that cluster with cell lines can vary
depending on the parameters used in clustering, we also repeated
the analysis by comparing the tumours in the top and bottom
quartiles by mean correlation of CNA profiles with the cell lines,
which yielded consistent results.

Comparison of mutations between RCC cell lines and tumours.
To compare copy number and mutational profiles of RCC cell
lines to human tumours we used available single-nucleotide
polymorphism (SNP) array and targeted exome data for
415 ccRCC tumours. As expected, our analysis reveals that the
cell lines tend to have a higher fraction of genes mutated and
higher median CNA compared to the tumours (Supplementary
Fig. 1). In the set of 1,508 overlapping genes profiled for muta-
tions by CCLE, CCLP and TCGA, the median number of mutated
genes is 40 in CCLE kidney cell lines (minimum: 22, maximum:
92) and 26 in CCLP kidney cell lines (min 5, max 72) compared
to 6 (min 0, max 27) in TCGA ccRCC tumours. With respect to
copy number, the cell lines demonstrate a higher extent of CNAs
than tumours (median fraction genome altered¼ 0.49 in CCLE
and 0.50 in CCLP cell lines, 0.13 in tumours). Only one cell line,

SNU 349, is identified as a distinct outlier based on mutation
counts (96/1651 genes mutated) and none are found to be outliers
with respect to the extent of CNAs.

We next investigated the mutation data for 24 important genes
(TP53, VHL, PBRM1, SETD2, KDM5C, BAP1, NF2, PTEN,
ARID1A, MICALCL, STAG2, SLC1A3, CDKN1A, MTOR, MET,
SMARCB1, TCEB1, NFE2L2, PIK3CA, MLL3, FH, FLCN, TSC1,
TSC2) recurrently mutated in the three TCGA kidney cancer
subtypes based on the three TCGA kidney cancer studies17,22,24.
CCLP provides mutation data for all 24 genes (mutations
reported in 18, Fig. 3a), whereas CCLE only includes 16 of
these important genes (mutations reported in 11, Fig. 3b). While
TCGA ccRCC tumours on average harbour only one mutation in
these genes (with 22% tumours having no mutations in these
genes, and 2, 3, 4 or 5 mutations found in 43%, 26%, 7.5%, 1.4%
and 0.2% tumours, respectively), CCLP cell lines harbour 0–6
mutations, with a median of 2, and LB2241-RCC and NCC021
had no mutations in any of these key genes. In the 16 important
kidney cancer genes covered by CCLE, the CCLE kidney cell lines
had a range of 0–3 mutations and a median of 1 mutation, with
ACHN, KMRC1, KMRC3, SNU349, SNU1272, RCC10RGB and
TUHR4TKB showing no mutations in these key genes. None of
the CCLP cell lines had a mutation in any of the genes FLCN,
ARID1A, MICALCL, SLC1A3, STAG2 or TCEB1; while none of
the CCLE cell lines had a mutation in FLCN, ARID1A, FLCN,
NF2 or TSC1. Discrepancies between CCLE and CCLP for
matching cell lines were observed, in line with a previous study27.
Given that VHL is a notoriously challenging gene to sequence, we
additionally culled the existing literature for evidence of VHL
mutations in the various RCC cell lines (Supplementary Table 1).
Interestingly, several cell lines that cluster with ccRCC and
demonstrate the classical copy number characteristics do not
harbour VHL mutations. Furthermore, mutations of mTOR
pathway genes including MTOR, TSC1, TSC2, PTEN and PIK3CA
are detected in nine (41%) of CCLE and 14 (42%) of the CCLP
RCC cell lines.

Comparison of alterations in key RCC genes in CCLE and CCLP.
To address the discrepancies between CCLE and CCLP data, we
investigated mutations and CNAs in 24 key kidney cancer genes
(TP53, VHL, PBRM1, SETD2, KDM5C, BAP1, NF2, PTEN,
ARID1A, MICALCL, STAG2, SLC1A3, CDKN1A, MTOR, MET,
SMARCB1, TCEB1, NFE2L2, PIK3CA, MLL3, FH, FLCN, TSC1
and TSC2) based on the three TCGA kidney cancer studies17,22,24
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Figure 1 | Comparison of CCLE and CCLP kidney cell lines using genomic data. (a) Comparison of binary mutation data using the Jaccard similarity index

(b). Comparison of CNAs using Pearson’s correlation coefficient, and (c). Comparison of mRNA gene expression data using Pearson’s correlation

coefficient. Matching cell lines show higher similarity than non-matching cell lines for each data type, and the similarity between cell lines is appreciably

higher using copy number or gene expression data than it is using mutation data.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15165 ARTICLE

NATURE COMMUNICATIONS | 8:15165 | DOI: 10.1038/ncomms15165 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


CCLE and CCLP kidney cell lines
b

a

SLR26_CCLE
HA7–RCC_CCLP

UMRC2_CCLE
A498_CCLP
A498_CCLE

LB2241–RCC_CCLP
CAKI1_CCLE

CAKI–1_CCLP
BFTC909_CCLE

BFTC–909_CCLP
CAL54_CCLE

CAL–54_CCLP
SLR21_CCLE

U031_CCLP
ACHN_CCLP
ACHN_CCLE

SLR25_CCLE
SLR20_CCLE
HEKTE_CCLE

786O_CCLE
786–0_CCLP

VMRCRCW_CCLE
VMRC–RCW_CCLP

HK2_CCLE
CAKI2_CCLE

KMRC20_CCLE
KMRC–20_CCLP
RCC–FG2_CCLP

LB996–RCC_CCLP
A704_CCLP
A704_CCLE

NCC021_CCLP
NCC010_CCLP

BB65–RCC_CCLP
SNU349_CCLE

RCC–ER_CCLP
VMRCRCZ_CCLE

VMRC–RCZ_CCLP
TUHR10TKB_CCLE

RCC4_CCLE
KMRC2_CCLE

769P_CCLE
769–P_CCLP

RCC–JF_CCLP
SLR23_CCLE

RCC–JW_CCLP

RCC10RGB_CCLP
RCC10RGB_CCLE

SNU1272_CCLE
KMRC3_CCLE
OSRC2_CCLE

OS–RC–2_CCLP
LB1047–RCC_CCLP

UOK101_CCLE
UMRC6_CCLE
KMRC1_CCLE

KMRC–1_CCLP
TK10_CCLP

SK–NEP–1_CCLP
RCC–MF_CCLP
RCC–AB_CCLP
RXF393_CCLP

TUHR4TKB_CCLE
TUHR14TKB_CCLE

SN12C_CCLP

TCGA KIRC

TCGA KIRP

111 2 3 4 5 6 7 8 9 10 12 14 16 18 20

1 2 3 4 5 6 7 8 9 10 11 13 15 17 19 22 1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20

1 2 3 4 5 6 7 8 9 10 12 14 16 18 21

TCGA KICH

0.0

0.2

0.4

0.6

0.8

1.0

K
M

R
C

3_
C

C
LE

R
C

C
−

F
G

2_
C

C
LP

LB
99

6−
R

C
C

_C
C

LP
H

A
7−

R
C

C
_C

C
LP

S
N

U
34

9_
C

C
LE

K
M

R
C

2_
C

C
LE

LB
22

41
−

R
C

C
_C

C
LP

S
LR

23
_C

C
LE

R
C

C
−

JW
_C

C
LP

LB
10

47
−

R
C

C
_C

C
LP

R
C

C
−

JF
_C

C
LP

C
A

L−
54

_C
C

LP
C

A
L5

4_
C

C
LE

A
C

H
N

_C
C

LP
A

C
H

N
_C

C
LE

U
03

1_
C

C
LP

S
N

12
C

_C
C

LP
S

LR
20

_C
C

LE

0.0

0.2

0.4

0.6

0.8

B
F

T
C

−
90

9_
C

C
LP

B
F

T
C

90
9_

C
C

LE
S

LR
26

_C
C

LE
78

6−
0_

C
C

LP
78

6O
_C

C
LE

V
M

R
C

−
R

C
W

_C
C

LP
V

M
R

C
R

C
W

_C
C

LE
U

M
R

C
2_

C
C

LE
U

O
K

10
1_

C
C

LE
K

M
R

C
−

20
_C

C
LP

K
M

R
C

20
_C

C
LE

C
A

K
I2

_C
C

LE
H

K
2_

C
C

LE

R
C

C
4_

C
C

LE

S
LR

25
_C

C
LE

S
K

−
N

E
P

−
1_

C
C

LP

T
U

H
R

10
T

K
B

_C
C

LE

T
U

H
R

4T
K

B
_C

C
LE

H
E

K
T

E
_C

C
LE

S
N

U
12

72
_C

C
LE

S
LR

21
_C

C
LE

C
A

K
I−

1_
C

C
LP

C
A

K
I1

_C
C

LE

T
U

H
R

14
T

K
B

_C
C

LE

A
49

8_
C

C
LP

A
49

8_
C

C
LE

T
K

10
_C

C
LP

U
M

R
C

6_
C

C
LE

76
9−

P
_C

C
LP

76
9P

_C
C

LE
R

C
C

−
E

R
_C

C
LP

N
C

C
02

1_
C

C
LP

R
C

C
−

M
F

_C
C

LP
V

M
R

C
−

R
C

Z
_C

C
LP

V
M

R
C

R
C

Z
_C

C
LE

R
C

C
−

A
B

_C
C

LP
K

M
R

C
−

1_
C

C
LP

K
M

R
C

1_
C

C
LE

B
B

65
−

R
C

C
_C

C
LP

A
70

4_
C

C
LP

A
70

4_
C

C
LE

N
C

C
01

0_
C

C
LP

R
X

F
39

3_
C

C
LP

R
C

C
10

R
G

B
_C

C
LP

R
C

C
10

R
G

B
_C

C
LE

O
S

−
R

C
−

2_
C

C
LP

O
S

R
C

2_
C

C
LE

CCLP Kidney
CCLE Kidney
TCGA KIRC
TCGA KIRP
TCGA KICH

Figure 2 | Clustering RCC cell lines and tumours by CNAs into RCC subtypes. (a) CNA-based clustering of 32 CCLP and 33 CCLE kidney cell lines and

728 TCGA kidney tumours (504 KIRC or clear cell, 158 KIRP or papillary and 66 KICH or chromophobe). Tumours clearly separate by subtype and the

majority of cell lines cluster with clear cell renal tumours. No cell lines cluster with chromophobe tumours, but 3, ACHN, U031 and CAL54, cluster with

papillary tumours. Two cell lines—SN12C and SLR21–are outliers and cluster away from all other tumours and cell lines on their own. (b) CNA landscape of

CCLE and CCLP kidney cell lines–most of the clear cell renal cell lines show the characteristic 3p loss and VHL mutations (refer to Fig. 3), while several show

other characteristic CNAs. ACHN, U031 and CAL54 show characteristic pRCC alterations, while SN12C and SLR21 are unlike any of the tumour subtypes.

Cell lines are ordered according to the clustering in a, so cell lines with shared alterations are together. The CNA landscapes of the TCGA KIRC, KIRP and

KICH data sets are also shown for comparison.
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in detail (Fig. 3, also see Supplementary Table 3). While all 24
genes were present in the exome-wide mutation data provided by
CCLP, the 1651 genes profiled by CCLE included 16 of these
genes, so the comparison was restricted to 16 genes (TP53, VHL,
BAP1, NF2, PTEN, ARID1A, CDKN1A, MTOR, MET, SMARCB1,
PIK3CA, MLL3, FH, FLCN, TSC1 and TSC2). Given a gene and a
kidney cancer cell line common to CCLE and CCLP, we defined
three tiers of mutations. Tier 1 consists of cases where both
databases report identical mutations. Tier 2 consists of cases
where both databases report mutations, but they are
non-identical, and Tier 3 consists of cases where one database
reports a mutation, while the other does not. Similarly, using 5-
valued GISTIC scores for CNAs (� 2: deep deletions, � 1:
shallow deletions, 0: no CNA, 1: low-level gain, 2: high-level
amplification), we defined three tiers of CNAs. Tier 1 consists of
cases where the databases agree on both nature and
extent of CNA. Tier 2 consists of cases where the databases
agree on the nature (gain/loss) but disagree on the extent,
that is, one reports a high-level amplification while the
other reports a low-level gain, or one reports a shallow loss
while the other reports a deep deletion. Tier 3 consists of cases
where one database reports a CNA, while the other reports either
no CNA, or an alteration of in the ‘opposite’ direction (gain
versus loss).

This analysis revealed that 769P and CAL54 only have Tier 1
mutations in the key Kidney genes included in CCLE (see Fig. 3,
also Supplementary Table 3), making them the ‘most reliable’ in
the sense of all their genomics alterations in key kidney cancer
genes being confirmed by two independent sources.

The CNA analysis revealed that most disagreements are on the
extent rather than nature of copy number aberrations between
CCLE and CCLP in key kidney cancer genes. 786-O, ACHN, and
CAL54 had perfect agreement on CNAs in key kidney cancer
genes, while 769-P had only one disagreement (SMARCB1 is
amplified in CCLE but diploid in CCLP).

Taken together, our analysis reveals CAL54 as the only cell line
with perfect agreement on mutation and CNAs in key kidney
cancer genes, with 769-P and a few other cell lines also showing a
high degree of concordance. These cell lines might be thought of
as the most trustworthy kidney cancer cell lines from the point of
view of genomics-directed selection.

Investigation of 3p loss as a hallmark of ccRCC. With respect to
canonical copy number events (Fig. 2), we first investigated clas-
sical 3p loss31–33. To quantify 3p loss, we computed the fraction of
chromosome 3p where the CNA data supported at least low-level
copy number loss (using a log2 ratio). While this characteristic
ccRCC genomic feature is observed in the majority of ccRCC cell
lines, 3p loss is absent or significantly diminished in several
of them, namely VMRCRCW, SLR20, SLR21, and BFTC909
(as well as the immortalized epithelial cell lines HK2 and HEKTE)
in CCLE; and U031, KMRC-1, 786-0, VMRC-RCW, SN12C and
BFTC-909 in CCLP (Supplementary Table 2). Of the cell lines
lacking 3p loss, SLR21 and SLR20 in CCLE and SN12C and U031
in CCLP also lack other characteristic features of ccRCC such as
chromosomal gains in five and eight or losses in chromosome 14,
though SLR21 and U031 do show some gain in 8q.

0

10

20

30

a

b c
M

ut
at

io
ns

 p
er

 M
B

Translational effect
Synonymous

Non synonymous

0102030

% Samples with mutation

p.
Y

33
D

p.
I6

06
V

p.
I1

80
N

p .
Y

33
D

p.
I6

06
V

p .
I1

80
N

p.
Q

14
9*

p.
P

27
8A

p.
G

10
4f

s*
55

p .
A

39
02

G
p.

Q
14

9*
p.

R
24

8W
p.

D
11

26
V

p.
G

29
86

D
p.

V
14

2f
s

p .
G

29
86

D
p.

G
14

4f
s*

14

p.
H

47
5d

el
p.

I1
80

N

p.
P

36
33

P
p.

E
25

8*
p.

I1
80

N

p.
R

24
8W

p.
P

19
2f

s*
10

p .
E

54
5K

p.
E

22
4*

p.
E

54
5K

p.
E

22
4*

p.
V

12
38

I

p.
V

12
38

I
p .

G
89

2E

p.
R

17
7*

p.
I1

20
V

p.
C

34
60

F

p.
I1

20
V

p.
C

34
60

F

p.
P

16
5S

p.
W

13
04

R

p.
P

15
6S

p.
Y

19
74

H

p.
E

31
K

p.
W

13
04

R
p.

E
22

4_
sp

lic
e

p.
S

30
80

P

p.
L2

20
9V

p.
D

55
9V

p.
V

13
0F

p.
Y

81
6f

s
p .

N
21

2_
sp

lic
e

p.
P

77
0A

p.
R

24
8W

p .
D

14
3f

s*
16

p.
P

15
fs

*7
3

p .
R

21
3*

p.
E

75
K

p.
F

14
8f

s*
11

p.
H

11
5Y

p.
P

23
26

Q
p.

L2
13

8F

p.
G

24
74

E

p.
R

37
7H

p.
R

17
5H

p.
G

24
5S

p.
F

16
8F

p.
E

33
6*

p .
H

11
5Q

p .
T

10
7A

p.
E

17
99

K

p.
T

32
1f

s*
23

p.
L1

53
fs

*6

p .
T

43
88

P
p.

L7
19

V
p.

L2
64

R

p.
V

20
06

L
p.

E
18

6f
s

p.
S

28
7*

p.
L1

53
P

p .
L2

20
9L

p.
K

58
0f

s*
37

p.
R

16
1f

s*
12

p.
D

48
fs

*7
4

p.
K

58
0f

s
p .

E
16

0f
s

p.
E

16
8D

p.
V

15
5_

sp
lic

e

FH

MET

PIK3CA

SMARCB1

PTEN

TSC2

BAP1

MTOR

TP53

MLL3

VHL

RCC−F
G

2_
CCLP

A70
4_

CCLP
A49

8_
CCLE

A49
8_

CCLP
A70

4_
CCLE

RCC−E
R_C

CLP

78
6−

0_
CCLP

BB65
−R

CC_C
CLP

NCC01
0_

CCLP

TU
HR10

TK
B_C

CLE

76
9−

P_C
CLP

76
9P

_C
CLE

TU
HR14

TK
B_C

CLE

VM
RC−R

CW
_C

CLP

VM
RCRCW

_C
CLE

SW
15

6_
CCLP

VM
RCRCZ_

CCLE

CAKI2
_C

CLE

RCC−J
F_

CCLP

SNU12
72

_C
CLE

78
6O

_C
CLE

TK
10

_C
CLP

RCC−J
W

_C
CLP

SNU34
9_

CCLE

O
SRC2_

CCLE

CAKI1
_C

CLE

CAL−
54

_C
CLP

CAL5
4_

CCLE

LB
99

6−
RCC_C

CLP

RCC−M
F_

CCLP

KM
RC20

_C
CLE

SN12
C_C

CLP

BFT
C−9

09
_C

CLP

BFT
C90

9_
CCLE

RXF3
93

_C
CLP

SK−N
EP−1

_C
CLP

VM
RC−R

CZ_
CCLP

KM
RC−2

0_
CCLP

KM
RC2_

CCLE
U03

1_
CCLP

KM
RC−1

_C
CLP

KM
RC1_

CCLE

RCC10
RG

B_C
CLP

CAKI−
1_

CCLP

ACHN_C
CLE

ACHN_C
CLP

HA7−
RCC_C

CLP

KM
RC3_

CCLE

LB
10

47
−R

CC_C
CLP

LB
22

41
−R

CC_C
CLP

NCC02
1_

CCLP

O
S−R

C−2
_C

CLP

RCC−A
B_C

CLP

RCC10
RG

B_C
CLE

TU
HR4T

KB_C
CLE

Sample (n=55)

Mutation type
Nonsense

Frame shift insertion

Frame shift deletion

In frame insertion

In frame deletion

Nonstop

Translation start site

Splice site

Missense

5'-Flank

3'-Flank

5'-UTR

3'-UTR

RNA

Intron

Intergenic region

Silent

Targeted region

0

10

20

30

M
ut

at
io

ns
 p

er
 M

B

Translational effect
Synonymous

Non synonymous

0102030

% Samples with mutation

p.
Y

33
D

p.
I6

06
V

p.
I1

80
N

p.
Q

14
9*

p.
P

27
8A

p.
G

10
4f

s*
55

p.
G

29
86

D
p.

G
14

4f
s*

14
p.

V
20

33
fs

*9

p.
P

36
33

P
p.

E
25

8*
p.

I1
80

N
p.

E
57

2f
s*

16

p.
R

57
*

p.
R

10
52

*

p.
R

24
8W

p.
P

19
2f

s*
10

p.
E

54
5K

p.
E

22
4*

p.
G

11
77

S

p.
V

12
38

I

p.
I1

20
V

p.
C

34
60

F

p.
D

27
A

p.
P

16
5S

p.
W

11
83

*

p.
W

13
04

R
p.

N
45

3Y

p.
R

12
45

G

p.
S

30
80

P
p.

A
10

5f
s*

20
p.

G
11

41
*

p.
L2

20
9V

p.
D

55
9V

p.
V

13
0F

p.
K

12
69

*

p.
I2

33
T

p.
K

29
4*

p.
R

16
29

fs
*1

5

p.
P

77
0A

p.
R

24
8W

p.
D

14
3f

s*
16

p.
G

31
A

p.
D

25
1f

s*
31

p.
L1

52
*

p.
P

15
fs

*7
3

p.
R

21
3*

p.
E

75
K

p.
F

14
8f

s*
11

p.
Q

47
7*

p.
H

11
5Y

p.
A

87
9A

p.
P

23
26

Q
p.

L2
13

8F
p.

G
75

6V

p.
G

24
74

E
p.

P
79

H
p.

N
52

8f
s*

41
p.

N
12

57
_H

12
59

de
lN

T
H

p.
Y

76
1*

p.
R

37
7H

p.
R

17
5H

p.
G

24
5S

p.
F

16
8F

p.
E

33
6*

p.
T

32
1f

s*
23

p.
L1

53
fs

*6
p.

E
46

5*
p.

Q
48

9K

p.
T

43
88

P
p.

L7
19

V
p.

L2
64

R

p.
L2

20
9L

p.
K

58
0f

s*
37

p.
R

16
1f

s*
12

p.
D

48
fs

*7
4

FH

MET

CDKN1A

KDM5C

TSC1

PIK3CA

PTEN

SMARCB1

BAP1

TSC2

NF2

NFE2L2

MTOR

SETD2

MLL3

TP53

VHL

PBRM1

RCC−F
G

2_
CCLP

A70
4_

CCLP

RCC−E
R_C

CLP

NCC01
0_

CCLP

BFT
C−9

09
_C

CLP

RCC−M
F_

CCLP

KM
RC−2

0_
CCLP

ACHN_C
CLP

KM
RC−1

_C
CLP

LB
10

47
−R

CC_C
CLP

O
S−R

C−2
_C

CLP

78
6−

0_
CCLP

BB65
−R

CC_C
CLP

A49
8_

CCLP

RCC−J
F_

CCLP

SW
15

6_
CCLP

76
9−

P_C
CLP

VM
RC−R

CW
_C

CLP

TK
10

_C
CLP

SN12
C_C

CLP

RXF3
93

_C
CLP

SK−N
EP−1

_C
CLP

VM
RC−R

CZ_
CCLP

RCC−J
W

_C
CLP

LB
99

6−
RCC_C

CLP

CAL−
54

_C
CLP

RCC−A
B_C

CLP

U03
1_

CCLP

HA7−
RCC_C

CLP

RCC10
RG

B_C
CLP

CAKI−
1_

CCLP

LB
22

41
−R

CC_C
CLP

NCC02
1_

CCLP

Sample (n=33)

Mutation type
Nonsense

Frame shift insertion

Frame shift deletion

In frame insertion

In frame deletion

Nonstop

Translation start site

Splice site

Missense

5'-Flank

3'-Flank

5'-UTR

3'-UTR

RNA

Intron

Intergenic region

Silent

Targeted region

CCLE and CCLP kidney cell lines: mutations in 11 key kidney cancer genes

CCLP kidney cell lines: mutations in 18 key kidney cancer genes

LB
10

47
−

R
C

C
_C

C
LP

H
E

K
T

E
_C

C
LE

U
03

1_
C

C
LP

S
N

12
C

_C
C

LP
B

F
T

C
90

9_
C

C
LE

S
LR

20
_C

C
LE

T
K

10
_C

C
LP

S
LR

21
_C

C
LE

A
C

H
N

_C
C

LP
A

C
H

N
_C

C
LE

K
M

R
C

−
1_

C
C

LP
78

6−
0_

C
C

LP
V

M
R

C
−

R
C

W
_C

C
LP

B
F

T
C

−
90

9_
C

C
LP

V
M

R
C

R
C

W
_C

C
LE

C
A

L−
54

_C
C

LP
C

A
L5

4_
C

C
LE

C
A

K
I−

1_
C

C
LP

C
A

K
I1

_C
C

LE
S

LR
26

_C
C

LE
T

U
H

R
4T

K
B

_C
C

LE
U

M
R

C
2_

C
C

LE
U

M
R

C
6_

C
C

LE
K

M
R

C
2_

C
C

LE
A

49
8_

C
C

LE
S

LR
23

_C
C

LE
T

U
H

R
14

T
K

B
_C

C
LE

C
A

K
I2

_C
C

LE
H

A
7−

R
C

C
_C

C
LP

R
C

C
10

R
G

B
_C

C
LE

R
C

C
4_

C
C

LE
R

C
C

−
M

F
_C

C
LP

B
B

65
−

R
C

C
_C

C
LP

R
C

C
−

A
B

_C
C

LP
S

N
U

12
72

_C
C

LE
N

C
C

02
1_

C
C

LP
K

M
R

C
3_

C
C

LE
R

C
C

−
JF

_C
C

LP
76

9−
P

_C
C

LP
76

9P
_C

C
LE

S
K

−
N

E
P

−
1_

C
C

LP
H

K
2_

C
C

LE
K

M
R

C
1_

C
C

LE
U

O
K

10
1_

C
C

LE
R

C
C

−
JW

_C
C

LP
LB

22
41

−
R

C
C

_C
C

LP
A

49
8_

C
C

LP
LB

99
6−

R
C

C
_C

C
LP

A
70

4_
C

C
LP

A
70

4_
C

C
LE

K
M

R
C

−
20

_C
C

LP
O

S
−

R
C

−
2_

C
C

LP
O

S
R

C
2_

C
C

LE
K

M
R

C
20

_C
C

LE
R

C
C

10
R

G
B

_C
C

LP
N

C
C

01
0_

C
C

LP
78

6O
_C

C
LE

S
N

U
34

9_
C

C
LE

R
X

F
39

3_
C

C
LP

R
C

C
−

F
G

2_
C

C
LP

R
C

C
−

E
R

_C
C

LP
S

LR
25

_C
C

LE
T

U
H

R
10

T
K

B
V

M
R

C
−

R
C

Z
_C

C
LP

V
M

R
C

R
C

Z
_C

C
LE

FH

MET

MLL3

SLC1A3

PTEN

TSC2

TCEB1

NFE2L2

PIK3CA

MTOR

ARID1A

VHL

SETD2

BAP1

PBRM1

TP53

FLCN

SMARCB1

NF2

TSC1

CDKN1A

MICALCL

−2 −1 0 1 2

Value

0

200

400

600

Colour key
and histogram

C
ou

nt

CCLE and CCLP kidney cell lines: copy number aberrations in 22 key kidney cancer genes
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Figure 3 | Mutations and CNAs in key kidney cancer genes in CCLP and CCLE cell lines. While CCLP provides mutation data for all 24 genes, CCLE only

covers 16. Both provide CNA data for 22 genes. (a) Four CCLE cell lines (ACHN, KMRC3, RCC10RGB and TUHR4TKB) did not have any mutations in these

key kidney cancer genes. None of the 22 CCLE cell lines with mutation data had mutations in ARID1A, CDKN1A, FLCN1, NF2 or TSC1; while (b) none of the

33 CCLP cell lines with mutation data had mutations in ARID1A, FLCN, MICALCL, SLC1A3, STAG2 or TCEB1. CAL-54 and 769-P have identical mutation data

for these genes in CCLE and CCLP; while (c) CAL-54, ACHN and 786-O have perfect agreement of CNA data for the 22 genes included.
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Alternative analysis of 3p loss using allele-specific data. Since
CCLP provides allele-specific estimates of integral copy number
(using PICNIC)34, we employed an alternative approach to
estimate 3p loss, by computing the fraction of the chromosome
arm for which the minor allele had a copy number of 0. This
approach revealed that 786-O, KMRC-1 and VMRC-RCW had
3p loss, which was obfuscated by the major allele’s amplification
when using the log2 ratios of total copy number. When using the
minor allele only, the cell lines with low/negligible 3p loss are
SN12C, U031, SK-NEP-1, BFTC-909 and CAKI-1. All other
CCLP kidney cell lines show a 3p lossZ80%. SK-NEP-1 and
CAKI-1 have a minor allele copy number of 1 for most of 3p, and
a total copy number of 2 for all or most of 3p, which indicated a
loss relative to the average copy number of 2.62 and 3.23,
respectively. Thus, combining the two approaches for estimating
3p loss in CCLP kidney cell lines, SN12C, U031 and BFTC-909
have negligible 3p loss according to both methods.

Expression-based classification of ccRCC cell lines. We then
analysed gene expression data to investigate whether the cell lines
could be classified as the aforementioned prognostic expression-
based subtypes ccA or ccB25. We found that of the 36 CCLE
kidney cell lines, five (14%) classify as the more indolent ccA
subtype, 13 (36%) classify as the more aggressive ccB subtype,
while the remaining 18 (50%) are not assigned to either class, as
their Spearman correlation with the centroids of the two classes

differed by less than 0.05 (Fig. 4). Of the 10 most commonly cited
ccRCC cell lines, three are classified as ccA (A-704, 769-P and
UMRC2) and four are classified as ccB (CAKI-1, 786-O, A-498,
OS-RC-2). The remaining 3 (RCC-4, CAKI-2, 769-P) are not
predicted to be of either class. Similarly, of the 32 CCLP kidney
cell lines with gene expression data, 8 are classified as ccB, 6 as
ccA, and 18 are not classified as belonging to either class.

Morphological correlations with particular cell lines. Owing to
their genomic diversity and frequent use, we chose to perform
xenografts on the three most highly cited RCC cell lines (ACHN,
786-0, A-498) in order to assess their morphologic features. In
our cluster analysis, ACHN co-segregates with tumours display-
ing amplifications in chromosomes 7 and 17, furthering the
notion that this appears to derive from papillary origins. In
addition, it has been shown that Type 2 pRCC, which is the more
aggressive form, frequently exhibits focal losses in chromosome
9p (ref. 35). ACHN shares this genotypic feature in our analysis,
underscoring the aggressive nature of this cell line. Histologically,
xenografts derived from ACHN cells appear to be a poorly
differentiated carcinoma with predominantly sarcomatoid
differentiation (Fig. 5a).

We then further investigated the two most highly cited cell
lines that clustered with ccRCC but appear to have divergent
genomic profiles. Our results indicate that 786-0 harbours more
alterations than A-498 even though both cluster with ccRCC on a
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Figure 4 | Predicted expression-based subtype of CCLE kidney cell lines. Most cell lines are not classified as either subtype with high confidence

(grey)—of the remaining, more are classified as ccB (red) than as ccA (green).
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Figure 5 | Cell Line Xenografts. Haematoxylin and eosin stain of tumour xenografts from the three most highly cited RCC cell lines (scale bar, 100mm).

(a) ACHN—xenografts show a poorly differentiated carcinoma with predominantly sarcomatoid differentiation. (b) A-498 xenografts consist of compact nests

of tumour cells with clear cytoplasm, resembling the classical appearance of ccRCC. (c) 786-0 xenografts show predominantly sarcomatoid differentiation.
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copy number level and harbour VHL mutations (Fig. 3).
Consistent with these findings, xenograft tumours from A-498
consisted of compact nests of malignant epithelial cells with clear
cytoplasm, a morphology resembling the classical appearance of
ccRCC (Fig. 5b), whereas xenografts from 786-0 were character-
ized by poorly differentiated cells with sarcomatoid features
(Fig. 5c).

Discussion
Proper cell line selection is of paramount importance when
investigating tumour biology. In a comparison of publicly
available TCGA kidney tumours with CCLP and CCLE data for
kidney cell lines, we have sub-classified commercially available
RCC cell lines into their likely respective RCC sub-histologies;
clear cell or papillary (none of the cell lines matched the
chromophobe subtype). Previous studies have confirmed that
certain RCC cell lines are truly derived from kidney tumours5,36

and others have categorized them into generic subgroups based
on molecular signatures37. However, none of the previous
analyses investigated which particular RCC subtype these cell
lines originate from. After excluding the two CCLE cell lines
derived from normal renal epithelium, we found that using CNA
data, the vast majority of CCLE and CCLP cluster with ccRCC.
However ACHN, among the most commonly referenced RCC cell
line, clusters with a subset of papillary RCC. Although ACHN has
been previously recognized to be of papillary origin based on
chromosomal alteration patterns in 7 and 17 (refs 38,39), several
studies continue to utilize it as a standard model for RCC40–42.
Similarly, U031 and CAL54, the other two cell lines that cluster
with pRCC, also exhibit gains on chromosomes 7, 16 and 17, like
ACHN. Another highly cited cell line, SN12C, is an outlier based
on copy number aberrations. The remaining top ten most
commonly cited cell lines all co-segregate with clear cell histology,
though TK-10 displays an overall CNA landscape quite
uncharacteristic of ccRCC (yet less dissimilar to ccRCC than to
pRCC and chRCC). The other outlier based on CNAs—SLR20—
has had only a few citations in the literature so far. Notably, a
certain degree of heterogeneity exists within each of the clusters,
which likely represents overlapping molecular features by
particular tumours despite originating from unique subtypes in
addition to the fact that some cell lines display a particularly high
degree of genomic instability.

By comparing tumours which cluster with the cell lines based
on CNAs with tumours that cluster away from the cell lines, we
found that the tumours likely to be best represented by the cell
lines carry hallmarks of aggressive disease, such as higher stage,
higher grade, greater extent of CNAs, and more frequent
mutations in genes such as SETD2, BAP1 and MTOR, which
have been associated with more aggressive disease and poorer
outcomes.

In addition, we demonstrate that commonly used cell lines
have higher fractional mutation rates and median CNAs than
human tumours. These findings are consistent with a recent
report by Beleut et al., which demonstrated that RCC cell lines
had a higher mutational burden compared to primary tumours
based on SNP profiling37. Only one of the cell lines we
investigated, SNU349, is identified as a true outlier based upon
fractional mutation rate, although its use has been limited in
the scientific literature to date. There are several plausible
explanations for the increased mutational rate among
commercially available RCC cell lines. Primarily, several of
these cell lines have been available for over two to three decades
potentially undergoing genotypic and phenotypic alterations as a
result of passaging and ongoing evolution. In addition, tumours
tend to be infiltrated with stromal and immune cell components

lacking detectable somatic mutations whereas cell lines are
tumours in their purest form and thus will bear higher
proportions of detectable genetic mutations. Finally, cell lines
obtained from the CCLE and CCLP lack normal tissue for
validation making it impossible to reliably filter out all germline
events.

Further characterization of cell lines that cluster with ccRCC
reveals considerable genomic variability with regards to copy
number profile and mutations. Through integrative genomic
analyses, we highlight the ccRCC cell lines that most closely
resemble human tumours based on the presence or absence of
characteristic features observed in this particular subtype. More
specifically, we show that despite clustering with ccRCC, several
of these cell lines lack VHL mutations. This finding may relate, in
part, to selection pressures for growth of aggressive tumours that
are subject to passaging effect over time. Other possibilities
include known difficulties in sequencing the VHL gene as well as
potential inactivation of the gene via promoter methylation.
Moreover, our analysis reveals that genomic alterations with
potential activating effect on the mTOR signalling pathway are
detected in a significant portion of the ccRCC cell lines. Previous
work from our group demonstrated that mTOR pathway
activating mutations sensitize patients to rapalogs43,44, hence
this new information may now be applied to in vitro work as well.

We address the discrepancy in genomic data from CCLE and
CCLP via a detailed comparison of mutations in 15 key kidney
cancer genes, and of CNAs in 18 key kidney cancer genes (Fig. 3,
and Supplementary Table 3). By employing a tiered scheme to
assess both nature and extent of disagreements, we discovered
that CAL-54 and 769-P have perfect agreement on mutation data
for these important genes in both databases, and 786-O, ACHN,
and CAL-54 had perfect agreement on CNAs in key kidney
cancer genes, while 769-P had only one disagreement (SMARCB1
is amplified in CCLE but diploid in CCLP). Thus, CAL-54 has the
most reliable mutation and CNA data for key kidney cancer genes
in terms of validation via two independent sources, while 769-P is
a close second.

A growing interest in the prognostic ability of the mRNA-
based genetic signature ccA/ccB25,26 led to our additional analysis
of the ccRCC cell lines. In a recent systematic assessment of
28 ccRCC prognostic biomarkers, ccB was the only one that
added additional independent prognostic value to routine clinical
evaluation45, therefore this information may be of particular
relevance both experimentally and clinically. In our study, we find
that while some cell lines have a stronger correlation with one of
the subtypes and more are classified as ccB than ccA, most cell
lines have a comparable correlation with each class, meaning they
cannot be reliably classified as either. The lack of a strong
correlation with either class might reflect the widespread
differences in the transcriptomes of cell lines and tumours2,3.
The fact that more cell lines classify as the ccB subtype might be
not be surprising given that there is a known bias in cell line
collections towards aggressive tumours. However, when selecting
the appropriate cell line, one may consider tailoring their
particular experiment according to tumour behaviour in
addition to tumour subtype.

Finally, we assessed the morphological architecture of the three
most highly cited RCC cell lines (ACHN, 786-0, A-498) in order
to further investigate how the genomic landscape of these cell
lines translates histologically. Despite ACHN clustering with
pRCC based on CNA data as well as previous reports suggesting
similar original histology20,38,46, sarcomatoid differentiation
rather than a papillary architecture is observed in our murine
model. However, according to the 2004 WHO classification of
renal tumours, it is known that sarcomatoid differentiation
can be found in any of the recognized subtypes of RCC and
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typically reflects a high-grade nature of the corresponding
tumour47. With respect to the two most highly cited cell lines
that cluster with ccRCC, we demonstrate that their unique
genomic profiles lend to distinctive morphologic features; 786-0
appearing poorly differentiated with sarcomatoid features while
A-498 displays epithelial cells with clear cytoplasm, a morphology
more akin to the classical appearance of ccRCC. These
observations highlight the fact that while both cell lines likely
derive from ccRCC, 786-0 appears to have undergone significant
de-differentiation both genomically and morphologically.

We acknowledge the limitations of this study, including the
lack of complete mutational and expression data for every cell line
despite utilizing several publically available resources and
exploring the available literature. In addition, a relatively
restricted number of genes were sequenced for CCLE and
multiple sequencing platforms were applied in the various
analyses used in this study. Furthermore, several discrepancies
were found between CCLE and CCLP, especially in mutation
data, as previously reported by others27, which we addressed by
stratifying the overlapping cell lines by consistency between
CCLE and CCLP, yielding a set of high-confidence cell lines with
reliable data on alterations in key kidney cancer genes. While the
analysis of allele-specific CNA data from CCLP yielded different
results on LOH in chromosome 3p for some cell lines than those
based on the analysis of log2 ratios (abundances) in CCLP and
CCLE, we regard the additional insights generated by combining
data from CCLE and CCLP as a strength of this study, as it
allowed us to characterize a greater number of renal cell lines
across these two major resources in greater detail than focusing
on either resource exclusively would have.

In summary, we utilize publically available genomic data from
TCGA, CCLP and CCLE to compare the molecular profiles of
human RCC tumours to those of commercially available cell lines.
We show that the vast majority of cell lines resemble ccRCC
tumours, but the highly cited ACHN cell line resembles pRCC.
We also show that tumours that are most likely to be well
represented by cell lines tend to carry hallmarks of aggressive
disease, and conversely, most cell lines resemble the expression-
based ccRCC subtype associated with more aggressive disease.
This study may therefore serve as a guide for future investigators
as to the suitability of particular RCC cell lines for in vitro
examination.

Methods
Data acquisition. Mutation, CNA and gene expression data for CCLE kidney
cancer cell lines was obtained from the CCLE website8, and for CCLP cell lines
from the COSMIC Cell Lines Project website48 via SFTP. Mutation data for KIRC,
and CNA data for KIRC, KIRP and KICH TCGA data sets were obtained from the
Broad Institute Genomic Data Analysis Centre (GDAC) website49. Training data
for gene expression-based subtype classification—expression levels (of 6386 genes)
and class labels for 480 KIRC tumours—was kindly provided by Rose Brannon and
Kimryn Rathmell.

Mutation analysis. To compare mutation counts, we used the mutation data
available from CCLE and TCGA, which excluded various kinds of putative neutral
and common variants. We further excluded mutations from intronic, untranslated
region, flanking and intergenic regions, as well as silent and RNA mutations. To
compare mutations across the same set of genes, we only used TCGA data for the
same 1,651 genes for which CCLE provides mutation data. CCLP and CCLE
mutation data was compared using the 1543 genes present in both data sets.
For CCLE, we used the file listed as ‘preferred data set’ by CCLE, that is:
CCLE_hybrid_capture1650_hg19_NoCommonSNPs_NoNeutralVariants_CDS_
2012.05.07.maf. This dataset filters out variants that are any of the following:
common polymorphisms, have an allelic fraction of o10%, are located outside the
CDS for all transcripts, or are putative neutral variants based on low conservation
in vertebrates. CCLP only provided one dataset, which had been filtered for likely
germline variants by comparison with B8,000 normal data sets (from 1,000
Genomes, ESP6500, DBSNP and an in-house dataset of 350 normals, as described
in ref. 50 and a confidence filter requiring read depth Z15 and mutant allele
burdenZ15%. These filters are stricter than those employed by CCLE and thus

likely to filter out more false positives—for the comparison of mutation counts
(Supplementary Fig. 1) and similarity using mutation data (Fig. 1), we applied the
read depth and allelic fraction requirements of CCLP to the CCLE data, and also
filtered out variants of unknown effect from the CCLP data (using their data on
‘Mutation description’ in the above mentioned file). For the analysis of mutation in
key kidney cancer genes, we chose not to further filter the CCLE data due to the
risk of inadvertently removing mutations in key cancer genes27. Mutati1on
heatmaps (oncoprints) were created using the oncoprinter tool of the cBio cancer
genomics portal51.

Copy number analysis. For CCLE, we used the file ‘CCLE_copynumber_2012-09-
29.seg’ from the CCLE website, and for CCLP, the file ‘cell_lines_copy_number.csv’
from the CCLP website. Since CCLP provided segmented data with estimated
integral copy numbers rather than log2 ratios (as CCLE and TCGA did), we
converted the CCLP data to log2 ratios by computing the average total copy
number per sample, dividing the integral copy number of each segment by the
average total copy number, and taking the logarithm to the base 2. Correlating this
with CCLE data revealed a high inter-data set similarity among matched cell lines,
confirming that the conversion was meaningful.

Fraction Genome Altered (FGA) was calculated as follows for a given log2
(sample intensity/reference intensity) value CN, a threshold T and a length L(i) of
segment i:

FGA ¼
� X

CNi4T

LðiÞ
�
=
�X

LðiÞ
�

ð1Þ

In other words, FGA is the ratio of the sum of the lengths of all segments with
signal above the threshold, to the sum of all segment lengths. A log2 (sample
intensity/reference intensity) threshold of 0.2 (for amplification, � 0.2 for deletion)
was used for both the TCGA tumour samples as well as the CCLE cell lines. The
fraction of chromosome 3p lost was similarly calculated using a threshold of � 0.2.

For clustering CNA data, we used the gene-wise copy number data for KIRC,
KIRP, KICH and CCLE and CCLP kidney cell lines, and (1—Spearman’s
correlation) as the distance. Hierarchical clustering was employed with average
inter-cluster distance based agglomeration for combining sub-clusters.

Comparing KIRC tumours and cell line clustering. To compare the TCGA KIRC
tumours which grouped with or away from the majority of kidney cancer cell lines
from CCLE and CCLP (Fig. 2a), we cut the dendrogram (tree) at a height of 0.9,
yielding 6 clusters—C1, a KICH-dominated subtree of 74 members (55 out of 66
KICH tumours, 17 KIRC and 2 KIRP tumours); C2, a five-member subtree of four
KIRP tumours and one KIRC tumour; C3; a KIRC-dominated subtree of 167
tumours (158 KIRC, six KIRP, two KICH) and a solitary cell line, KMRC-3; C4, a
422 member subtree consisting of the vast majority of cell lines (57 out of 65) and a
majority of KIRC tumours (315 out of 504), along with 41 KIRP and 9 KICH
tumours; C5, a KIRP-dominated subtree (105 out of 158 KIRP tumours, 13 KIRC
tumours) with five cell lines (ACHN and CAL-54 from both CCLE and CCLP, and
U031 from CCLP); and finally C6, an ‘outlier’ subtree of the cell lines SN12C and
SLR20. We compared the KIRC tumours in subtree C4 with the rest of KIRC
tumours with respect to stage, grade, extent of CNA and frequency of mutations in
22 key kidney cancer genes (mutation data was available for 415 KIRC tumours, of
which 267 clustered with cell lines (were in subtree C4), and 148 did not.

Comparison of mutations and CNAs in key kidney cancer genes. To resolve the
discrepancies between CCLP and CCLE data, we compared the mutation and CNA
data between kidney cancer cell lines in common for 16 out of 24 key kidney cancer
genes (since CCLE only includes these 16 genes among the 1651 genes it screened
for mutations). For mutations in a given gene and cell line, we defined three ‘tiers’
of mutations, depending on the extent of disagreement between the two databases.
Tier 1 consists of cases with identical mutations in both CCLE and CCLP. Tier 2
comprises cases with non-identical mutations in the same gene—while these are
discrepancies, they are often close to each other and could potentially be the same
mutation, with the discrepancy a result of alignment and other technical issues.
Tier 3 consists of cases where a mutation is reported in one database, but not in the
other.

Similarly, for CNAs, we defined three tiers using GISTIC scores (þ 2—high-
level amplification, þ 1—gain, 0—no alteration, � 1: shallow loss, � 2: deep
deletion) for a given gene and CNA. Tier 1 comprises cases where CCLP and CCLE
agree on the nature and amplitude/extent of the CNA. Tier 2 consists of cases
where CCLP and CCLE agree on the nature but disagree on the amplitude/extent
of the CNA, that is, one database reports a high-level amplification but the other
reports a low-level gain, or one reports a shallow loss while the other reports a deep
deletion. Tier 3: consists of cases where a CNA is reported in one database, but not
the other.

Gene expression analysis. For CCLE, we used the file ‘CCLE_Expression_En-
trez_2012-09-29.gct’ from the CCLE website, and for CCLP, we obtained the data
from ArrayExpress52 (accession code E-MTAB-3610)9. For classification into the
expression-based subtypes ccA or ccB, we used the PAMR classifier53, which uses
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shrunken centroids in order to emphasize the most discriminative genes. Training
data of 6,386 genes and 480 samples was filtered to retain only the 5,980 genes
which were present in the CCLE and CCLP data and only the 412 tumours which
were classified as only ccA or ccB (244 and 168, respectively). Since we were using
three different data sources, the combat function of the sva package54,55 was used
for batch-correction before training the classifier (and for comparing CCLE and
CCLP gene expression data). The best classification performance on the training
data with 10-fold cross-validation was achieved using a threshold of 3.7 and
780 genes, for which the classification error was 3.7% for ccA and 3.6% for ccB.
Therefore, we computed the Spearman’s correlation coefficient of each cell line
with the centroid of each class using these 780 genes—if the correlation of a cell
line with a given subtype was at least 0.05 than the correlation with the other
subtype, it was classified as the respective subtype; otherwise it was not classified as
either subtype.

All programming was done in Perl and R56, and statistical calculations were
done using R. The R packages, dendextend57, gplots and corrplot were used to plot
coloured dendrograms, heatmaps and correlation/similarity matrices, and the
Bioconductor package GenVisR58 was used to plot mutation waterfall plots.

The number of Pubmed Central articles mentioning one of the CCLE kidney
cancer cell lines was determined with the Pubmed Central search builder using
several punctuation alternatives for the cell line names (Supplementary Table 1).

Xenografting. All mouse experiments were performed using an approved protocol
under Memorial Sloan-Kettering Cancer Center’s Institutional Animal Care and
Use Committee. For subcutaneous growth, 4 million cells were mixed 2:1 with
Matrigel (BD Biosciences) and injected into NSG mice (The Jackson Laboratory).
When the tumour reached 300–400 mm3 in volume, mice were euthanized and
tumour was collected for histological analysis. For haematoxylin and eosin staining,
tissue samples were fixed in 10% formalin and embedded in paraffin. Sections of
5 mm thickness were prepared. haematoxylin and eosin staining was performed as
per standard protocol. Each slide was individually reviewed by an experienced
genitourinary pathologist (Y.B.C.).

Data availability. Databases used in this study are the Cancer Cell Line Ency-
clopedia8, the COSMIC Cell Lines Project48, ArrayExpress52 with accession code
E-MTAB-3610, and the Broad TCGA GDAC center49. Processed data from these
databases are available from the authors upon request.
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