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2, Thierry Goudon1*
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Abstract

Switching from the healthy stage to the uncontrolled development of tumors relies on com-

plicated mechanisms and the activation of antagonistic immune responses, that can ulti-

mately favor the tumor growth. We introduce here a mathematical model intended to

describe the interactions between the immune system and tumors. The model is based on

partial differential equations, describing the displacement of immune cells subjected to both

diffusion and chemotactic mechanisms, the strength of which is driven by the development

of the tumors. The model takes into account the dual nature of the immune response, with

the activation of both antitumor and protumor mechanisms. The competition between these

antagonistic effects leads to either equilibrium or escape phases, which reproduces features

of tumor development observed in experimental and clinical settings. Next, we consider on

numerical grounds the efficacy of treatments: the numerical study brings out interesting

hints on immunotherapy strategies, concerning the role of the administered dose, the role of

the administration time and the interest in combining treatments acting on different aspects

of the immune response. Such mathematical model can shed light on the conditions where

the tumor can be maintained in a viable state and also provide useful hints for personalized,

efficient, therapeutic strategies, boosting the antitumor immune response, and reducing the

protumor actions.

Introduction

The immune system can both constrain and promote tumor development through several

complex processes, encompassed in the concept of cancer immunoediting [1]. The antagonis-

tic effects of the immune response on tumor growth shape the different phases that have been

identified to characterize their interaction: elimination, when the immune system is able to

detect and eradicate the developing tumors; equilibrium, when the immune system is able to
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maintain the tumor expansion in a cancer-persistent state; and escape, when the tumor devel-

ops in an uncontrolled manner [1, 2].

In this context, the identification of the immune components of the tumor microenviron-

ment (TME) reveals valuable information about the stage of cancer development and helps

predict patient outcome. This concept called “the immune contexture” has improved the clas-

sification of cancers [3, 4]. The antitumor immune response is characterized by the activation

and the recruitment of innate immune cells such as natural killer (NK) cells, tumor-associated

neutrophils (TAN-N1), tumor-associated macrophages (TAM-M1) and adaptive immune

CD8+ T cells. They migrate to the tumor site where they can eliminate tumor cells. They have

been found to be highly active on early-stage tumors and associated with good clinical out-

come [5, 6]. While this antitumor immune response can be expected to control tumor growth

or maintain their development in a viable equilibrium, later phases are characterized by an

uncontrolled tumor growth associated with a shift of the immune response towards protumor

functions and the establishment of multiple mechanisms of immunosuppression [7]. Among

others, the ratio of effector immune cells/protumor immune cells is considered as a relevant

indicator of patient survival, the higher the ratio, the better the patient vital prognostic [8]. The

ratio evolves dynamically: tumor cells and other components in the TME can produce inhibi-

tory factors such as anti-inflammatory cytokines, interleukins 10 and 4 (IL-10 and IL-4),

Transforming Growth Factor-beta (TGF-β) which favor the polarization of antitumor immune

cells into protumor ones. For instance, antitumor neutrophils and macrophages are converted

into protumor TAN-N2 and TAM-M2 [9, 10]. They are part of a pool of myeloid-derived sup-

pressor cells (MDSCs) which can also be directly recruited from the bone marrow [11]. They

promote tumor growth, tissue remodeling, angiogenesis and suppress adaptive immunity [12].

Moreover, the antigen-presenting cells such as dendritic cells (DC) become tolerogenic which

leads to exhausted and tolerant T cells, apoptosis of T cells and to the priming and proliferation

of regulatory T cells (Tregs) [12, 13]. Besides, tumors subvert mechanisms of immune self-tol-

erance and inhibit antitumor immune responses through the use of immune checkpoints. The

TME is therefore infiltrated with hyporesponsive exhausted T cells [14]. Blockade of these

immune checkpoints as exemplified with anti-CTLA4 and anti-PD-1/PD-L1 restore efficient

effector functions and has revolutionized cancer treatment [15].

Mathematical modeling might shed some light on these complex interactions, and, based

on numerical simulations, provide useful information to elaborate more efficient therapeutic

strategies. Quite intricate ordinary differential systems have been developed so far, see for

instance [16–22]. Further references and discussion of the various viewpoints can be found in

the review [23]. In [24], we proposed a system of partial differential equations (PDE), describ-

ing the earliest stages of the tumor/immune system interactions. The system couples an inte-

gro-differential equation for the size-structured population of tumor cells, inspired from [25–

28], to a convection-diffusion equation for the space-structured immune cells. The latter

accounts for chemotaxis mechanisms that drive the immune cells towards the tumor. This

model, which only considers the antitumor actions of the immune system, is able to reproduce

the equilibrium phase: the large time behavior of this PDEs system is a state where residual

tumor cells and a positive concentration of active immune cells exist in equilibrium. However,

the simple model of [24] does not consider the contribution of immune cells with protumor

functions and the establishment of numerous mechanisms of immunosuppression. This is the

issue addressed in this work. To be more specific, our purpose is two-fold:

• First, we incorporate in the model protumor effects that can both reduce the antitumor

immune response and strengthen the factors of tumor growth. We shall see that the
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protumor immune response can break the equilibrium and lead to an escape phase charac-

terized by the uncontrolled growth of the tumor.

• Second, we complete the model by discussing the effect of different type of targeted treat-

ments that can act on the immune response, either by restoring the effector functions of anti-

tumor cells which became exhausted as a result of chronic activation and protumor factors,

or by limiting the recruitment of protumor immune cells. The investigation demonstrates

the interest of combining both approaches.

The paper is organized as follows. We introduce the modeling assumptions and we set up

the equations in the Mathematical Model section. We pay a specific attention to the descrip-

tion of the activation of protumor mechanisms, based on the action of cytokines, in response

to the growth of the tumor mass. The modeling assumptions naturally induce some delay

mechanisms in the protumor response. We also bring out some mathematical properties of

the model. We start by considering a simplified situation which reduces the model to a nonlin-

ear system of ODEs. We identify several stationary solutions, free of tumors, free of protumor

cells or with all populations of immune cells, and we discuss their linear stability. This discus-

sion provides some hints on the role of the parameters. Next, we establish the existence of

equilibrium states for the full size- and space-dependent problem, extending to the model with

protumor activities the results of [24]. The Results section is devoted to the numerical investi-

gation of the PDE system. We show that depending on the parameters of the model, the solu-

tions either converge to an equilibrium or describe an escape phase with an unlimited growth

of the tumor. These results illustrate the critical role of the protumor immune responses. Next,

we address specifically the question of treatments. As detailed below, the immune response

might have multi-faceted protumor actions. Among other, effector immune cells can become

exhausted, a state where they are hyporesponsive and cannot kill the tumor. We consider the

effect of treatments that either restore antitumor activity or reduce the recruitment of protu-

mor immune cells. The investigations demonstrates the interest of combining both approaches

and discuss the role of the dose and time of administration.

Mathematical model

A schematic overview of the geometry and the leading mechanisms that guide the construction

of the mathematical model is provided in Figs 1 and 2.

Modeling assumptions

We take into account three populations of interacting cells:

• the cytotoxic effector cells including CD8+ T cells and NK cells as well as myeloid effector

cells, TAN-N1 and TAM-M1 that will be referred to as the “antitumor” immune cells;

• the “protumor” immune cells, including Treg, MDSCs, TAN-N2 and TAM-M2 favoring

tumor growth;

• the tumor cells.

For the purpose of the mathematical modeling, we are collapsing into single “averaged”

quantities the behavior of several distinct cells, that might have different developmental prop-

erties and interactions mechanism, to focus on the outcome of their action on tumor growth.

The construction of the model uses the same basis as in [24], to which we incorporate the “pro-

tumor” immune cells. The modeling assumptions are as follows.
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A.1. the environmental constraints such as nutrient concentrations, temperature, etc. are

assumed to be constant. Nevertheless, in late stages of tumor growth, some phenomena

such as hypoxia or difficulties in accessing the nutrients can limit the tumor cell

expansion;

A.2. the state of the tumor cells is characterized by their size (with a similar setting, it could

be their content of cyclins as well [25, 29]); the dynamics of the tumor cells is driven by

two phenomena: each tumor cell grows with a certain rate, possibly depending on its

size, and it can divide into daughter cells;

A.3. activated antitumor immune cells are able to destroy the targeted tumor cells;

A.4. activated protumor immune cells suppress the antitumor immune cells by direct contact

or by the release of soluble substances (like immunosuppressive cytokines);

A.5. activated protumor immune cells favor the tumor growth by enhancing the growth rate

of the tumor cells and by favoring angiogenesis.

Moreover, the tumor cells produce several signals of chemical nature (cytokines and che-

mokines), which drive the immune response as follows:

A.6. a chemotactic signal, proportional to the tumor mass, induces a potential, the gradient

of which drives the anti and protumor cells towards the TME;

Fig 1. Schematic view of the geometry of the mathematical model.

https://doi.org/10.1371/journal.pone.0259291.g001
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A.7. the tumor antigen-specific CD8+ T cells are activated by APCs in draining lymph nodes

and recruited to the tumor site. The NK cells as well as the myeloid cells (TAN-N1,

TAM-M1) are recruited from the circulation and activated from a bath of non-activated

immune cells at the tumor site. The signal that defines the recruitment/activation rate is

directly related to the tumor mass.

A.8. similarly, protumor immune cells can be recruited from a bath of immune cells (that

might differ from the source of antitumor immune cells, though) according to a signal

directly related to the tumor mass;

A.9. the signal triggers the shift of certain antitumor immune cells into protumor immune

cells.

Assumptions A.1–A.3 appeared in [24] where they are discussed in details. The protumor

effects become sensitive in a later stage of the tumor growth, and, as we shall see, play a central

role in the transition to the escape phase. Assuming a constant growth rate of the tumor cells

becomes questionable in this regime, and we shall model it by means of a Gompertz law,

which accounts for size-limitation mechanisms, see (1) below. Assumption A.4 describes

immunosuppression mechanisms mediated by protumor immune cells. In addition to the

contact-dependent suppression of antitumor immune cells, the secretion of immunosuppres-

sive cytokines abrogates the effector functions of T cells and NK cells and negatively modifies

their proliferation. It triggers the reverse conditioning of DCs and can induce the apoptosis of

effector T cells through the depletion of IL-2 from the TME. It is worth bearing in mind that

not all the antitumor immune cells are eliminated: they become exhausted and can no longer

Fig 2. Schematic view of the leading mechanisms that guide the construction of the mathematical model. AIC:

antitumor cells, PIC: protumor cells, TC: tumor cells.

https://doi.org/10.1371/journal.pone.0259291.g002
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kill tumor cells; however, they can be reactivated by the action of some treatment (i. e. anti-

PD-1 therapy). Assumption A.5 corresponds to the overexpression of VEGF by protumor

immune cells favoring the accumulation of microvessels supplying the tumor in nutrients.

Assumption A.6 already appeared in [24]; here the chemotactic mechanisms apply on both

type of immune cells. Assumption A.7 corresponds to a rough description of the complex acti-

vation and recruitment mechanisms which are related to the tumor mass.

Similarly, assumption A.8 corresponds to the recruitment of MDSC coming from the bone

marrow and Tregs from the circulation. Assumption A.9 corresponds to the possible conver-

sion of some immune cells that eliminate the tumor into protumor immune cells (i. e. macro-

phages and neutrophils becoming TAN M2 and TAM N2, conventional T cells becoming

immunosuppressive Treg).

Construction of the model

Following [24], the model uses two distinct length scales:

• the length scale of the displacement of the immune cells,

• the length scale describing the size of the tumor cells.

The modeling assumes that the former is “infinitely large” compared to the latter. This is

motivated by the fact that immune cell displacement (for instance from the lymph nodes

toward the tumor site) occurs on several centimeters while the estimated radius of the tumor

cells is about a few micrometers. The interactions between the tumor and the immune system

are described by the dynamics of the following unknowns:

• Tumor cell density. The population of tumor cells is described by (t, z)7!n(t, z), the volumic

density of tumor cells. Given z2 > z1 > 0, the integral
R z2

z1
nðt; zÞ dz gives the number of

tumor cells having a size in the interval [z1, z2] at time t.

• Cytotoxic effector cell concentration. The concentration of antitumor immune cells that are

actively fighting against the tumor is (t, x)7!c(t, x).

• Protumor immune cell concentration. Similarly, (t, x)7!cr(t, x) stands for the concentration of

the protumor immune cells favoring tumor growth.

• Chemoattractant potential. We denote by (t, x)7!ϕ(t, x) the concentration of the chemical

signal (chemokines) that attracts the immune cells towards the TME.

• Cytokine concentration. Finally, let t 7! I(t) be the concentration of cytokines in the overall

TME.

The dynamics of the population of tumor cells is governed by volume growth and cellular

division, see [25–28]. We add to these effects a death rate induced by the activated antitumor

immune cells. Let z 7! V(z)� 0 stand for the tumor cell growth rate. We can assume it is a pos-

itive constant, but in the present context it is more appropriate to adopt a size dependent

model, that incorporates size-limitation effects, like the Gompertz law

VðzÞ ¼ rz ln ðb=zÞ; ð1Þ

with r> 0 and b> 0, the maximal size. Accordingly, when using (1), the size variable z lies in

the interval [0, b]. We refer the reader to [30–34] for derivation and use of this law in tumor

growth modeling, in particular when taking into account the limited access to nutrients or

necrotic mechanisms, see A.1, A.2. The simpler case where V is constant can be useful since it

leads to explicit formulae that can be used to check more easily whether or not the conjectured
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behaviors hold. The cell division mechanism is described by the operator

QðnÞðt; zÞ ¼ � aðzÞnðt; zÞ þ
Z b

z
aðz0Þkðzjz0Þnðt; z0Þ dz0; ð2Þ

where a(z0) stands for the frequency of the division of cells having size z0, and k(z|z0) gives the

size-distribution produced from the division of a tumor cell with size z0. Again a simplified

framework assumes that these coefficients are constant, but it is likely relevant to make use of

more intricate laws, for instance prohibiting any division below a certain threshold. What is

crucial for modeling purposes is the requirement

Z z

0

z0kðz0jzÞ dz0 ¼ z;

which is related to the principle of mass conservation. Indeed, it implies that cell-division does

not change the total mass

Z b

0

zQðnÞ dz ¼ 0:

However, the total number of cells increases since
R b

0
nðt; zÞ dz � 0. A relevant example is

provided by the binary division operator

QðnÞðt; zÞ ¼ 4að2zÞnðt; 2zÞ � aðzÞnðt; zÞ; ð3Þ

which describes the situation where cells with size 2z split into two daughter cells, both with

size z. Further relevant examples of division kernels can be found in [35]. The equation will be

completed by the boundary condition n(t, 0) = 0, which means that there is no production of

cells with size 0. For further purposes, let us introduce the following quantities

total number of tumor cells : m0ðtÞ ¼
Z b

0

nðt; zÞ dz; ð4Þ

total mass of tumor cells : m1ðtÞ ¼
Z b

0

znðt; zÞ dz: ð5Þ

The displacement of the anti- and protumor immune cells is driven by convection and dif-

fusion, over a domain O � RN
. For the sake of simplicity we assume they have the same diffu-

sion coefficient D and, here, we shall work with a constant coefficient. The convection is

defined by the chemotactic potential ϕ, which depends on the total mass of the tumor. It obeys

the diffusion equation

� rx � ðKrx�Þ ¼ f ðm1Þs; Krx� � nj@O ¼ 0 ð6Þ

endowed with the homogeneous Neumann boundary condition. In (6), x 7! σ(x) is a given

form function with zero-mean, K > 0 is a positive coefficient. The coefficient K could be

matrix-valued as well, taking into account further details of the vasculature or the properties of

the tissues neighboring the tumor, that govern the supply of immune cells. The strength of the

potential depends on the total mass of the tumor through the function μ1 7! f(μ1)� 0. It is nat-

ural to assume that f(0) = 0 and f is non decreasing. A typical example of f is the following
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Michealis-Menten functional response:

f ðm1Þ ¼
m1

Zþ m1

; Z > 0: ð7Þ

We suppose that c and cr have the same chemotactic sensitivity χ> 0, and they both satisfy

homogeneous Dirichlet boundary condition on @O: the immune cells far from the tumor are

non-activated.

Let us now describe the zeroth order terms of the equations, that differ depending on the

considered type of cells. Both type of immune cells is subjected to a death rate γ, γr> 0. The

antitumor immune cells are recruited from a source of naive immune cells (t, x)7!S(t, x). The

activation process is described through a rate μ1 7! g(μ1)� 0, which depends on the total mass

of the tumor. Again, it is natural to assume g(0) = 0 and g is non decreasing. There are two

other mechanisms that lead to a loss of antitumor immune cells. First, according to assump-

tion A.4, the protumor immune cells suppress effector cells; this is traduced by a loss term

� kcccr

where kc> 0 is the rate of this reaction. Second, according to assumption A.9, certain activated

effector cells can be converted into protumor immune cells under the action of cytokines in

the TME. This leads to the loss term

� krIyc

where kr> 0 is the rate of this conversion, and x 7! θ(x) is a given form function, say a peaked

Gaussian, indicating that such processes occur in the vicinity of the tumor. This loss of antitu-

mor immune cells contributes to the gain term for the population of protumor immune cells.

Cytokines also activate protumor immune cells from a distant source denoted by Sr according

to assumption A.8.

The effector cells release cytotoxic substances in the TME. This effect is described by the

death term

mðc; nÞðt; zÞ ¼ nðt; zÞ �
Z

O

dðyÞcðt; yÞ dy ð8Þ

in the tumor growth equation. It involves a non negative space-dependent weight x 7! δ(x),

which incorporates both the strength of the immune response and a radius of interaction.

According to assumption A.5, recruited protumor immune cells favor the tumor growth.

Therefore the growth rate of the tumor cells is enhanced by the presence of protumor immune

cells and it becomes

VðzÞ 1þ

Z

O

b1ðyÞcrðt; yÞ dy
� �

ð9Þ

with a certain non negative, radially symmetric and compactly supported kernel b1.

Finally, we turn to the dynamics of the tumor-secreted cytokines, which promote the protu-

mor reactions. The production of such cytokines occurs beyond a certain critical mass,

denoted by m. Moreover, the cytokine concentration is naturally damped with a constant rate

τ> 0. This leads to the ODE

@tI ¼ cðm1Þ � tI ð10Þ

where ψ is a threshold function, non negative and non decreasing. For instance, given a
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constant �c > 0, it can be defined by:

cðm1Þ ¼
�c

(
ðm1 � mÞ; m1 > m

0; m1 � m
ð11Þ

We shall need the technical assumptions ψ(0) = ψ0(0) = 0, which clearly holds when m> 0.

The threshold m can be used to describe the degree of inflammation of the tumor environ-

ment: the smaller m, the more inflamed the environment, and a reduced m can correspond to

altered soil, due to systemic effects caused by a primary tumor. Eventually, we arrive at the fol-

lowing system describing the interactions between the tumor cells, the effector and protumor

immune cells:

@tnþ @z VðzÞ 1þ

Z

O

b1ðyÞcrðt; yÞ dy
� �

n
� �

¼ QðnÞ � mðn; cÞ; ð12aÞ

@tcþrx � ðcwrx� � DrxcÞ ¼ gðm1ÞS � gc � krIyc � kcccr; ð12bÞ

@tcr þrx � ðcrwrx� � DrxcrÞ ¼ IðSr þ krycÞ � grcr; ð12cÞ

@tI ¼ cðm1Þ � tI; ð12dÞ

� rx � ðKrx�Þ ¼ f ðm1Þs; ð12eÞ

nðt; 0Þ ¼ 0; cj@O ¼ 0; crj@O ¼ 0; Krx� � nð�Þj@O ¼ 0; ð12fÞ

nðt ¼ 0; zÞ ¼ n0ðzÞ; cðt ¼ 0; xÞ ¼ c0ðxÞ; cðt ¼ 0; xÞ ¼ c0

r ðxÞ; Iðt ¼ 0Þ ¼ I0: ð12gÞ

We remind the reader that the cell division operator Q(n) and the immune cell-tumor

interaction term m(c, n) are defined in (2) and (8) respectively. Table 1 recapitulates the bio-

logical meaning of the parameters of the model. We refer the reader to [24] for details on the

units and typical values of these quantities; further parameter identification from experimental

data and sensitivity analysis is detailed in [36].

A simplified model to assess the role of the parameters on damping and

escape

In order to shed some light on the possible behavior of the solutions and on the role of the

parameters, we temporarily adopt a set of simplifying assumptions. Let us consider the very

specific case where

• V and a are constant,

• the source S of immune cell is constant,

• the source Sr = 0 vanishes and the other parameters D, K are constant and positive,

• the coupling function is linear: g(μ1) = μ1,

• the space variation of the concentrations of immune cells is neglected,

• we consider the binary division model (3) with a constant frequency a.
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These assumptions, that are used only in this Section, completely disregard the space

dependence of the unknowns and certainly lack of biological relevance; the ambition of the

discussion of this simplified framework is to provide an intuition on the role of the parameters.

In this simple situation, the dynamics is described by the following system of ordinary differ-

ential equations for μ0, μ1, given by (4) and (5), and the time-dependent concentrations of

immune cells and of cytokines:

d
dt
m0 ¼ m0 a � dcð Þ;

d
dt
m1 ¼ Vð1þ b1crÞm0 � dm1c;

d
dt

c ¼ m1S � gc � krcI � kcccr;

d
dt

cr ¼ krcI � grcr;

d
dt

I ¼ cðm1Þ � tI:

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð13Þ

Table 1. Recap of the main definitions and notations.

variable description

z volume of tumor cells

t time variable

x space variable

n size-density of tumor cells with a volume z
V tumor cells growth rate

a tumor cells division rate

μ0 total number of tumor cells

μ1 total volume of tumor cells

c concentration of antitumor cells

cr concentration of protumor cells

χ chemotactic coefficient

ϕ chemotactic potential

D diffusion coefficient of the immune cells

S source of antitumor immune cells

Sr source of protumor immune cells

K diffusion coefficient of the chemotactic signal

σ chemotactic signal

I cytokine concentration

γ death rate of the antitumor immune cells

γr death rate of the protumor immune cells

τ damping rate of the cytokine concentration

kc suppression rate of antitumor cells by the protumor cells

kr conversion rate of antitumor cells into protumor cells

θ form function of the conversion of antitumor cells into protumor cells

δ form function of the antitumor action in the TME

b1 tumor growth rate induced by the protumor cells

m threshold on the tumor volume driving the cytokine activation

https://doi.org/10.1371/journal.pone.0259291.t001
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The state

mH
0

mH
1

cH

cHr

IH

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼

0

0

0

0

0

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

ðHÞ

is a trivial equilibrium solution to (13) which corresponds to a healthy state. However, we can

also find equilibrium states with residual tumor cells, effector immune cells and even protu-

mor immune cells. Indeed, let

mNP
0

mNP
1

cNP

cNPr

INP

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼

ga2

dVS
ga
dS
a
d

0

0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: ðNPÞ

If mNP
1
� m, the threshold for the activation of cytokines, this defines an equilibrium solu-

tion with a residual tumor and free of protumor immune cells. Next, let us introduce

Q ¼
kra
dt
;

and let

mP
1
¼

ga
d
� Qm �

kca
grd

Qm

S � Q �
kca
grd

Q
: ð14Þ

be the tumor mass at equilibrium with the presence of protumor immune cells. Indeed, if mP
1
>

m another equilibrium solution is given by

mP
0

mP
1

cP

cPr

IP

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼

a
Vð1þ b1cPr Þ

mP
1

mP
1

a
d

Q
cðmP

1
Þ

gr

cðmP
1
Þ=t

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ðPÞ
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That the definition of this unhealthy state makes sense requires that the right hand side in

(14) is positive. It means that

either S > Q 1þ
kca
grd

� �

> 0 and
ga
d
> Qm 1þ

kca
grd

� �

or S < Q 1þ
kca
grd

� �

and
ga
d
< Qm 1þ

kca
grd

� �

;

ð15Þ

imposing constraints on the parameters. Let us discuss the possibility of obtaining the different

equilibrium states mNP
1

, mP
1
, depending on the ratio a

d
between the tumor division rate a and the

strength of the immune response δ. It measures the competitiveness between the tumor and

the antitumor immune cells. We thus study respectively the sign of mNP
1
� m and mP

1
� m. On

the one hand,

mNP
1
� m < 0 if and only if

a
d
<

mS
g
; ð16Þ

and on the other hand

mP
1
� m ¼

g
a
d
� mS

S � Q1

a
d
� Q2

a
d

� �2
; ð17Þ

where

Q1 ¼
kr
t

and Q2 ¼
kckr
grt

:

Let us denote by

X2 ¼

�
Q1

Q2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q1

Q2

� �2

þ
4S
Q2

s

2
;

ð18Þ

the non-negative root of the denominator in (17). By analyzing the sign of (17), we distinguish

two cases

• if m <
gX2

S (relatively small critical mass),

mP
1
� m > 0 if and only if

a
d
2

mS
g
;X2

� �

ð19Þ

and

mP
1
� m < 0 if and only if

a
d
2 0;

mS
g

� �

[ X2;þ1ð Þ: ð20Þ
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This is summarized in the following table

and 283

µP1 −m < 0 if and only if a
δ
∈
(

0, mS
γ

)
∪ (X2,+∞) . (20)

This is summarized in the following table 284

a

δ

µP1 −m

µNP1 −m

0
mS

γ
X2 +∞

< 0 0 > 0 < 0

µP1 admissible

< 0 0 > 0 > 0

µNP1 admissible
285

There is no admissible equilibrium when a
δ ∈ [X2,+∞): the aggressiveness of the 286

tumor is strong and the tumor mass certainly blows up. 287

• if m > γX2
S , we have 288

a

δ

µP1 −m

µNP1 −m

0 X2
mS

γ
+∞

< 0 > 0 0 < 0

µP1 admissible

< 0 < 0 0 > 0

µNP1 admissible
289

Again, there is no admissible equilibrium when a/δ becomes large. 290

Discussion on the stability of the equilibrium points. The Jacobian matrix 291

evaluated at the healthy state (H) reads 292

JH =


a 0 0 0 0
V 0 0 0 0
0 S −γ 0 0
0 0 0 −γr 0
0 0 0 0 −τ


Since a > 0, JH has a positive eigenvalue and the healthy state is linearly unstable. The 293

equilibrium state (NP), which is free of protumor immune cells, corresponds to the 294

unhealthy state in [24]. The Jacobian matrix at this state reads 295

JNP =



0 0 −γa
2

V S
0 0

V −a −γa
S

0 0

0 S −γ −kc
a

δ
−kr

a

δ
0 0 0 −γr kr

a

δ
0 0 0 0 −τ
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There is no admissible equilibrium when a
d
2 ½X2;þ1Þ: the aggressiveness of the tumor is

strong and the tumor mass certainly blows up.

• if m >
gX2

S , we have

and 283

µP1 −m < 0 if and only if a
δ
∈
(

0, mS
γ

)
∪ (X2,+∞) . (20)

This is summarized in the following table 284

a

δ

µP1 −m

µNP1 −m

0
mS

γ
X2 +∞

< 0 0 > 0 < 0

µP1 admissible

< 0 0 > 0 > 0

µNP1 admissible
285

There is no admissible equilibrium when a
δ ∈ [X2,+∞): the aggressiveness of the 286

tumor is strong and the tumor mass certainly blows up. 287

• if m > γX2
S , we have 288

a

δ

µP1 −m

µNP1 −m

0 X2
mS

γ
+∞

< 0 > 0 0 < 0

µP1 admissible

< 0 < 0 0 > 0

µNP1 admissible
289

Again, there is no admissible equilibrium when a/δ becomes large. 290

Discussion on the stability of the equilibrium points. The Jacobian matrix 291

evaluated at the healthy state (H) reads 292

JH =


a 0 0 0 0
V 0 0 0 0
0 S −γ 0 0
0 0 0 −γr 0
0 0 0 0 −τ


Since a > 0, JH has a positive eigenvalue and the healthy state is linearly unstable. The 293

equilibrium state (NP), which is free of protumor immune cells, corresponds to the 294

unhealthy state in [24]. The Jacobian matrix at this state reads 295

JNP =



0 0 −γa
2

V S
0 0

V −a −γa
S

0 0

0 S −γ −kc
a

δ
−kr

a

δ
0 0 0 −γr kr

a

δ
0 0 0 0 −τ
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Again, there is no admissible equilibrium when a/δ becomes large.

Discussion on the stability of the equilibrium points. The Jacobian matrix evaluated at

the healthy state (H) reads

JH ¼

a 0 0 0 0

V 0 0 0 0

0 S � g 0 0

0 0 0 � gr 0

0 0 0 0 � t

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

Since a> 0, JH has a positive eigenvalue and the healthy state is linearly unstable. The equi-

librium state (NP), which is free of protumor immune cells, corresponds to the unhealthy state

in [24]. The Jacobian matrix at this state reads

JNP ¼

0 0 �
ga2

VS
0 0

V � a �
ga
S

0 0

0 S � g � kc
a
d
� kr

a
d

0 0 0 � gr kr
a
d

0 0 0 0 � t

0

B
B
B
B
B
B
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B
B
@
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A
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and its characteristic polynomial is

pðlÞ ¼ � ðgr þ lÞðtþ lÞðl
3
þ ðgþ aÞl2

þ 2aglþ ga2Þ:

As in [24], we distinguish two cases, which depends on the ratio g

a. The ratio compares the

death rate of the antitumor immune cells to the tumor cells division rate. We get

• if γ> 4a, the eigenvalues of JNP are given by

l1 ¼ � gr; l2 ¼ � t; l3 ¼ � a; l4 ¼
1

2p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðg � 4aÞ

p
� g

� �
;

l5 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðg � 4aÞ

p
� g

� �
:

They are all real and negative.

• if γ< 4a, the eigenvalues are given by

l1 ¼ � gr; l2 ¼ � t; l3 ¼ � a; l4 ¼
1

2
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðg � 4aÞ

p
� g

� �
;

l5 ¼
1

2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðg � 4aÞ

p
� g

� �
:

They all have a negative real part.

Therefore, when admissible (mNP
1
< m), the unhealthy state with no protumor immune cells

is always linearly stable. In addition, the ratio γ/a discriminates between a damped behavior,

and an oscillatory behavior. As observed in [24], the greater the cell division, the faster the

oscillations of the tumor mass μ1. For the equilibrium with protumor cells, the Jacobian matrix

becomes full and we are not able to find such explicit formula for the eigenvalues.

We observe on numerical grounds that in the case where the equilibrium states (NP) and

(P) coexist (X2 <
a
d
< mS

g
), there is either the formation of an equilibrium free of protumor cells,

namely as in (NP), or the blow up of the tumor mass due to the activation of protumor

immune cells; when a
d
> mS

g
, the tumor mass always blows up. Typical results are depicted in

Fig 3: when the control occurs, the concentration of antitumor immune cells tends to the equi-

librium value a/δ (Fig 3a)); otherwise, it reaches a constant state below the equilibrium value

(Fig 3b–3d). The simulations also show that the control of the tumor is very sensitive to the

strength of the source of naive immune cells and to the division rate of the tumor cells. It is

worth remarking that the damping of the tumor mass towards an equilibrium can be restored

by strengthening the activation law of effector immune cells for large tumor masses, for

instance by using gðm1Þ ¼ m
2
1
, see Fig 4.

Existence of equilibrium phases for the PDE model

We now go back to the full PDE model (12a)–(12g) and we explain why an equilibrium can be

expected in certain circumstances. The analysis and simulations carried out in [24] for the

model without protumor immune cells reveal the existence and stability of a cancer-persistent

equilibrium. It turns out that the equilibrium phase corresponds to the situation where the
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death rate induced by the effector immune cells precisely counterbalances the natural expo-

nential growth of the tumor cell population.

Indeed, it is known that the growth-fragmentation operator admits an eigenpair (λ, N) sat-

isfying

@zðVNÞ � QðNÞ þ lN ¼ 0 for z � 0;

Nð0Þ ¼ 0; NðzÞ > 0 for z > 0;

Z þ1

0

NðzÞ dz ¼ 1; l > 0:

8
><

>:
ð21Þ

We refer the reader to [35] for a detailed analysis of this eigenproblem. When the action of

the immune system is neglected, namely m(n, c) = 0 and b1 = 0 in (12a), the population of

tumor cells grows exponentially fast and its size-distribution is governed by the eigenfunction:

n(t, z)*t! 1 eλt N(z), see [26–28]. Equilibrium occurs when the death rate due to the effector

cells reaches the eigenvalue. Namely, the concentration C of cytotoxic effector cells at

Fig 3. Typical behavior of the solutions of the simplified ODE system (13). Data: V = 0.616, δ = 1., S = 1.5, kr = 1.25,

kc = 0.1, m = 2. x-axis: time, y-axis: μ1, mass of the tumor (plain, left axis), and c, strength of the active immune cells

(dashed, right axis); the expected equilibrium value is a/δ (dotted line in fig. (a)). When a is small enough, the tumor is

controlled and the concentration of immune cells tends to the equilibrium value (fig. (a)). For larger a, the

concentration of immune cells tends to a constant smaller than the expected equilibrium and the tumor mass blows up

(fig. (b)-(d)). Mind that the time scale differs: in (b)-(d) the tumor mass mass blows rapidly, the larger a, the faster the

blow up.

https://doi.org/10.1371/journal.pone.0259291.g003
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equilibrium should satisfy

Z

O

dðxÞCðxÞ dx ¼ l: ð22Þ

Fig 4. Typical behavior of the solutions of the simplified ODE system (13) with gðm1Þ ¼ m
2
1
. Data: V = 0.616, δ = 1.,

S = 1.5, kr = 1.25, kc = 0.1, m = 2. Fig. (a)-(d): x-axis: time, y-axis: μ1, mass of the tumor (plain, left axis), and c, strength

of the active immune cells (dashed, right axis), the expected equilibrium value is a/δ (dotted line in fig. (a) and (b)).

Fig. (e)-(f): x-axis: time, y-axis: c strength of the active immune cells (dashed, right axis), cr, concentration of protumor

cells (square, left axis). The equilibrium is restored with a strengthened recruitment of antitumor immune cells for

large tumor masses. The behavior of the concentration of protumor cells follows the behavior of the tumor mass

(compare (c)-(e) or (d)-(f)).

https://doi.org/10.1371/journal.pone.0259291.g004

PLOS ONE Mathematical modeling of tumor growth: From equilibrium to escape phase

PLOS ONE | https://doi.org/10.1371/journal.pone.0259291 November 22, 2021 16 / 38

https://doi.org/10.1371/journal.pone.0259291.g004
https://doi.org/10.1371/journal.pone.0259291


In turn, the definition of the concentration of activated immune cells by means of station-

ary convection-diffusion-reaction equations defines implicitly the total tumor mass at equilib-

rium. This intuition is made precise by the following statement which extends the results of

[24] to the situation with protumor immune activities and inflammatory signals.

Theorem 1 Let F be the solution of

rx � ðKrxFÞ ¼ s;

endowed with the homogeneous Neumann boundary condition. There exists ℓ? > 0 such that for
any 0< ℓ< ℓ?, there exists a unique �m1ð‘Þ > 0 and ðC�m1ð‘Þ

;Cr;�m1ð‘Þ
; I�m1ð‘Þ

Þ, solution of the station-
ary equations

gC þ krIyC þ kcCCr � f ð�m1Þrx � ðCwrx�Þ � rx � ðDrxCÞ ¼ gð�m1ÞS; ð23aÞ

grCr � f ð�m1Þrx � ðCrwrx�Þ � rx � ðDrxCrÞ ¼ IðSr þ kryCÞ; ð23bÞ

I ¼
cð�m1Þ

t
; ð23cÞ

Cj
@O
¼ 0; Crj@O ¼ 0; ð23dÞ

satisfying
R
O δC dx = ℓ.

Proof. We adapt the arguments from [24], taking into account protumor immune cells and

cytokines. We start by introducing the mapping

F : ð‘; m1Þ 2 ½0;1Þ � ½0;1Þ7!

Z

O

dCm1
dx � ‘

where Cm1
is the solution of (23a) associated to μ1. We are searching for the zeroes ofF .

Clearly, when μ1 = 0, C0 = 0, I0 = 0, Cr,0 = 0 satisfies (23a)–(23d), together with the constraint
R
δC0 dx = 0, so thatFð0; 0Þ ¼ 0. Next, we have @m1

Fð‘; m1Þ ¼
R

O
dC0

m1
dx, where C0

m1
is

defined by the system

ðgþ krIyþ kcCrÞC0 þ ðkrI0yþ kcC0rÞC � rx � ðDrxC0Þ � f ðm1Þrx � ðC0rxFÞ

¼ g 0ðm1ÞSþ f 0ðm1Þrx � ðCm1
rxFÞ

grC0r � rx � ðDrxC0rÞ � f ðm1Þrx � ðC0rrxFÞ;

¼ I0ðSr þ kryCÞ þ IkryC0 þ f 0ðm1Þrx � ðCm1
rxFÞ;

I0 ¼
c
0
ðm1Þ

t
:

With μ1 = 0, the right hand side of the equation for C0r vanishes and we get C0r ¼ 0. In the

right hand side of the equation for C0, g0(0)S 6¼ 0 is non negative and the maximum principle for

elliptic equations tells us that C0
0
> 0. It follows that @m1

Fð0; 0Þ ¼
R

O
dC0

0
dx > 0. We can thus

apply the implicit function theorem: there exists ℓ? > 0 and a mapping �m1 : ‘ 2 ½0; ‘?Þ7!�m1ð‘Þ

such thatFð‘; �m1ð‘ÞÞ ¼ 0 holds for any ℓ 2 [0, ℓ?). We have

@‘Fð‘; �m1ð‘ÞÞ þ �m 0
1
ð‘Þ@m1

Fð‘; �m1ð‘ÞÞ ¼ � 1þ �m 0
1
ð‘Þ@m1

Fð‘; �m1ð‘ÞÞ ¼ 0

with @m1
Fð0; 0Þ > 0. Hence, ‘7!�m1ð‘Þ is increasing on the neighborhood of ℓ = 0, and it thus

takes positive values.
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Theorem 1 applies directly when the action of protumor immune cells is neglected on the

cell-division equation (namely assuming b1 = 0): the eigenstate (λ, N) is defined a priori and

the statement directly defines the equilibrium phase with the constraint (22). The statement

involves a smallness assumption and it justifies the existence of equilibria with small tumor

masses. In the case of the binary division model with a constant division rate a and a constant

growth rate V, the smallness assumption is equivalent to a smallness assumption on the divi-

sion rate a. The numerical simulations indicate a quite robust property [24, 36] and the small-

ness assumption could be only technical.

The analysis of the full model accounting for a protumor action on the tumor growth rate is

much more involved: V(z) is multiplied by the factor (1 + β(t)) with

bðtÞ ¼
Z

b1ðyÞcrðt; yÞ dy:

As t!1, we expect that cr(t, x) and c(t, x) admits limits so that
R
δc(t, x)dx tends to some

λ> 0 and β(t) tends to an asymptotic value β1 while the size-distribution of the tumor cells

is described by an eigenpair (λ, N). However, in general the eigenvalue λ depends on the

value of β1, which induces a stronger coupling between the unknowns. The case where both

a and V are constant is specific and allows us to strengthen the intuition. In this case, the

leading eigenvalue λ = a does not change when V is replaced by V(1 + β1); only the profile is

rescaled into

Nb1
ðzÞ ¼ N1

z
1þ b1

� �

;

where the profile N1 is known. As β1 increases, the asymptotic size-distribution of tumor

cells contains larger cells, see [24, Fig. 3]. For general coefficients, the leading eigenstate of

the growth-fragmentation operator is not explicitly known but it can be computed numeri-

cally using the power method designed in [36]: Fig 5 gives the value of the eigenvalue λ and

shows the profiles of the eigenfunctions when the growth rate z 7! V(z) follows the Gompertz

law (1) and the division rate is given by z 7!aðzÞ ¼ a1z0�z<1
for some z0 > 0. Changing V now

modifies both the profile and the eigenvalue.

For the same reasons, when the protumor cells modify the growth rate of the tumor cells,

we cannot use as such the method designed in [36] to predict the equilibrium state. Neverthe-

less, the numerical simulations of the initial-boundary value problem highlight the following

features:

• when the critical mass m is positive, either the steady state is free of protumor immune

cells (cr� 0) and the tumor is controlled by the antitumor immune cells or both the tumor

mass μ1 and the concentration of protumor immune cells cr blow up. The former occurs

for small division rates, the latter is observed with more aggressive tumors. Furthermore,

when the tumor growth is controlled, we can check that the asymptotic concentration of

antitumor immune cells (x 7! C(x)) satisfies (22) (see the numerical experiments detailed

below)

• when the critical mass is equal to zero (m = 0), either we observe an equilibrium state con-

taining residual protumor immune cells or the tumor mass μ1 and the concentration of pro-

tumor immune cells cr blow up.
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Results

This section is devoted to numerical investigations of the PDE system (12a)–(12g). In the

absence of protumor immune effects, the establishment of an equilibrium seems to be a quite

robust feature of the model [24, 36]. This raises the issue to determine whether or not the pro-

tumor effects can break the equilibrium and lead to the escape phase and what are the key

parameters to such a transition. We start by discussing this issue, dealing with quite complex

growth-division coefficients, and equally with simpler constant coefficients, for which the

details of the equilibrium are explicitely known, in order to fully validate the intuition on

numerical grounds. The next challenge is to incorporate in the model the effects of treatments

in order to understand how they can help in avoiding the escape phase and restore an equilib-

rium. To this end, we shall need to introduce additional equations describing exhausted

immune cells the antitumor activity of which can be restored by the treatments. Another possi-

bility is to reduce the protumor effects of the cytokine signals. We are going to discuss the

effects of both strategy, bringing out the role of the administration dose and the starting time

of the treatment. Finally, we show that combining the two approaches is highly beneficial, pro-

viding a better control of the tumor mass, with reduced dose and later administration.

Fig 5. Shapes of the leading eigen-function, solution of the growth-division Eq (21). x-axis: z, size of the tumor cells, y-axis: number of tumor cells at

the final time. The profiles are obtained for the binary cell division operator (3) with a constant division rate a> 0. and the Gompertz law (1) for the

growth rate. The shape is driven by the ratio a
r where r = (1 + β1) is the intrinsic growth rate of the tumor cells.

https://doi.org/10.1371/journal.pone.0259291.g005
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The mathematical model (12a)–(12g) accounts for the action of both anti- and protumor

immune cells shaping tumor growth kinetics. Numerical experiments were used to challenge

the model. We perform the numerical simulations considering the binary division operator

(3) with a constant division rate a> 0. For details on the numerical methods, which are based

on finite volume discretizations, we refer the reader to [24, 36]. According to the framework in

[24], we assume that the tumor is located at the origin of the computational domain O, which

here is the unit ball of R2, and we use the following definitions

dðxÞ ¼
A

x
ffiffiffiffiffiffi
2p
p exp �

jxj2

2x
2

� �

; b1ðxÞ ¼
Ab1

xb1

ffiffiffiffiffiffi
2p
p exp �

jxj2

2x
2

b1

 !

: ð24Þ

For defining the source term of the chemoattractant potential and the form function θ we

also use the following Gaussian profiles:

sðxÞ ¼
As

xs
ffiffiffiffiffiffi
2p
p exp �

jxj2

2x
2

s

� �

; yðxÞ ¼
Ay

xy
ffiffiffiffiffiffi
2p
p exp �

jxj2

2x
2

y

� �

ð25Þ

In what follows, we use the Michaelis-Menten law (7) and we simply set g(μ1) = μ1. For the

simulations, we shall use the following data, otherwise explicitly stated: the initial data are

(c0(x), cr,0(x)) = (0, 0) and n0ðzÞ ¼ 10:125�z�5. The parameters are given in Table 2. We use

dimensionless equations, without addressing precisely the issue of parameter calibration (see

[24, 36] for further details on this issue). For the numerical experiments, we consider the

source of antitumor cells, that contains T cells recruited in specific sites like the lymph nodes,

as well as NK, N1, M1 taken from the circulation, as space-homogeneous. In contrast, we work

with an heterogeneous source Sr of protumor cells, distant from the tumor site (see Fig 6; in

practice, we use 1/5 of the source depicted in this figure). This assumption corresponds to a

privileged recruitment of protumor cells in specific sites, like the bone marrow.

Emergent qualitative features: Promotumor cells are determinant for the

shift to the escape phase

In order to assess the qualitative behavior of the system (12a)–(12g), we perform a set of simu-

lations with assumptions that incorporate several biological effects, namely

• z 7! V(z) obeys the Gompertz law (1);

• the division rate z 7!aðzÞ ¼ a1z0�z<1
for some z0 > 0 (for the numerical tests we set z0 = 1)

vanishes for the smallest cells;

• the presence of the protumor immune cells promotes tumor growth with b1 6¼ 0.

Table 2. Data for the simulations.

A ξ2 Aσ x
2

s
a V r b χ S γ

1 0.02 0.002 0.05 0.8 0.616 0.616 10 0.864 5 0.18

Ab1
xb1

Aθ ξθ kr kc τ η m

10−6 0.03 0.2 0.3 1 1 1 1 2

https://doi.org/10.1371/journal.pone.0259291.t002
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We generically observe two behaviors: either an equilibrium state establishes, with a resid-

ual tumor and free of protumor immune cells, or the immune system fails in controlling the

tumor, with a significant concentration of protumor immune cells at the center of the domain

(like in Fig 7 which also clearly illustrates how the antitumor resources is stemmed in the vicin-

ity of the tumor) and the tumor mass blows up. This rough conclusion should be nuanced: the

threshold m certainly plays a critical role. With m = 0, the worst situation since protumor

immune cells are immediately activated, we can find equilibria with the three types of cells

(tumor cells, antitumor and protumor immune cells). Such equilibria occur with quite small

values of the cell division rate a; increasing a leads to an escape phase. It is likely that similar

phenomena occur with positive threshold m and very small a’s. When a steady regime estab-

lishes, we check on numerical ground, by evaluating the eigenpair of the growth-division equa-

tion, that the asymptotic antitumor cell concentration is consistent with the constraint (22).

We make the parameters vary in order to discuss the influence of their value on the behav-

ior of the system. We only modify one quantity at a time, the others being kept as in Table 2.

• Tumor aggressiveness. As indicated in [24], by increasing the division rate a, we make the

tumor more aggressive. The results with the PDE system are consistent with this intuition

and the observations made above on the simplified ODE system: for small division rates, the

mass of the tumor is rapidly damped, while the tumor escapes the control of the immune

Fig 6. Source Sr of protumor cells. x-y axis correspond to the space coordinates.

https://doi.org/10.1371/journal.pone.0259291.g006
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system as a increases, see Fig 8. When control occurs, protumor immune cells can be acti-

vated in the transient states, but insufficiently to counterbalance the effector immune

response. Therefore, the concentration of protumor immune cells decreases to zero, while

�mcðtÞ ¼
Z

O

dðxÞcðt; xÞ dx ð26Þ

tends to the leading eigenvalue λ of the growth-division equation, see Figs 8 and 14a. When

the tumor is more aggressive, it recruits more protumor immune cells: in turn, the action of

these cells restrains the concentration of antitumor immune cells which remains below the

expected equilibrium value, eventually favoring the tumor escape. The specific value of a for

the bifurcation from a controlled tumor growth to the escape state depends on the critical

mass m: the smaller the critical mass m, the smaller the critical division rate a. Figs 9 and 10

illustrate the space organization of the immune response in a situation where the control of

the tumor is lost (the data are the same as in Fig 8(c)). Antitumor cells are activated and

recruited from a homogeneous bath while protumor cells come from specific spots, as it

appears clearly in the earliest pictures. Both are directed towards the tumor, at the center of

the domain, by the chemotactic potential. In the situation depicted in these figures, the pro-

tumor action becomes strong in the vicinity of the tumor where it inhibits the antitumor

response.

• Efficiency of the immune response. The immune response is enhanced by increasing A, that

measures the strength of the immune cells against the tumor cells, see (24), or the source S of

effector antitumor cells. For small values of these parameters, the tumor escapes the control

of the immune response, see Figs 11 and 12. While the tumor mass μ1 keeps growing, the

immune strength �mc remains limited and cannot balance the growth rate of the tumor. For

large S or A, the equilibrium establishes, with �mcðtÞ tending asymptotically to counterbalance

the tumor growth rate λ.

Further numerical validation. The case where the growth rate V and the division rate a
are constant is less relevant biologically, but it can be used to check the properties of the model

Fig 7. Space distribution of immune cells. Antitumor cells c (left) and protumor cells cr (right). x-y axis: space

coordinates. The concentration of protumor cells is higher in the vicinity of the tumor, where the concentration of

antitumor cells has been depleted. The picture has been obtained from the simulation of the system (12a)–(12g), at

final time t = 2.23, with a = 4.

https://doi.org/10.1371/journal.pone.0259291.g007
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Fig 9. Simulation of the PDE model (12a)–(12g): Evolution of the size repartition of the antitumor immune cells.

The test corresponds to Fig 8(c), with a = 4. x-y axis: space coordinates. The antitumor cells are recruited from a

homogeneous bath of non-activated cells, and then are directed towards the tumor by chemotactism. However, the

protumor activities lower their concentration in the vicinity of the tumor (mind that the scale of the color map changes

with time).

https://doi.org/10.1371/journal.pone.0259291.g009

Fig 8. Simulation of the PDE model (12a)–(12g) for several values of the division rate a. Evolution of the tumor

mass μ1 (plain, left axis), and of the immune strength �mc (defined in (26), dashed, right axis); expected equilibrium

value λ (dotted line in fig. (a) and (b)). When a is small enough an equilibrium is reached with �mc tending to the

eigenvalue λ of the cell-division equation, and a residual tumor mass (fig. (a) and (b)). For larger a’s the tumor escapes

the control of the immune system and its mass bows up (fig. (c) and (d)): mind the different time scales, since the

blows up is faster as a increases.

https://doi.org/10.1371/journal.pone.0259291.g008
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Fig 10. Simulation of the PDE model (12a)–(12g): Evolution of the size repartition of the protumor immune cells.

The test corresponds to Fig 8(c), with a = 4. The protumor cells are activated in 3 specific sites, and then are directed

towards the tumor by chemotactism. Eventually there is a high concentation of protumor cells in the vicinity of the

tumor (mind that the scale of the color map changes with time).

https://doi.org/10.1371/journal.pone.0259291.g010

Fig 11. Simulation of the PDE model (12a)–(12g) for several values of the source of effector immune cells S.

Evolution of the tumor mass μ1 (plain, left axis), and of the immune strength �mc (defined in (26), dashed, right axis).

When S is large enough an equilibrium is reached with �mc tending to the eigenvalue λ of the cell-division equation

(dotted line in fig. (c) and (d)), and a residual tumor mass (fig. (c) and (d)). For smaller S’s the tumor escapes the

control of the immune system and its mass blows up (fig. (a) and (b)).

https://doi.org/10.1371/journal.pone.0259291.g011

PLOS ONE Mathematical modeling of tumor growth: From equilibrium to escape phase

PLOS ONE | https://doi.org/10.1371/journal.pone.0259291 November 22, 2021 24 / 38

https://doi.org/10.1371/journal.pone.0259291.g010
https://doi.org/10.1371/journal.pone.0259291.g011
https://doi.org/10.1371/journal.pone.0259291


and of the numerical procedures since the eigenpair (λ, N) is explicitly known in this case, see

[37, 38] and [28, Lemma 4.1]: in fact we have λ = a. Still with the purpose of assessing the

model and the numerical method on simple basis, it is relevant to perform simulations by

assuming also that the protumor immune cells do not enhance the growth rate of the tumor

cells (b1 = 0). It means that the protumor effect is limited to the suppression of antitumor

capacities. This case is biologically questionable, but, as explained above, we have an intuition

a priori on the details of the possible equilibrium state, and we can directly check whether or

not the large time behavior is described by this expected equilibrium.

Beyond the validation, it is remarkable that the qualitative conclusions do not substantially

change when comparing the results to the more complete situation dealt before: compare Figs

8 and 11–15, respectively. The evolution of the concentration of protumor immune cells in Fig

16 is equally quite generic: we clearly see the difference between an equilibrium case where this

concentration vanishes as time grows, and an escape case where it blows up. These observa-

tions show the robustness of the model in describing the equilibrium vs escape phenomena

and this is very reassuring for further investigations with clinical data, as in [36]. In this direc-

tion, identifying the parameters of the equations is a critical issue. It can be interesting, based

Fig 12. Simulation of the PDE model (12a)–(12g) for several values of the immune strength A. Evolution of the

tumor mass μ1 (plain, left axis), and of the immune strength �mc (defined in (26), dashed, right axis); expected

equilibrium value λ (dotted line in fig. (c) and (d)). When A is large enough an equilibrium is reached with �mc tending

to the eigenvalue λ of the cell-division equation, and a residual tumor mass (fig. (c) and (d)). For smaller A’s the tumor

escapes the control of the immune system and its mass bows up (fig. (a) and (b)).

https://doi.org/10.1371/journal.pone.0259291.g012
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on the present observations, to neglect some phenomena which can only marginally affect the

dynamics, while potentially introducing a set of unknown parameters.

Effect of immunotherapy strategies

Now that we have validated a robust mathematical model of tumor growth which takes into

account the contribution of anti and protumor immune cells, we use it to compare the effects

of two immunotherapy treatments targeting these immune cells with opposed functions. To

this end, we bear in mind that a proportion of the effector cells are just inhibited by immuno-

suppressive mechanisms; in other words they are not destroyed: they become hyporesponsive.

However, they can be re-activated by specific treatments. The restoration of the antitumoral

activity of effector T cells can be obtained by using Immune Checkpoint Inhibitors, like anti-

PD-1 or anti-CTLA4 antibodies [14, 15]. The infusion of CAR-T and CAR-NK cells can also

mimic such rescue [39]. A second strategy is to reduce the recruitment of protumor immune

cells by blocking infiltration of MDSCs (anti-CXCR2, cMet) [40, 41] and Tregs (anti-CD25)

[13]. We discuss the effect of these approaches, illustrated in Fig 17, independently and we also

consider the combination of the two treatments compared to the mono-therapies.

Fig 13. Validation of the PDE model (b1 = 0, V and a constant). Evolution of the tumor mass μ1 (plain, left axis), and

of the immune strength �mc (defined in (26), dashed, right axis) for several values of the division rate a; expected

equilibrium value λ (dotted line). When a is small enough an equilibrium is reached with �mc tending to the eigenvalue

λ of the cell-division equation, and a residual tumor mass (fig. (a) and (b)). For larger a’s the tumor escapes the control

of the immune system and its mass bows up (fig. (c) and (d)): mind the different time scales, since the blows up is

faster as a increases.

https://doi.org/10.1371/journal.pone.0259291.g013
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Fig 14. Validation of the PDE model (b1 = 0, V and a constant). Evolution of the tumor mass μ1 (plain, left axis), and

of the immune strength �mc (dashed, right axis) for several values of the source of immune cells S; expected equilibrium

value λ (dotted line in fig. (c) and (d)). When S is large enough an equilibrium is reached with �mc tending to the

eigenvalue λ of the cell-division equation, and a residual tumor mass (fig. (c) and (d)). For smaller S’s the tumor

escapes the control of the immune system and its mass bows up (fig. (a) and (b)).

https://doi.org/10.1371/journal.pone.0259291.g014

Fig 15. Validation of the PDE model (b1 = 0, V and a constant). Evolution of the tumor mass μ1 (plain, left axis), and

of the immune strength �mc (dashed, right axis) for several values of the source of immune strength A expected

equilibrium value λ (dotted line in fig. (c) and (d)). When A is large enough an equilibrium is reached with �mc tending

to the eigenvalue λ of the cell-division equation, and a residual tumor mass (fig. (c) and (d)). For smaller A’s the tumor

escapes the control of the immune system and its mass bows up (fig. (a) and (b)).

https://doi.org/10.1371/journal.pone.0259291.g015
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Therapy based on the reactivation of exhausted antitumor immune cells. To consider

the action of treatments boosting the immune response against the tumor, we introduce the

concentration ca of exhausted cells. In order to describe the restoration mechanism, we add

the following equation to the model:

@tca þrx � ðcawrx� � DrxcaÞ ¼ akcccr � gaca; ð27Þ

where the parameter 0< α< 1 describes the proportion of effector T cells that become hypor-

esponsive under the action of the protumor cells (see (28a)). Note that the death rate γa could

be significantly larger than the original death rate γ: it is believed that exhausted T cells have a

shorter life time. Next, the effect of treatments able to restore the antitumor activity of the

exhausted immune cells is described by a time-dependent function t 7!T 1ðtÞ. It is assumed to

be proportional to the drug concentration in the TME. Consequently, the dynamic is governed

Fig 16. Validation of the PDE model (b1 = 0, V and a constant). Evolution of the averaged protumor cells

concentration mcr ¼
R

O
cr dx (square, left axis), and of the immune strength �mc (dashed, right axis) for several values of

the division rate a. For small a (fig. (a)), the concentration of antitumor immune cells reaches the equilibrium, and the

concentration of protumor cells is damped; for large a (fig. (b)), the equilibrium does not establish and the

concentration of protumor immune cells keeps growing.

https://doi.org/10.1371/journal.pone.0259291.g016
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by the following system, which extends (12a)–(12g)

@tcþrx � ðcwrx� � DrxcÞ ¼ gðm1ÞSþ T 1ca � gc � krIyc � kcccr; ð28aÞ

@tcr þrx � ðcrwrx� � DrxcrÞ ¼ IðSr þ krycÞ � grcr ð28bÞ

@tca þrx � ðcawrx� � DrxcaÞ ¼ akcccr � gaca � T 1ca; ð28cÞ

@tI ¼ cðm1Þ � tI ð28dÞ

� rx � ðKrx�Þ ¼ f ðm1Þs; ð28eÞ

cj
@O
¼ 0; crj@O ¼ 0; rx� � nð�Þj@O ¼ 0; ð28fÞ

cðt ¼ 0; xÞ ¼ c0ðxÞ; cðt ¼ 0; xÞ ¼ c0

r ðxÞ; Iðt ¼ 0Þ ¼ I0: ð28gÞ

The kinetic of the drug effect is described by the following equation

@tT 1 ¼ kðtÞ � dT 1
T 1; ð29Þ

where t 7! κ(t) describes the drug administration protocol and dT 1
is the degradation rate of

this drug. For the numerical tests, we set

kðtÞ ¼

0; 80 � t � t0
X

k�0

kkðt � kT2Þ; 8t � t0

8
><

>:
ð30Þ

Fig 17. Schematic overview of the action of treatments on the immune response. AIC: antitumor cells, PIC:

protumor cells, EIC: exhausted immune cells.

https://doi.org/10.1371/journal.pone.0259291.g017
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where,

kkðtÞ ¼

( q; t0 þ kT2 < t � t0 þ kT2 þ T1

0; t0 þ kT2 þ T1 � t < t0 þ ðkþ 1ÞT2:
ð31Þ

The model depends on

• the time t0 when the treatment starts,

• the duration T2 between two drug administrations,

• the duration T1 of the drug administration,

• the administered drug concentration q.

For the numerical tests, we place ourselves in the same configuration as in Fig 8(c) where

the tumor escapes the immune control due to the effects of protumor immune cells. We fix α,

the proportion of effector T cells that become exhausted to 0.5 and we keep the other parame-

ters as in Table 2. We set

T1 ¼ 1; T2 ¼ 7; dT 1
¼ 0:05

and we make the starting time t0 and the dose q vary. We indeed observe that these parameters

have a critical role on the treatment efficacy.

When the treatment is given early (for instance, when 0� t0� 5), the control of the tumor

can be obtained with relatively low drug doses (see Fig 18), in comparison to the cases where

the treatment is administered later (Fig 19). At these early administration of the treatment, the

tumor growth is controlled with a residue of dormant tumor cells and activated effector

immune cells. Reducing the treatment dose reduces the drug efficacy with smaller tumor mas-

ses reached over longer period of time. For very small doses, the escape can occur.

Fig 18. Reactivation of exhausted antitumor cells: Early administration of the treatment. Simulation performed on

the system (28a)–(28g), with (29)–(31). Evolution of the tumor mass μ1 (plain, left axis), and of the immune strength �mc
(dashed, right axis) for several values of the treatment dose q. The dash-dotted line represents the time at which the

treatment starts.

https://doi.org/10.1371/journal.pone.0259291.g018
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When the treatment is given later (for instance, when 10� t0� 15, see Fig 19): the tumor

growth is slowed down by the treatment, but the tumor continues to grow exponentially fast.

Increasing the drug dose increases the treatment efficacy. However, this observation raises the

issue of the toxicity of the administered drug.

These observations are in line with experimental data using immune checkpoint inhibitors

or CART/NK cells. Indeed, syngeneic CMS5 fibrosarcomas allowed to grow for 3 days in vivo

were easily eradicated by adoptive transferred tumor-specific T cells while a 100-fold larger

number of transferred tumor specific T-cell was mandatory to eradicate tumors that have been

grown for an additional 48 hours. The same tumors that have been grown for 7 days before

transferring adoptive tumor-specific T cells were not eradicated [42].

Therapy based on reducing cytokine signals recruiting protumor immune cells. Treat-

ments based on blocking cytokine signals can help reducing the recruitment of protumor

immune cells. A possible strategy uses cytokine traps [43, 44], by means of molecules that

inhibit signal transduction from T cell cytokine receptors. Therefore, the treatment acts by

down-regulating the effect of the tumor induced cytokines. We denote by T 2, the effect of

treatments which are able to block those cytokines. It obeys a kinetic similar to (29)

@tT 2 ¼ k
ð2ÞðtÞ � dT 2

T 2; ð32Þ

where

kð2ÞðtÞ ¼

0; 80 � t � t0
X

k�0

k
ð2Þ

k ðt � kT2Þ; 8t � t0

8
><

>:
ð33Þ

and

k
ð2Þ

k ðtÞ ¼

( q2; t0 þ kT2 < t � t0 þ kT2 þ T1

0; t0 þ kT2 þ T1 � t < t0 þ ðkþ 1ÞT2:
ð34Þ

Fig 19. Reactivation of exhausted antitumor cells: Late administration of the treatment. Simulation performed on

the system (28a)–(28g), with (29)–(31). Evolution of the tumor mass μ1 (plain, left axis), and of �mc (dashed, right axis)

for several values of the treatment dose q. The dash-dotted line represents the time at which the treatment starts.

https://doi.org/10.1371/journal.pone.0259291.g019
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The effect on the cytokines is described by modifying in (12b), (12c) the terms related to

the cytokine-dependent recruitment of protumor immune cells. Therefore, the equations on

the immune response become

@tcþrx � ðcwrx� � DrxcÞ ¼ gðm1ÞS � gc � krI½1 � T 2�þyc � kcccr; ð35aÞ

@tcr þrx � ðcrwrx� � DrxcrÞ ¼ I½1 � T 2�þðSr þ krycÞ � grcr ð35bÞ

@tca þrx � ðcawrx� � DrxcaÞ ¼ akcccr � gaca; ð35cÞ

@tI ¼ cðm1Þ � tI ð35dÞ

� rx � ðKrx�Þ ¼ f ðm1Þs; ð35eÞ

cj
@O
¼ 0; crj@O ¼ 0; rx� � nð�Þj@O ¼ 0; ð35fÞ

cðt ¼ 0; xÞ ¼ c0ðxÞ; cðt ¼ 0; xÞ ¼ c0

r ðxÞ; Iðt ¼ 0Þ ¼ I0: ð35gÞ

For the numerical tests, we set

T1 ¼ 1; T2 ¼ 7; dT 2
¼ 0:0105:

For the cytokine-blockade based treatment we observe a similar behavior as with the treat-

ment based on the reactivation of the exhausted immune cells. The efficacy of the treatment is

particularly sensitive to the starting time t0, see Fig 20.

Combination of the two immunotherapy strategies. When we combine the two treat-

ments described above, acting on both the reactivation of antitumor immune cells and the

blockade of the recruitment of protumor immune cells, we observe that this combination is

Fig 20. Reduction of the protumor recruitment: Early administration of the treatment. Simulation performed on

the system (35a)–(35g), with (32)–(34). Evolution of the tumor mass μ1 (plain, left axis), and of the immune strength �mc
(dashed, right axis) for several values of the treatment dose q. The dash-dotted line represents the time at which the

treatment starts.

https://doi.org/10.1371/journal.pone.0259291.g020
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more efficient than the mono-therapies. Indeed a suitable combination of the treatment doses

is able to control the tumor growth. For instance, the treatment based on the reactivation of

exhausted immune cells fails in controlling the tumor when given at t0 = 10 with a dose q = 2

see Fig 19(b), and the treatment based on cytokine/chemokine blockade fails with a dose q2 =

0.12 at t0 = 10, see Fig 21. However, the combination of the two treatments controls the tumor.

Again, we observe that giving the treatments later requires to readjust the doses in order to

control the tumor growth, see Fig 22. We notice that the controlled state contains residual

tumor cells and activated immune cells, see Fig 23(b) and 23(c).

Conclusion

This work introduces a mathematical model describing the interactions between tumor cells

and the immune system that regulate tumor growth, taking into account the antagonistic

effects of antitumor and protumor immune cells. While the antitumor action aims at eliminat-

ing tumor cells, the protumor effects favor its growth. The later can take different forms: elimi-

nation of antitumor cells, conversion of antitumor cells into protumor cells, or enhancement

Fig 21. Reduction of the protumor recruitment: Late administration of the treatment. Simulation performed on

the system (35a)–(35g), with (32)–(34). Evolution of the tumor mass μ1 (red curves, left axis), and of the immune

strength �mc (blue curve, right axis) for several values of the treatment dose q. The dash-dotted line represents the time

at which the treatment starts.

https://doi.org/10.1371/journal.pone.0259291.g021

Fig 22. Administration of the combined treatments at t0 = 15. Evolution of the tumor mass μ1 (plain, left axis), and

of the immune strength �mc (dashed, right axis) for several values of the treatment dose q. The dash-dotted line

represents the time at which the treatment starts.

https://doi.org/10.1371/journal.pone.0259291.g022
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of tumor growth. Mechanisms that dictate the balance between these two conflicting functions

with the TME are still not clear, mainly because of their complexity and heterogeneity. Mathe-

matical modeling can help capture such complexity. Our model based on partial differential

equations is remarkably able to reproduce equilibrium and escape phases, depending on the

value of the biological parameters.

Compared to the situation free of protumor activities we previously modeled [24], where

the equilibrium seems to always occur (possibly on very long scale of time, though), the addi-

tion of protumor immune cells leads to uncontrolled tumor growth when tumor aggres-

siveness overcomes the efficiency of the antitumor immune responses. Our model thus

pinpoints the critical role of the protumor immune response in the establishment of the

escape phase. This is consistent with experimental and clinical data. Indeed, as reported in

[41] the blockade of protumor neutrophil recruitment by cMet inhibitor decreases tumor

growth and potentiates anti-PD1 immunotherapy. Similarly, anti-CD25 depleting antibody

optimized to deplete Treg within tumors enhances anti-tumor immune responses and syner-

gizes with anti-PD1 treatment [45]. Based on these findings, we used our model to study the

effects on tumor progression of two common cancer therapeutic strategies, either the reacti-

vation of hyporesponsive antitumor cells or the reduction of the recruitment of protumor

cells. Such therapies boost the immune response and restore the equilibrium that maintains

Fig 23. Administration of the combined treatments at t0 = 10. Evolution of the tumor mass μ1 (plain, left axis), and

of the immune strength �mc (dashed, right axis) for several values of the treatment dose q. The dash-dotted line

represents the time at which the treatment starts.

https://doi.org/10.1371/journal.pone.0259291.g023
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the tumor in a viable state. Importantly, the numerical investigation brings out the influence

of the starting time of the treatment and of the administrated dose. We also show on numeri-

cal grounds that combining the two approaches clearly improves the efficacy of the treat-

ment. Such information is highly valuable and together with clinical observations, can

comfort clinical decisions.

This preliminary study opens challenging perspectives. First, mathematical analysis can

provide useful information, starting with further simplified equations, to understand the driv-

ing mechanisms of the equilibrium/escape phenomena and the effect of treatments. In particu-

lar this raises the practical issue of defining criteria that characterize the efficiency of the

immune response, in line with RECIST recommendations [46]. Indeed, not only the residual

mass of the tumor can be used as a relevant criterion, as in [36], but one has also to consider

the time necessary to reach an equilibrium, as well as the features of the transient states. For

treatments, the analysis, that should additionally consider toxicity effects, can help in under-

standing the optimal balance between dose and time of administration. Second, as simplified

as it is, the model contains many parameters. Most of them are not known or even not easily

accessible to experiments. Hence, based on optimisation techniques, an important work of

parameter calibration should be performed from clinical data, with the two-fold difficulty that

available data are rarely structured in time and space, and that data fitting techniques are far

less developed for PDE than for ODE. Nevertheless, new mass cytometry imagery techniques

open perspectives to address this issue [47]. Such investigation will permit us to determine rel-

evant ranges for the parameters, which, in turn, will allow us to perform a detailed sensitivity

analysis, beyond the attempt in [36]. This will be a decisive step to address in details the effects

and the optimization of targeted treatments.

Acknowledgments

The authors acknowledge the support of UCAncer, an incentive Université Côte d’Azur net-
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