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Abstract: The early prediction and identification of risk factors for diabetes may prevent or delay
diabetes progression. In this study, we developed an interactive online application that provides the
predictive probabilities of prediabetes and diabetes in 4 years based on a Bayesian network (BN) classifier,
which is an interpretable machine learning technique. The BN was trained using a dataset from the
Ansung cohort of the Korean Genome and Epidemiological Study (KoGES) in 2008, with a follow-up
in 2012. The dataset contained not only traditional risk factors (current diabetes status, sex, age, etc.)
for future diabetes, but it also contained serum biomarkers, which quantified the individual level of
exposure to environment-polluting chemicals (EPC). Based on accuracy and the area under the curve
(AUC), a tree-augmented BN with 11 variables derived from feature selection was used as our prediction
model. The online application that implemented our BN prediction system provided a tool that performs
customized diabetes prediction and allows users to simulate the effects of controlling risk factors for
the future development of diabetes. The prediction results of our method demonstrated that the EPC
biomarkers had interactive effects on diabetes progression and that the use of the EPC biomarkers
contributed to a substantial improvement in prediction performance.

Keywords: diabetes mellitus; glucose intolerance; machine learning; Bayesian network; environmen-
tal pollutants

1. Introduction

Diabetes is slowly rising across the globe. The prevalence of diabetes has been steadily
increasing over the past few decades [1–3]. About 422 million people live with diabetes
as of 2020 [4]. By 2045, more than 700 million people are expected to have diabetes [1].
Diabetes mellitus (DM) is associated with a wide range of serious health complications
that affect the renal, neurological, cardiac, and vascular systems, and it has a major impact
on overall health and healthcare costs [5–8]. Thus, predicting the disease is important to
taking preventive action to inhibit its progression.

It is believed that DM is primarily caused by behavioral factors such as poor diet
and physical inactivity. However, recent studies have demonstrated that exposure to
environment-polluting chemicals (EPC) is strongly associated with the development of
diabetes [9–12]. Many of the toxic effects of EPC result from aryl hydrocarbon recep-
tor (AhR)-mediated responses and/or mitochondrial inhibition [13–16]. We previously
quantified the level of human exposure to EPC using cell-based assays for AhR ligands
(AhRL) and mitochondria-inhibiting substances (MIS) using 10 µL serum samples [13,14].
Our pairwise association studies revealed that AhRL was associated with components of
metabolic syndrome and insulin resistance. AhRL had a positive correlation with serum
insulin and homeostatic model assessment of insulin resistance (HOMA-IR) and a negative
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correlation with adiponectin [16]. AhRL was correlated almost linearly with the toxic-
ity of total persistent organic pollutant (POP) mixtures present in the blood [13,14], and
with MIS concentration as measured by intracellular ATP (MIS-ATP) and reactive oxygen
species (MIS-ROS). Multivariate logistic regression analysis on the Korean Genome and
Epidemiological Study (KoGES) data demonstrated that normal subjects with a high level
of AhRL had at least a 4-fold higher risk of developing diabetes within 4 years compared
with subjects having a low level of AhRL [13].

Learning patterns and predicting disease progression from large, complex, and un-
balanced medical data is not easy. This complexity challenges medical researchers to
apply machine learning techniques to diagnose and predict the progression of the dis-
ease [17,18]. Machine learning is a branch of artificial intelligence research that employs a
variety of statistical, probabilistic, and optimization tools to learn from past data and then
uses prior learning (training) to classify new data, identify new patterns, or predict novel
trends [17–21]. A Bayesian network (BN), a machine learning technique, is a probabilistic
graphical model that uses conditional independencies/dependencies between variables to
build a directed acyclic graph (DAG) that visualizes the relationships between variables
in a simple and compact form [20]. BNs have been widely used on complex medical data
for diagnosis, prognosis, and prediction. A key advantage of the BN compared with other
machine learning techniques is its interpretability, which may help uncover explanations
or causative factors for symptoms or diseases [21,22]. Another important feature of the BN
is that it can incorporate expert knowledge about the relationships between variables with
data for construction of the BN structure [23,24]. In other words, BNs can combine expert
knowledge and automatic learning from data. This is in contrast with fully data-driven
machine learning techniques that may yield unreasonable results. This is one reason why
BNs have been widely applied in medicine [25].

Diabetes can be delayed or prohibited by controlling the factors that affect the disease,
such as diet, exercise, and EPC exposure. However, many people have difficulty maintain-
ing their effort over the long term, because they often lack knowledge about the disease or
those with diabetes/prediabetes are asymptomatic [18]. To motivate people who are at a
high risk of diabetes to continue their efforts, it is important to quantify the effects of the
risk factors in a way that patients can easily understand and to provide a tool that patients
can easily access and that allows them to immediately see the expected consequences if
they succeed in controlling the risk factors.

In this study, we aim to develop an interactive online application (app) based on a BN
model that provides the predictive probabilities of prediabetes and diabetes in 4 years. The
BN was trained using the data for 1531 subjects from the Ansung community-based cohort
of the KoGES in 2008 [13]. This dataset contained glucose tolerance, EPC biomarkers (AhRL,
MIS-ATP, MIS-ROS), and the traditional variables known to be relevant to diabetes, which
were measured in 2008. It also contained glucose tolerance measured in the four-year follow
up study in 2012. The online app that implements our BN prediction system provides a
tool that instantly shows the prediction results given the user’s available information.

Our BN prediction used as predictors the EPC biomarkers that quantified the level of
accumulation of EPC in the human body, as well as commonly used diabetes risk factors.
The results from our prediction system revealed that the EPC biomarkers were dominant
risk factors for diabetes progression. AhRL was the most effective predictor, and there were
strong interactive effects of AhRL and MIS-ATP on future diabetes.

2. Materials and Methods
2.1. Data

The Ansung cohort of the KoGES was established to investigate the genetic and environ-
mental etiology of common, complex diseases in Koreans. The results of the KoGES are available
to the public, and a summary of the results has been published [26]. The data used in this study
were downloaded from the KoGES depository with permission. In this study, we used a dataset
from 1537 subjects from KoGES whose serum samples were collected for oral glucose tolerance
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testing (OGTT) in 2008 [13] and were used to measure AhRL, MIS-ATP, and MIS-ROS using
cell-based assays [15]. These 1537 subjects were classified as having normal glucose tolerance
(NGT), impaired glucose tolerance (IGT), or diabetes mellitus (DM) in both 2008 and in the 2012
follow-up study. The NGT, IGT, or DM of subjects was determined by WHO criteria based
on the results of 75 g OGTT; NGT was defined as fasting plasma glucose (FPG) < 100 mg/dL
and 2 h post load glucose concentrations after OGTT (2 h glucose) < 140 mg/dL; IGT was de-
fined as 100 mg/dL ≤ FPG < 126 mg/dL and 140 mg/dL ≤ 2 h glucose < 200 mg/dL; DM
was defined as FPG ≥ 126 mg/dL, or 2 h glucose ≥ 200 mg/dL, or if the subject was taking
antidiabetic medication.

2.2. Data Processing

The raw data contained 1116 variables. However, most variables were irrelevant
to diabetes and/or redundant; the irrelevant or redundant variables were discarded. In
addition, variables with >70% missing values and/or having correlation coefficients of
greater than 0.8 with other variables were eliminated. After this data cleaning process,
glucose tolerance status at the time of data collection in 2008 (cGTOL), the three EPC
biomarkers, and 18 variables that were known to be relevant to diabetes, were considered
as candidate predictor variables for predicting glucose tolerance in 4 years (fGTOL). The
letters “c” and “f” in cGTOL and fGTOL stand for “current” and “future”, respectively.
We used GTOL in the variable names because diabetes status was determined by fasting
glucose tolerance level in our study. In this paper, we will use diabetes and glucose
intolerance interchangeably.

Out of the total of 1537 subjects, 6 subjects had missing values for the predictors, so they
were removed from the data. The ages of the remaining 1531 subjects were between 47 and 76,
and females accounted for 55.3% of the sample. The numbers (%) of subjects having NGT, IGT,
and DM for cGTOL were 917 (59.8%), 242 (15.8%), and 372 (24.3%), respectively, while the
number (%) of subjects having fGTOL (4 years later) of NGT, IGT, and DM were 907 (59.2%),
183 (11.9%), and 441 (28.8%), respectively. There was a slight increase in DM and a slight
decrease in IGT after 4 years. Detailed descriptions of the variables are given in Table 1.

Table 1. Description and discretization of variables.

Variable Description Class

fGTOL Glucose tolerance at 4-year follow-up NGT, IGT, DM
cGTOL Glucose tolerance at the time of data collection NGT, IGT, DM

Sex Sex Male, Female
Drink Alcohol intake Non-drinker, Ex-drinker, Current drinker
Smoke Smoking status Non-smoker, Ex-smoker, Current smoker
Exercise Exercise No, Yes
DMFMY DM family history No, Yes

Age Age (years) <50; 50–60; 60–70; ≥70
Waist Waist circumference (cm) <85; ≥85 (female), <90; ≥90 (male)
BMI Body mass index (kg = m2) <23; 23–25; 25–30; 30–35; ≥35
sysBP Systolic blood pressure (mm Hg) <120; 120–130; 130–140; ≥140
HbA1c Glycated haemoglobin A1c <5.5; 5.5–6.6; ≥6.6
HOMA-β Homeostasis model assessment of β-cell function <76; 76–114; ≥114
HOMA-IR Homeostasis model assessment for insulin resistance <1.6; 1.6–2.5; ≥2.5
TCHL Total cholesterol (mg/dL) <200; 200–230; ≥230
HDL High-density lipoprotein cholesterol (mg/dL) <40; 40–60; ≥60
TG Triglycerides (mg/dL) <150; 150–200; ≥200
ALT Alanine aminotransferase (IU/L) <40; ≥40
AST Aspartate aminotransferase (IU/L) <40; ≥40
hsCRP High-sensitivity C-reactive protein (mg/L) <1; 1–3; ≥3

AhRL Aryl hydrocarbon receptor ligands (pM, TCDDeq) <2.7; ≥2.7
MIS-ATP Mitochondria-inhabiting substances determined by ATP contents (%) <88.07; ≥88.07
MIS-ROS Mitochondria-inhabiting substances determined by ROS levels (%) <120; ≥120
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We observed that all patients with DM in 2008 remained as DM in 2012. Because such a
non-variable 100% transition rate can degrade the performance of a prediction system, the
372 subjects who were in DM in 2008 were excluded from the dataset, and the data for the
remaining 1159 subjects in NGT or IGT in 2008 were used to build a BN prediction model.

Table 2 summarizes the baseline characteristics of the predictor variables. It presents
the mean ± standard deviation (SD) for continuous variables and the frequency (%) for
discrete variables, by each group, NGT, IGT, and DM, of fGTOL. The homogeneity of each
predictor variable across different groups of fGTOL was tested using the one-way analysis
of variance (ANOVA) for continuous variables and chi-squared tests for discrete variables.
The Tukey’s post hoc tests were conducted for predictor variables with significant ANOVA
test results to find out which specific pairs of groups have different means. The means of
age (Age), body mass index (BMI), waist circumference (Waist), systolic blood pressure
(sysBP), high density cholesterol (HDL), and triglyceride (TG) were significantly lower in
the NGT of fGTOL than in the IGT or DM. Similarly, the means of hemoglobin A1c (HbA1c),
HOMA-IR, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were
significantly higher in the DM than in the NGT or IGT. On the other hand, HOMA-β cell
function (HOMA-β) was significantly lower in the DM than in the NGT or IGT. The serum
biomarkers AhRL, MIS-ATP, and MIS-ROS had significantly different levels between the
fGTOL groups. It is interesting to note that sex (Sex), smoking status (Smoke), and cGTOL
had strongly significant relationships with fGTOL, while exercise (Exercise) and diabetes
family history (DMFMY) had no significant relationship with fGTOL.

Table 2. Baseline characteristics of candidate predictor variables by fGTOL, the glucose tolerance
status after 4 years (2012).

fGTOL

Total
(N = 1159)

NGT
(N = 907)

IGT
(N = 183)

DM
(N = 69)

Assoc
p-Value

Post Hoc
(Tukey)

Variable Mean ± SD or N (%)

Age 59.74 ± 8.34 59.0 ± 8.32 62.54 ± 7.98 61.6 ± 8.43 <0.001 a,b
Sex <0.001

Male 499 (43.1%) 401 (55.8%) 58 (31.7%) 40 (58.0%)
Female 660 (56.9%) 506 (44.2%) 125 (68.3%) 29 (42.0%)

BMI 24.13 ± 3.13 23.90 ± 3.05 25.08 ± 3.30 24.58 ± 3.19 <0.001 a
Waist 87.57 ± 8.50 86.80 ± 8.35 90.08 ± 8.26 91.09 ± 8.92 <0.001 a,b
sysBP 119.77 ± 15.74 118.34 ± 15.13 123.90 ± 16.20 127.72 ± 18.04 <0.001 a,b
HbA1c 5.50 ± 0.39 5.44 ± 0.36 5.62 ± 0.41 5.89 ± 0.42 <0.001 a,b,c

HOMA-β 112.86 ± 67.21 113.88 ± 69.07 116.88 ± 62.10 88.77 ± 49.00 0.007 b,c
HOMA-IR 2.12 ± 1.30 2.03 ± 1.27 2.50 ± 1.48 2.20 ± 0.95 <0.001 a

TCHL 191.75 ± 32.91 190.65 ± 31.97 195.57 ± 34.79 195.99 ± 38.91 0.099
HDL 46.10 ± 10.68 46.72 ± 10.74 44.38 ± 10.61 42.39 ± 8.73 <0.001 a,b
TG 132.15 ± 80.21 124.82 ± 69.82 150.48 ± 90.67 179.80 ± 136.70 <0.001 a,b,c

ALT 22.01 ± 15.40 21.27 ± 12.97 23.08 ± 21.10 28.84 ± 23.44 <0.001 b,c
AST 24.64 ± 10.81 24.28 ± 88.99 24.61 ± 10.36 29.38 ± 24.51 <0.001 b,c

hsCRP 1.61 ± 5.08 1.63 ± 5.60 1.44 ± 2.29 3.55 ± 2.71 0.863
DMFMY 0.332

No 1052 (90.8%) 827 (91.2%) 161(88.0%) 64 (92.8%)
Yes 107 (9.2%) 80 (8.8%) 22 (12.0%) 5 (7.2%)

Smoke <0.001
Non- 777 (67.1%) 614 (67.7%) 133 (72.7%) 30 (33.3%)
Ex- 194 (16.7%) 146 (16.1%) 32 (17.5%) 16 (23.2%)

Current 188 (16.2%) 147 (16.2%) 18 (9.8%) 23 (43.5%)
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Table 2. Cont.

fGTOL

Total
(N = 1159)

NGT
(N = 907)

IGT
(N = 183)

DM
(N = 69)

Assoc
p-Value

Post Hoc
(Tukey)

Variable Mean ± SD or N (%)

Drink 0.041
Non- 587 (50.6%) 454 (50.0%) 106 (57.9%) 27 (39.1%)
Ex- 61 (5.3%) 45 (5.0%) 9 (4.9%) 7 (10.1%)

Current 511 (44.1%) 408 (45.0%) 68 (37.2%) 35 (50.7%)
Exercise 0.216

No 788 (68.0%) 623 (68.7%) 115 (62.8%) 50 (72.5%)
Yes 371 (32.0%) 284 (31.3%) 68 (37.2%) 19 (27.5%)

cGTOL <0.001
NGT 917 (79.1%) 783 (86.3%) 109 (59.6%) 25 (36.2%)
IGT 242 (20.9%) 124 (13.7%) 74 (40.4%) 44 (63.8%)

AhRL (pM) 2.03 ± 1.24 1.73 ± 1.02 2.96 ± 1.27 3.55 ± 1.42 <0.001 a,b,c
MIS-ATP (%) 91.99 ± 12.06 93.79 ± 11.94 86.53 ± 10.07 82.76 ± 9.66 <0.001 a,b
MIS-ROS (%) 112.31 ± 11.91 111.12 ± 10.69 116.2 ± 14.17 117.46 ± 16.35 <0.001 a,b

cGTOL, glucose tolerance at the time of data collection (current); fGTOL, glucose tolerance after 4 years (future);
BMI, body mass index; Waist, waist circumference; sysBP, systolic blood pressure; TCHL, total cholesterol; HDL,
high density cholesterol; TG, triglyceride; ALT, alanine aminotransferase; AST, aspartate aminotransferase; hsCRP,
high-sensitivity C-reactive peptide; DMFMY, DM family history. “Assoc p-value” is the p-value from ANOVA or
chi-square test between each row variable and fGTOL. “Post hoc (Tukey)” presents the significant difference (5%
level) of each row variable between a pair of classes of fGTOL from Tukey’s post hoc test; ‘a’ between NGT and
IGT of fGTOL, ‘b’ between NGT and DM, and ‘c’ between IGT and DM.

2.3. Discretization of Predictors

Because most of the continuous predictor variables in our dataset did not follow Gaus-
sian distributions, we used a discrete BN that required the discretization (i.e., grouping or
categorization) of continuous predictors, which is a process that transforms continuous vari-
ables into discrete ones. Details of the discretization criteria used in this study are given in
Table 1. Waist, BMI, sysBP, HbA1c, HOMA-β, HOMA-IR, TCHL (total cholesterol), HDL, TG,
ALT, and hsCRP (high-sensitivity C-reactive peptide) were discretized according to medical
diagnostic criteria. AhRL, MIS-ATP, and MIS-ROS were discretized using the optimal cut-off
values obtained from the receiver operating characteristic (ROC) analysis [13].

2.4. BN Structure

Commonly used BN structures include naïve Bayes (NB), tree augmented naïve Bayes
(TAN) and general BN (GBN) [17]. NB assumes that each predictor variable is conditionally
independent of the other predictors given the target variable, i.e., there is no interaction effects
on the prediction of the target variable. This assumption is simple but unrealistic. TAN
employs a tree structure to relax the independence assumption of NB so that each predictor
variable depends on at most one other predictor, given the target variable. GBN assumes no
restriction on the structure, and it does not distinguish between the target variable and the
predictor variables, i.e., it considers the target variable as another predictor variable [23].

To construct the BN prediction model, also called the BN classifier, we considered
TAN and GBN classifiers, which are known to outperform NB in many applications in
terms of classification accuracy [23]. Moreover, TAN and GBN incorporate the interactive
effects of predictors, which is more realistic in most applications.

2.5. Feature Selection

Feature (predictor variable) selection is the essential process of reducing the number
of predictor variables to obtain a set of principal variables for building the BN classifier [19].
This process alleviates the overfitting problem caused by irrelevant or redundant variables,
that may strongly bias the performance of the classifier. It also improves the interpretability
of the BN structure and reduces training time. The selection of the most adequate set of
features for the task of classifying objects is based on the informational theoretical concepts
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of information gain and mutual information (MI) [24]. In this study, we applied two
feature selection methods: filter and wrapper [27–29]. The filter method selects features
by information gain based on the entropy of each feature, and it does not depend on the
BN structure. In this study, the function information.gain in R package Fselector [30] was
used to implement the filter method. The wrapper method applies the prediction with a
certain subset of features and evaluates the performance using cross-validation. Then, it
iterates and tries a different subset of features until the optimal subset is reached. The most
notable wrapper methods of feature selection are forward selection, backward selection,
and stepwise selection. The wrapper method depends on the BN structure; hence, it can
yield different feature subsets for TAN and GBN. In this study, we used forward selection
using the function forward.search in R package FSelector.

2.6. BN Prediction Model

Combining the BN structure and a set of predictors, we considered six candidate BN
classifiers: (i) TAN with all 22 predictors, (ii) TAN with the predictors selected from the
filter method, (iii) TAN with the predictors selected from the wrapper method, (iv) GBN
with all 22 predictors, (v) GBN with the predictors selected from the filter method, and (vi)
GBN with the predictors selected from the wrapper method.

The predictive performances of the BN classifiers were evaluated by accuracy (%)
and the area under the curve (AUC). To compute the accuracy and AUC, 10-fold stratified
cross-validation was repeated 10 times. We used the R package bnlearn [31] for structure
learning and parameter estimation for each BN model.

2.7. Online Interactive App

We integrated the proposed BN prediction system in an interactive online app called
DiabetesBN [32], using the R package Shiny. In the app, the class names, normal, pre-
diabetes, and diabetes, are used for NGT, IGT, and DM, respectively. The app shows
a barplot of the predictive probabilities of normal, prediabetes, and diabetes, based on
the user’s current diabetes status, EPC biomarkers, and commonly used behavioral and
clinical variables. When there are non-responses, i.e., missing values, for some variables, it
computes the marginal posterior probabilities given only the available information. This
marginalization takes account of the errors induced by the missing values in estimation of
the predictive probabilities, hence it provides more reasonable prediction results compared
with the frequently used imputation methods.

DiabetesBN may return slightly different probabilities on different runs due to simula-
tion noise because it uses cpquery function in bnlearn to compute the probabilities. The
cpquery function uses Monte Carlo simulation methods for estimation. We used 5 million
Monte Carlo iterations in the app, which took about 6 s to show the results and had a
variation of less than 5% for different runs. More accurate estimates can be obtained by
increasing the number of Monte Carlo iterations and/or using more advanced Monte Carlo
algorithms, but these can increase computation time.

A flow diagram of the data processing and the entire process of constructing our BN
prediction system is shown in Figure 1.



Int. J. Environ. Res. Public Health 2022, 19, 5800 7 of 17

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW  7 of 17 
 

 

the marginal posterior probabilities given only the available information. This marginali‐

zation takes account of the errors induced by the missing values in estimation of the pre‐

dictive probabilities, hence it provides more reasonable prediction results compared with 

the frequently used imputation methods. 

DiabetesBN may return slightly different probabilities on different runs due to sim‐

ulation noise because it uses cpquery function in bnlearn to compute the probabilities. The 

cpquery function uses Monte Carlo simulation methods for estimation. We used 5 million 

Monte Carlo  iterations  in  the app, which  took about 6 s  to show  the results and had a 

variation of less than 5% for different runs. More accurate estimates can be obtained by 

increasing  the number  of Monte Carlo  iterations  and/or using more  advanced Monte 

Carlo algorithms, but these can increase computation time. 

A flow diagram of the data processing and the entire process of constructing our BN 

prediction system is shown in Figure 1. 

 

Figure 1. Process of developing the BN prediction app for diabetes progression. 
Figure 1. Process of developing the BN prediction app for diabetes progression.

3. Results
3.1. Feature Selection

The variables selected using the feature selection methods in this study are shown in
Figure 2. The filter method selected 11 variables based on information gain (Figure 2a). The
top five variables selected from the filter method were AhRL, cGTOL, MIS-ATP, HbA1c,
and MIS-ROS. Note that the filter method does not depend on the structure of the BN, so the
predictors selected from the filter method can be used for both TAN and GBN. The wrapper
method selected 11 variables for TAN (Figure 2b) and 6 variables for GBN (Figure 2c). The
variables AhRL, MIS-ATP, HbA1c, HOMA-IR, MIS-ROS, and Smoke were selected from all
the three feature selection methods.



Int. J. Environ. Res. Public Health 2022, 19, 5800 8 of 17

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW  8 of 17 
 

 

3. Results 

3.1. Feature Selection 

The variables selected using the feature selection methods in this study are shown in 

Figure 2. The filter method selected 11 variables based on information gain (Figure 2a). 

The  top  five variables  selected  from  the  filter method were AhRL,  cGTOL, MIS‐ATP, 

HbA1c, and MIS‐ROS. Note that the filter method does not depend on the structure of the 

BN, so the predictors selected from the filter method can be used for both TAN and GBN. 

The wrapper method selected 11 variables for TAN (Figure 2b) and 6 variables for GBN 

(Figure 2c). The variables AhRL, MIS‐ATP, HbA1c, HOMA‐IR, MIS‐ROS, and Smoke were 

selected from all the three feature selection methods. 

 

Figure 2. Feature selection results from (a) filter method, (b) wrapper for TAN, and (c) wrapper for 

GBN. 

3.2. BN Prediction Model 

We considered six candidate BN models  from combinations of  two BN structures 

(TAN, GBN) and three sets of predictors (all 22 variables, the variables selected from the 

filter method, the variables selected from the wrapper method). Table 3 shows the mean 

± SD of classification accuracy and AUC for the six candidate BN models. We selected the 

TAN with the 11 predictors selected from the wrapper method as our BN model for pre‐

dicting the future development of diabetes because (i)  it achieved the highest accuracy 

and the AUC, (ii) TAN can be considered as a compromise between NB and GBN in terms 

of model complexity, and  (iii)  it contained almost  the same set of  features as  the  filter 

method, while the wrapper for GBN contained only six variables. The predictors selected 

by  the wrapper method  for  TAN were  AhRL,  cGTOL, MIS‐ATP, HbA1c, MIS‐ROS, 

HOMA‐IR, Smoke, Sex, Waist, HOMA‐β, and sysBP. 

Table 3. Classification accuracy and the AUC of Bayesian network classifiers. 

    Classifier 

Variables    TAN  GBN 

All variables  Accuracy (%)  77.68 ± 2.60  76.35 ± 1.81 

  AUC  0.7459 ± 0.0570  0.7868 ± 0.0528 

Filter  Accuracy (%)  78.02 ± 2.64  77.77 ± 2.61 

  AUC  0.7740 ± 0.0505  0.7618 ± 0.0513 

Wrapper  Accuracy (%)  79.43 ± 2.94  78.23 ± 0.42 

  AUC  0.8120 ± 0.0436  0.7886 ± 0.0384 

Figure 3 is a graphical display of the probabilistic relationship between variables in 

our BN prediction model. Each node  represents  a variable. Edges  (arrows  connecting 

nodes) represent conditional dependencies; unconnected nodes represent variables that 

Figure 2. Feature selection results from (a) filter method, (b) wrapper for TAN, and (c) wrapper
for GBN.

3.2. BN Prediction Model

We considered six candidate BN models from combinations of two BN structures (TAN,
GBN) and three sets of predictors (all 22 variables, the variables selected from the filter
method, the variables selected from the wrapper method). Table 3 shows the mean ± SD
of classification accuracy and AUC for the six candidate BN models. We selected the TAN
with the 11 predictors selected from the wrapper method as our BN model for predicting
the future development of diabetes because (i) it achieved the highest accuracy and the
AUC, (ii) TAN can be considered as a compromise between NB and GBN in terms of model
complexity, and (iii) it contained almost the same set of features as the filter method, while
the wrapper for GBN contained only six variables. The predictors selected by the wrapper
method for TAN were AhRL, cGTOL, MIS-ATP, HbA1c, MIS-ROS, HOMA-IR, Smoke, Sex,
Waist, HOMA-β, and sysBP.

Table 3. Classification accuracy and the AUC of Bayesian network classifiers.

All variables
Classifier

TAN GBN

All variables
Accuracy (%) 77.68 ± 2.60 76.35 ± 1.81

AUC 0.7459 ± 0.0570 0.7868 ± 0.0528

Filter
Accuracy (%) 78.02 ± 2.64 77.77 ± 2.61

AUC 0.7740 ± 0.0505 0.7618 ± 0.0513

Wrapper Accuracy (%) 79.43 ± 2.94 78.23 ± 0.42
AUC 0.8120 ± 0.0436 0.7886 ± 0.0384

Figure 3 is a graphical display of the probabilistic relationship between variables in
our BN prediction model. Each node represents a variable. Edges (arrows connecting
nodes) represent conditional dependencies; unconnected nodes represent variables that are
conditionally independent of each other [33,34]. Because TAN assumes a direct relationship
between each predictor and the target variable, all predictors are connected to the target
(blue edges in Figure 3). The black edges in Figure 3 show the conditional dependencies
between predictors. For example, given fGTOL, cGTOL is conditionally dependent on
variables AhRL, MIS-ATP, and MIS-ROS, but it is conditionally independent from Sex,
Smoke, HOMA-β, HOMA-IR, Waist, and sysBP.
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We calculated the scores for mutual information (MI) [34] between the target variable
fGTOL and the predictors. MI is a quantitative measure of the degree of interaction between
each node and its parent node in a network [35]. In other words, MI (X, Y) measures the
amount of information that predictor (X) provides about the target (Y). It can be computed
from the marginal distributions P(X = x), P(Y = y) and the joint distribution P(X = x, Y = y)
of two variables using the formula:

MI(X, Y) = ∑
x,y

P(X = x, Y = y) log
P(X = x, Y = y)

P(X = x)P(Y = y)
.

In Figure 3, the MI scores between the target variable (fGTOL) and the predictors
are presented on the edges between them. The computed MI scores ranged from 0.010 to
0.117. The top five informative variables for predicting fGTOL were AhRL (MI = 0.117),
cGTOL (MI = 0.078), MIS-ATP (MI = 0.056), HbA1c (MI = 0.051), and MIS-ROS (MI = 0.033).
These five variables were the serum EPC biomarkers and the well-known key indicators of
diabetes. The remaining six variables were Sex, Smoke, HOMA-β, HOMA-IR, Waist, and
sysBP. Interestingly, these six variables were separated from, i.e., conditionally independent
from, the top five variables, given fGTOL. This conditional independence implies that the
above two sets of variables had no interactive effect in predicting fGTOL.

3.3. Online Interactive App

If one selects the values of available predictors and clicks the green button “CLICK
for prediction results” in DiabetsBN, it shows the barplot of the predictive probabilities
for normal (NGT), prediabetes (IGT), and diabetes (DM), along with the probabilities (%)
marked above the bars. Figure 4 illustrates DiabetesBN for a subject with Sex = male,
Waist ≥ 90 cm, sysBP ≥ 140 mm Hg, Smoke = current, cGTOL = NGT, AhRL ≥ 2.7,
MIS-ATP < 88.07, and MIS-ROS ≥ 120. In Figure 4, his predictive probabilities for normal,
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prediabetes, and diabetes in 4 years are 7%, 19%, and 74%, respectively, and he has a very
high chance of diabetes mellitus in 4 years. If his AhRL is low (< 2.7) instead of high (≥2.7),
then the predictive probabilities for normal, prediabetes, and diabetes would become
approximately 35%, 19%, and 46%, respectively. This implies that if he lowers his AhRL,
he could cut his chance of developing DM within 4 years by 40% and he would be more
likely to stay in normal or prediabetes rather than to develop diabetes. Furthermore, if he
additionally makes his Waist < 90 cm, the predictive probabilities for Normal, prediabetes,
and diabetes would become approximately 60%, 19%, and 21%, respectively, and his chance
of diabetes in 4 years would be substantially reduced. The above examples illustrate that
by changing the values of some of the variables in the app using just a few clicks, one can
simulate one’s chance of developing diabetes/prediabetes in 4 years if one changes some
risk factors. This could be the driving force that will help people maintain their efforts in
controlling risk factors.
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Figure 4. An illustration of DiabetesBN [32], the online interactive app that implements the BN
prediction model for diabetes progression. This is an example of the predictive probabilities of
normal (NGT), prediabetes (IGT), and diabetes (DM) in 4 years for a subject with Sex = male,
Waist ≥ 90 cm, sysBP ≥ 140 mm Hg, Smoke = current, cGTOL = NGT, AhRL ≥ 2.7, MISATP < 88.07,
and MISROS ≥ 120.



Int. J. Environ. Res. Public Health 2022, 19, 5800 11 of 17

Note that in the above examples, HbA1c, HOMA-IR, and HOMA-β were missing,
which corresponds to the “none selected” values for these predictors in DiabetesBN. Thus,
DiabetesBN provides the marginal predictive probabilities given only the observed predic-
tors in these examples.

3.4. Effects of AhRL and MIS-ATP

The feature selection result and MI scores demonstrated that the three serum biomarkers,
AhRL, MIS-ATP, and MIS-ROS, played important roles in predicting diabetes. Moreover,
Figure 3 shows that these biomarkers are directly connected with cGTOL and HbA1c, which
are commonly used key indicators of diabetes. Other recent studies have also revealed that
these EPC biomarkers were closely related to diabetes and other metabolic diseases [13,36–39].
To see the effect of the level of human exposure to EPC on a patient’s future onset of diabetes,
we investigated the effects of AhRL and MIS-ATP in our BN prediction system when cGTOL
and HbA1c were adjusted for. Note that the four most important variables in our BN model
were AhRL, cGTOL, MIS-ATP, and HbA1c in descending order of MI scores. Among the three
EPC biomarkers, MIS-ROS was not considered because it had a relatively low MI score, and
the predictive probabilities were not much different for different levels of MIS-ROS when the
other four variables were given. Another reason for excluding MIS-ROS was that stratifying
subjects by five variables yielded small groups having less than five subjects, from which it
was difficult to obtain meaningful statistical results.

We did not adjust for variables other than cGTOL and HbA1c because of their small
MI scores and small-group problems mentioned above. In addition, we observed that there
were only six subjects whose HbA1c level were high (≥6.6%) among the 1159 subjects who
belong to either the NGT or IGT class of cGTOL. These six outlying subjects led to very
small groups in the adjustment for cGTOL and HbA1c, and hence they were excluded.

Figure 5 presents the predictive probabilities of DM (red bars) and IGT (yellow bars)
of fGTOL for each possible combination of AhRL and MIS-ATP levels, given cGTOL and
HbA1c. The lines show the predictive probabilities of DM (red lines) and IGT (yellow
lines) of fGTOL that were marginalized over AhRL and MIS-ATP, i.e., the predictive prob-
abilities given only cGTOL and HbA1c. From the figure, one can see that the predictive
probabilities varied substantially depending on the levels of AhRL and MIS-ATP. For ex-
ample, given cGTOL = IGT and 5.5 ≤ HbA1c < 6.6 (Figure 5b), the predictive probability
of developing DM in 4 years was 0.1818. However, when the additional information of
AhRL = high (≥ 2.7) and MIS-ATP = low (<88.07) was given, the predictive probabil-
ity of developing DM became 0.3152 (73% increase). This clearly shows that the level
of exposure to EPC was a key risk factor for the future development of diabetes and
that there were strong interactive effects of AhRL and MIS-ATP on diabetes progression.
Moreover, for every combination of cGTOL and HbA1c levels, the levels of (AhRL, MIS-
ATP) in descending order of the predictive probabilities of developing IGT/DM within
4 years were (high, low) > (high, high) > (low, low) > (low, high). The joint levels of high
AhRL and low MIS-ATP resulted in the highest risk of future IGT/DM.
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Figure 5. Predictive probabilities of DM (red) and IGT (yellow) for the joint levels of AhRL and
MIS-ATP given cGTOL and HbA1c. The levels of AhRL are low (<2.7) and high (≥2.7), and the
levels of MIS-ATP are low (<88.07) and high (≥88.07). The lines in each figure show the predictive
probabilities of DM (red) and IGT (yellow), marginalized over AhRL and MIS-ATP.

4. Discussion

We developed an interactive online app, DiabetesBN, for predicting the probabilities
of normal (NGT), prediabetes (IGT), and diabetes (DM) in 4 years based on a BN, an
interpretable machine learning technique. The BN was trained using the dataset obtained
from the Ansung cohort study of the KoGES [13]. The serum biomarkers for the level
of human exposure to EPC as well as the traditional risk factors of diabetes were used
as predictor variables. After we compared the two network structures, TAN and GBN,
and features selected from the filter-based and the wrapper-based methods, we selected
TAN with 11 predictors from the wrapper method as our BN prediction model based
on performance evaluation and practical considerations. The predictor variables in our
BN model were Sex, HbA1c, HOMA-β, HOMA-IR, Smoke, Waist, sysBP, cGTOL, AhRL,
MIS-ATP, and MIS-ROS.

The study on the joint effects of AhRL and MIS-ATP when cGTOL and HbA1c were
adjusted for demonstrated that the above EPC biomarkers played dominant roles in dia-
betes progression and that they interacted. Furthermore, from the 10-fold cross-validation
for performance evaluation, the accuracy and AUC of the proposed BN model were 79.43%
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and 0.8120, respectively, while those of the model with only the eight traditional variables
(excluding the three EPC biomarkers) were 77.53% and 0.7576, respectively. It can be
concluded that the additional EPC biomarkers contributed to a substantial improvement in
predictive performance. This is in good agreement with our previous study results, which
demonstrated that AhRL and MIS, especially MIS-ATP, were highly influential factors for
the development of DM within 4 years [13].

DiabetesBN provides predictions in terms of the probability of fGTOL for all three
classes—normal, prediabetes, and diabetes. The probabilities could be interpreted as
weights, and they can be easily and intuitively interpreted by non-experts. Moreover, from
the probabilities, one can determine the predicted class (e.g., the most probable class) and
determine the uncertainties associated with the prediction. A patient with the predictive
probabilities (0.1, 0.1, 0.9) for (normal, prediabetes, diabetes) would have to be treated
differently from a patient with the probabilities (0.3, 0.3, 0.4), although diabetes is the most
probable class for both patients. Moreover, the probabilities may allow clinicians to adopt
more flexible decision rules. For instance, considering that DM is a chronic disease that
affects patients’ quality of life and often calls for high health expenditure to treat its diverse
complications, clinicians may declare DM as the predicted class of a patient whenever
his/her probability of DM is greater than 40% and suggest more aggressive intervention to
the patient.

Most previous studies on diabetes prediction or diagnosis that incorporated the effect
of exposure to EPC were conducted under some assumptions about the pattern of associa-
tions. For example, the correlation coefficient measures a linear association between two
variables, and a multiple logistic regression model assumes that there exist linear effects
of the predictors on the log odds of the probabilities [36–39]. Correlation coefficients may
miss important nonlinear associations. In the logistic regression model, it may not be
easy for a non-expert to interpret the proportional effects of covariates on the odds of the
probability. Moreover, unless the covariates are transformed appropriately and additional
interaction terms are included as covariates, the logistic regression model detects only the
linear non-interactive effects of covariates on the log odds of the probability. On the other
hand, the BN, based on conditional dependencies between variables, do not assume any
specific form of covariate effects and incorporate interactive effects in a natural way.

Our final dataset used for learning the BN contained about 78% of NGT, 16% IGT,
and 6% DM in fGTOL. The dataset was imbalanced, like most medical datasets. However,
previous studies based on a large number of imbalanced datasets have demonstrated that
BN is a strong machine learning technique for an imbalanced data set [40–42]. Our BN
prediction model also demonstrated good performance based on the AUC, which has been
known to be a good metric for performance evaluation when instances are imbalanced
with respect to class labels [41,42].

Our BN prediction model demonstrated two conditionally independent groups, given
fGTOL: namely Group 1 consisting of HbA1c, cGTOL, AhRL, MIS-ATP, and MIS-ROS,
and Group 2 consisting of the traditional risk factors of diabetes, Sex, Smoke, HOMA-β,
HOMA-IR, Waist, and sysBP. It is notable that all variables in Group 1 have higher MI
scores than those in Group 2, and that the two groups do not interact in predicting fGTOL
(Figure 3). We applied a GBN that assumed no structural constraint to further investigate
the relationships between the two groups. The GBN also showed a very similar separation
of the two groups (Figure 6). This automatic data-driven relationship may provide helpful
information in building a suitable BN for causal inference, which will be discussed next.
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The cause–effect relationship is of great interest among researchers and practitioners,
especially in medical support. Causal relationships can be learned from data obtained
from randomized controlled experiments that allow intervention. In causal inference,
intervention is to fix the values of some variables and then observe what happens to the
other variables. In most practical cases, it is difficult or impossible to conduct randomized
controlled experiments, and data can be obtained only from observational studies. The data
used in this study were obtained from an observational study, and the directional edges in
our predictive BN do not imply causality. However, the data-driven relationships between
variables in the BN may provide information that can be used with expert knowledge
to build a causal BN, in which the causalities are encoded by the directed edges of the
network [25,33]. Moreover, given a causal BN, one can easily simulate the effects of inter-
vention without the need to carry out a real-world experiment, by changing the values of
some nodes that modify the distribution of other variables, called soft intervention [43–45].
This may be the reason why BN is popular in causal inference [25]. Our next research goal
is to build a suitable causal BN for our dataset and investigate the cause–effect relationship
that may help us to understand the mechanism of diabetes progression.

This study has some limitations. First, the sample size of 1159 may not be large enough to
control all significant confounding factors. Second, there might have been information lost in
the process of discretizing continuous variables into categorical ones. We adopted commonly
used medical criteria to discretize the continuous variables in our study. However, a different
number of categories and/or a different choice of thresholds could yield different prediction
results. Third, we considered only TAN and GBN for candidate BN structures in this study
and the structures were learned from data. The prediction model could be improved by
using other BN structures and/or incorporating expert knowledge when there is useful prior
information on the relationships between variables.
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5. Conclusions

In this study, we developed an online app for the prediction of diabetes based on
a BN trained from observations of the serum biomarkers of EPC exposure level and
traditional risk factors for diabetes progression. The app instantly shows the predictive
probabilities of diabetes (DM), prediabetes (IGT), and normal (NGT) when the user provides
available current conditions. The app can also be used as a tool for simulating the possible
consequences of interventions. The proposed BN model visualized the relationships
between the variables in a simple and interpretable way. In terms of MI scores, AhRL was
the most effective variable in the future development of diabetes, followed by cGTOL,
MIS-ATP, and HbA1c. An investigation on the effects of AhRL and MIS-ATP when cGTOL
and HbA1c were adjusted for also demonstrated that they were important risk factors, and
they acted interactively in the prediction of diabetes. The chance of developing diabetes or
prediabetes was the highest when the level of AhRL was high and the level of MIS-ATP was
low, given cGTOL and HbA1c. These results support the conjecture that the accumulation
of EPCs in the human body could contribute substantially to metabolic syndrome and
diabetes. Further investigation needs to be conducted on the cause–effect relationships
between the variables. This is our future research goal.
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