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Patients with coronavirus disease 2019 (COVID-19) who are critically ill develop vascular complications
characterized by thrombosis of small, medium, and large vessels. Dysfunction of the vascular endo-
thelium due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been
implicated in the pathogenesis of the COVID-19 vasculopathy. Although initial reports suggested that
endothelial injury was caused directly by the virus, recent studies indicate that endothelial cells do not
express angiotensin-converting enzyme 2, the receptor that SARS-CoV-2 uses to gain entry into cells, or
express it at low levels and are resistant to the infection. These new findings, together with the
observation that COVID-19 triggers a cytokine storm capable of injuring the endothelium and disrupting
its antithrombogenic properties, favor an indirect mechanism of endothelial injury mediated locally by
an augmented inflammatory reaction to infected nonendothelial cells, such as the bronchial and
alveolar epithelium, and systemically by the excessive immune response to infection. Herein we review
the vascular pathology of COVID-19 and critically discuss the potential mechanisms of endothelial injury
in this disease. (Am J Pathol 2021, 191: 1374e1384; https://doi.org/10.1016/j.ajpath.2021.05.007)
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Following an initial outbreak of pneumonia in Wuhan,
China, in December 2019,1 coronavirus disease 19
(COVID-19) has spread rapidly worldwide, infecting more
than 186 million people (Johns Hopkins Coronavirus
Resource Center, https://coronavirus.jhu.edu, last accessed
July 12, 2021). Caused by a new type of coronavirus, the
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2),2 the COVID-19 pandemic has put a major strain
on the healthcare systems, causing a global health crisis of
unparalleled proportions in modern times.3 Although most
patients have recovered from the infection, many experi-
enced a severe form of the disease that requires hospitali-
zation and intensive care, and >3.2 million people have
died. Individuals at greatest risk for the fatal complications
of COVID-19 have been the elderly and those with under-
lying conditions, such as lung disease, hypertension,
obesity, and diabetes.4

Clinical manifestations of COVID-19 in severely ill pa-
tients are adult respiratory distress syndrome and multiorgan
system failure.4,5 The clinical course of the disease can be
stigative Pathology. Published by Elsevier Inc
complicated by vascular events, including thrombosis of
small, medium, and large blood vessels and thromboem-
bolism.6,7 Although the primary target of SARS-CoV-2 is
the respiratory and alveolar epithelium,8 the frequent
occurrence of vascular complications in COVID-19 has led
to the hypothesis that dysfunction of the endothelium, the
inner lining of blood vessels, plays an important role in the
progression of this disease into a debilitating and lethal
condition.9 Two potential mechanisms have been hypothe-
sized to explain how SARS-CoV-2 causes endothelial
dysfunction and thrombosis. In the first scenario, SARS-
CoV-2 directly infects the endothelium, disrupting its
antithrombogenic and barrier properties. The second
. All rights reserved.
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Endothelial Injury in COVID-19
scenario invokes an indirect mechanism of endothelial
injury mediated by the local and systemic inflammatory
response to the viral infection.10,11 In this article, we briefly
review the vascular pathology of COVID-19 and critically
discuss the proposed mechanisms by which SARS-CoV-2
damages blood vessels, including recent studies that chal-
lenge the viral infection of endothelium hypothesis and
strongly favor an indirect, inflammation-driven mechanism
of endothelial injury.
Vascular Pathology of COVID-19

Our knowledge of lung pathology in COVID-19 is primarily
based on autopsy studies. Histologically, COVID-19 lungs
show features of diffuse alveolar damage, including injury/
necrosis of the alveolar epithelium, intra-alveolar fibrin
deposition and hemorrhage, alveolar edema, hyaline mem-
branes, type 2 pneumocyte hyperplasia, interstitial inflam-
mation, and organizing connective tissue in the alveolar
septa.8,12,13 The microvasculature of COVID-19 lungs is
abnormal and characterized by acute endothelial injury,
thrombotic occlusion of alveolar capillaries, and neutro-
philic capillaritis/endothelialitis.8,13,14 Injured alveolar cap-
illaries become leaky and distorted, and undergo remodeling
with formation of intraluminal endothelial pillars indicative
of intussusceptive/splitting angiogenesis.12 COVID-19
lungs also exhibit pulmonary thromboembolism, pulmo-
nary infarctions, and venous thrombosis.15e17 In one study,
microvascular thrombosis was more prevalent in COVID-19
lungs compared with lungs of patients who died of influenza
(H1N1).12 A meta-analysis of 27 diagnostic imaging studies
found that the incidence of pulmonary emboli in patients
admitted to the intensive care unit was considerably higher
than the reported pulmonary incidence in intensive care unit
patients with noneCOVID-19 viral pneumonia.18 This
study also found that pulmonary emboli were confined to
peripheral arteries, whereas thrombosis of the leg deep veins
was observed in less than half of these patients, which
suggested in situ formation of thrombi in the pulmonary
circulation.18 The higher incidence of vascular injury and
thrombosis in COVID-19 lungs has been postulated to be
the underlying cause of the ventilation-perfusion mismatch
and impaired oxygen uptake that characterize the respiratory
complications of COVID-19.11,19 Patients with COVID-19
have higher rates of strokes and myocardial infarctions
compared with patients without COVID-19.7,20

Microvascular endothelial injury, thrombosis, and capil-
laritis have also been reported in the skin, heart, brain, liver,
intestine, and kidneys of patients with COVID-19.14,21,22

Among the peripheral organs involved, the kidneys have
been the most thoroughly studied because renal failure and
proteinuria may complicate the clinical course of the dis-
ease. Kidney biopsies have revealed a spectrum of endo-
thelial abnormalities, ranging from lifting of the glomerular
endothelium from the basement membrane with the loss of
The American Journal of Pathology - ajp.amjpathol.org
endothelial fenestrations to endothelial cell swelling and
thrombotic microangiopathy involving glomerular hilar ar-
terioles and small arteries. These changes are often associ-
ated with a severe form of glomerular injury, known as
collapsing glomerulopathy, and with acute tubular
injury.23e25

A cutaneous condition called chilblains or COVID toes,
which is associated with microvascular injury, has been
diagnosed in children and young adults. Biopsies of these
lesions have revealed endothelialitis with endothelial
swelling and subendothelial infiltration of lymphocytes,
lymphocytic vasculitis, and microthrombosis.21

Some severely ill patients with COVID-19 have been
reported to have ischemic lesions of the upper and lower
extremities (acroischemia), and in a few cases, patients have
undergone below-the-knee amputations because of
gangrene.26 Coagulation abnormalities in hospitalized and
severely ill patients with COVID-19 are evidenced by
elevated levels of circulating fibrinogen, fibrin degradation
products, D-dimer, and von Willebrand factor (vWF).11,20,27

The occurrence of venous, arterial, and microvascular
thrombosis in a single disease represents a rare finding that
typifies COVID-19 vasculopathy and points to a distinct
mechanism of disease.27 The many studies on the vascular
complications of COVID-19 have reported that the
endothelial lining of blood vessels is damaged by the
SARS-CoV-2 infection, and endothelial injury has been
implicated as an important contributor to the formation of
thrombi in different vascular districts of patients with
COVID-19.27 The following sections describe the direct and
indirect mechanisms of SARS-CoV-2emediated endothelial
injury that have been advocated in the pathogenesis of the
COVID-19 vasculopathy (Figure 1).
Endothelial Injury and Thrombosis in COVID-19:
The Direct Viral Infection Hypothesis

The SARS-CoV-2 is an RNA virus composed of a nucle-
ocapside, made of the viral genome and an N protein coat,
and a membrane envelope. Club-shaped glycoprotein spikes
located on its outer surface confer the virus a crownlike
appearance.2 Angiotensin converting enzyme 2 (ACE2), a
homologue of angiotensin-converting enzyme and regulator
of the renin angiotensin system,28 has been identified as the
main SARS-CoV-2 cell surface receptor.29 Binding of the
SARS-CoV-2 spike (S) protein to the ACE2 receptor en-
ables the virion to anchor to the cell membrane.29 Enzy-
matic cleavage of the S protein, leading to internalization of
the nucleocapsid into the cell, is mediated by the proteases
transmembrane serine protease 2 (TMPRSS2) and cathepsin
B/L.29

ACE2 is also the receptor of SARS-CoV-1 (originally
named SARS-CoV), which was responsible for the SARS
epidemic in 2002 to 2003.30 Immunohistochemical studies,
reported shortly after the SARS epidemic, localized the
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Figure 1 Proposed causes of endothelial injury in coronavirus disease 2019 vasculopathy. A: Direct injury of the endothelium by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). B: Indirect injury of the endothelium by an excessive inflammatory reaction to the viral infection of alveolar and
bronchiolar epithelial cells. The injured endothelium in both scenarios develops a proinflammatory phenotype and loses its antithrombogenic properties. The
hypothesis that endothelial cells are directly injured by the virus has been challenged by recent studies reporting that endothelial cells do not express the
angiotensin-converting enzyme 2 receptor or express it at low levels and are resistant to the SARS-CoV-2 infection. Image created with BioRender software
(BioRender, San Francisco, CA).
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ACE2 protein to lung bronchial and alveolar epithelial cells,
intestinal epithelial cells, renal tubular epithelial cells, and
blood vessels/capillaries. The microvascular staining reac-
tion was attributed to the endothelium, whereas arterial
smooth muscle cells were also positive.31

Ultrastructural studies of lung tissue from COVID-19
autopsies document the presence of cytoplasmic particles,
described as "viral particles"12,14 in alveolar capillary
endothelial cells. A separate study reported the finding of
“coronavirus-like particles” in glomerular endothelial
cells but no evidence of such particles in the endothelium
of other organs, including the lungs.13 "Coronavirus-like"
or "viral particles" were also found in microvascular
endothelial cells from postmortem brain tissue and skin
biopsies.21,32

Immunohistochemical staining of postmortem lung tissue
found viral proteins in alveolar capillary endothelial
cells,12,16 but staining results were also reported as negative
in these cells.13,17 Localization of SARS-CoV-2 proteins in
glomerular endothelial cells from autopsy tissue by immu-
nohistochemistry (IHC) was reported as positive33 or
negative13,17,19 by different groups. However, multiple
studies of kidney biopsies from patients with COVID-19
failed to confirm SARS-CoV-2 infection in the glomerular
endothelium by electron microscopy, IHC, and in situ hy-
bridization (ISH).23,25,34 In -one autopsy study, ISH
revealed SARS-CoV-2 RNA in the microvasculature of
endothelial cells and vessel walls of brainstem, lep-
tomeninges, lung, heart, liver, kidney, and pancreas.35 A
separate group identified SARS-CoV-2 RNA by ISH in the
alveolar capillary endothelium but not in the endothelium of
peripheral organs.16 In this study, SARS-CoV-2 proteins
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were detected in skin, brain, and liver microvessels by IHC
but without corresponding viral RNA by ISH.16
Limitations to the Hypothesis that SARS-CoV-2
Infects Endothelial Cells

The many early reports on the pathology of COVID-19 have
suggested that vascular injury and thrombosis may be caused
by direct viral infection of the vascular endothelium.However,
lack of reproducibility in different studies and failure to un-
equivocally confirm endothelial viral infection with different
methods in individual studies have raised doubts about this
hypothesis. Notably, although SARS-CoV-2 has been clearly
identified by electron microscopy in the respiratory epithe-
lium,8,17 many studies describing viral or coronavirus-like
particles in endothelial cells have misinterpreted as coronavi-
rus cell organelles, such as coated vesicles and multivesicular
bodies. This pitfall has been highlighted by different groups in
critical appraisals that have emphasized the need to use strin-
gent criteria for the identification of the virus, which include
detailed knowledge of coronavirus ultrastructure and
morphogenesis and of subcellular organelles that can resemble
the virus.36e40 Failure to rigorously adhere to these criteria and
lack of expertise in virus morphology have resulted in confu-
sion over differentiating coronavirus from normal structures
within cells, leading to inaccurate interpretation of electron
microscopy findings.
IHC and ISH can confirm the presence of viral compo-

nents in specific cell types, and several studies have local-
ized viral RNA and/or protein in putative endothelial cells
as described in the previous section. However, the mere in
ajp.amjpathol.org - The American Journal of Pathology
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Endothelial Injury in COVID-19
situ demonstration of viral products by staining methods, in
the absence of an obvious viral cytopathic effect and of
definite ultrastructural evidence of replicating viral particles
in the endothelium, is not considered sufficient evidence for
productive viral infection in the stained cells.37 Furthermore,
even in the presence of a specific IHC and/or ISH reaction,
most studies have not used double immunostaining methods
to accurately localize viral molecules of interest in the
endothelial cells and exclude staining of pericytes, which
are closely associated with the endothelium.
Emerging New Evidence that the SARS-CoV-2
Receptor ACE2 Is Not Expressed at Significant
Levels in Endothelial Cells

Single-cell RNA sequencing (scRNA-seq), first developed in
the middle 2000s, has enabled investigators to analyze the
transcriptome of native individual cells from different organs.
With this method, expression of genes of interest can be
demonstrated in specific cell types following cluster analysis of
gene expression profiles.41,42 By adopting this powerful
new approach, several laboratories have now found that ACE2
is either not expressed in endothelial cells from mouse and
human brain, heart, lungs, and skin43e46 or is expressed at low
levels.47,48 Epigenetic analysis of the chromatin landscape of
human umbilical vein endothelial cells with genome-wide
chromatin immunoprecipitation sequencing data for histone
modifications and DNase I hypersensitivity from ENCODE
(Encyclopedia of DNA Elements) has corroborated the
scRNA-seq findings by revealing the absence of activation
marks and the presence of repressive marks in the ACE2
locus.45 In one of our laboratories (G.L.), RNA-seq analysis
found that freshly isolated mouse lung endothelial cells fail to
express Ace2 and Tmprss2, the protease that participates in
SARS-CoV-2 cell entry. Concordant with this observation, no
accessible chromatin sites in the Ace2 and Tmprss2 gene loci
were identified by Assay for Transposase-Accessible Chro-
matin sequencing analysis (G.L., unpublished observations). In
addition, noACE2expressionwas identified in cultured human
lung, brain, cardiac, and glomerular endothelial cells by
quantitative RT-PCR and Western blot analysis.49 Moreover,
double immunofluorescence confocal microscopy studies by
He et al44 elegantly demonstrate strong staining forACE2 in the
pericytes of mouse heart and brain capillaries, with ACE2-
negative endothelial cells. The expression of ACE2 in human
and mouse brain and heart pericytes is confirmed by scRNA-
seq analysis.44,45 In the mouse lungs, ACE2 is strongly
expressed by alveolar type 2 cells and ciliated bronchial
epithelial cells but not in endothelial cells by double immuno-
fluorescence and scRNA-seq analysis. Most pericytes in the
alveolar septa are ACE2 negative, although ACE2-positive
pericytes have been identified in the bronchial walls and
particularly trachea, where they are most abundant.44
The American Journal of Pathology - ajp.amjpathol.org
Cultured Endothelial Cells Are Resistant to
SARS-CoV-2 Infection

A critical aspect of the direct endothelial injury hypothesis
is the capacity of the SARS-CoV-2 virus to infect the
vascular endothelium. Until recently, however, no data
were available in the vast COVID-19 literature regarding
the endothelial cell susceptibility to SARS-CoV-2 viral
infection. This gap has now been filled by recently pub-
lished work by different groups in which isolated human
endothelial cells were cultured in the presence of the
SARS-CoV-2 virus. Using immunohistochemistry for the
N or S protein and a viral progeny detection assay, Nas-
cimento Conde et al50 found that SARS-CoV-2 is inca-
pable of infecting primary human endothelial cells from
lung, brain, and renal glomeruli as well as human umbil-
ical vein endothelial cells. Ajmetaj-Shala et al49 demon-
strated that blood outgrowth, lung, and aortic primary
human endothelial cells were not susceptible to infection
by SARS-CoV-2 or SARS-CoV-2 pseudovirus but could
be infected with Ebola and vesicular stomatitis virus.
McCracken et al45 were unable to achieve significant
infection and replication levels of SARS-CoV-2 in primary
human cardiac and pulmonary endothelial cells, which
were instead permissive for the human coronavirus 229E
virus that uses CD13 as its receptor. Schimmel et al47

found no morphologic alterations and no productive viral
infection in human umbilical vein endothelial cells and
human lung microvascular endothelial cells exposed to
SARS-CoV-2. In this study, positive immunostaining for
viral NP protein, suggestive of viral entry into the cell, was
only obtained when endothelial cells were exposed to high
viral titer. However, no infectious virions were detected in
the endothelial cell supernatant, indicating failure of virus
replication.47 A similar finding was obtained with cultures
of human cardiac and pulmonary endothelial cells using
supraphysiologic concentrations of the virus.45 These
abortive infections obtained with high SARS-CoV-2 titers
in endothelial cells that do not express the ACE2 receptor
or express it weakly have been attributed to engagement
by the virus of noncanonical receptors and lack of surface
enzymes needed to cleave the S protein and mediate
effective viral-host cell membrane fusion.43,45,47 Of note,
endothelial cells became permissive to SARS-CoV-2 only
after transduction with recombinant ACE2 receptor.50

Thus, in vitro studies with human endothelial cells iso-
lated from different organs have consistently found that
the vascular endothelium is resistant to SARS-CoV-2
infection. Although in vitro assays cannot fully reflect
the complexity of the in vivo environment, the finding that
endothelial cells resist infection by SARS-CoV-2 and the
reproducibility of this finding in different laboratories
argue against the hypothesis that endothelial injury in
COVID-19 vasculopathy is caused directly by the virus.
1377
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Endothelial Injury and Thrombosis in COVID-19:
The Indirect Mechanism Hypothesis

The compelling new findings that vascular endothelial cells
do not express the ACE2 receptor and are resistant to
SARS-CoV-2 infection strongly implicate an indirect
mechanism of injury in the pathogenesis of the COVID-19
vasculopathy. Mounting evidence suggests that in COVID-
19 a self-amplifying cycle of excessive inflammation im-
pairs the antithrombogenic properties of the vascular
endothelium, in concert with the action of circulating pro-
thrombotic factors, leads to formation of thrombi in capil-
laries, arteries, and veins.9,51 The therapeutic efficacy of
corticosteroids further supports the hypothesis that disease
progression, including its vascular complications, is fueled
by an inflammatory reaction to the viral infection.52 The
following sections describe how excessive inflammation
triggered by SARS-CoV-2 infection of nonendothelial cells
can lead to endothelial injury and thrombotic occlusion of
blood vessels.
Mechanisms of Endothelial Injury and
Thrombosis in the Pulmonary Vasculature

In the lungs, respiratory and alveolar epithelial cells infected
by SARS-CoV-2 activate the type I/III interferon (IFN)
response program.53,54 The IFN response to SARS-CoV-2
is, however, imbalanced and delayed, seemingly because
of suppression of IFN signaling by SARS-CoV-2.53e56 A
reduced IFN response in patients with severe COVID-19
results in impaired IFN-b and low IFN-a production and
activity, defective viral clearance from the infected cells,
persistent blood viral load, and an NF-kBedriven exacer-
bated inflammatory response.56 Infected alveolar epithelial
cells switch to an inflammatory phenotype and produce
markedly elevated levels of cytokines and chemokines,
including interleukin-6 (IL-6), IL-8, tumor necrosis factor
(TNF)-a, and CXCL8.53 In addition, the SARS-CoV-2 S
proteins can directly activate complement by preventing
inhibition of the alternative pathway of complement con-
vertase by its negative regulator factor H.57 Preliminary
studies published online also suggest that the SARS-CoV-2
N protein can potentiate activation of the lectin pathway of
complement by binding to mannose-binding lectin (MBL)e
associated serine protease 2.58 The same study demonstrates
strong staining for the complement components MBL, C3,
C4, and the terminal attack complex C5b-9 in alveolar
epithelial cells, leukocytes, and exudates in COVID-19
lungs.58 Complement activation becomes clinically mani-
fest with elevated plasma levels of C5b-9 and other com-
plement activation markers, which are higher in patients
with COVID-19 compared with those of patients with
influenza and noneCOVID-19 respiratory failure.59e61

Leukocytes recruited to the site of infection by chemo-
tactic factors such as C5a release inflammatory cytokines
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after activation of the NLR family pyrin domain containing
3 (NLRPR3) inflammasome and Toll-like receptors (TLRs)
by SARS-CoV-2 products.62 Neutrophils accumulated in
the alveolar capillaries form neutrophil extracellular traps
(NETs), DNA- and enzyme-rich netlike structures that are
toxic to the lung epithelium.63 Leukocytes also produce
reactive oxygen species (ROS) and release proteolytic en-
zymes, which contribute to alveolar cell injury.64 Alveolar
cells that are dying or dead because of viral cytopathic effect
and inflammatory injury, including cytolytic effect by C5b-
9, release damage-associated molecular patterns, which
activate TLRs in adjacent cells and infiltrating leukocytes,
leading to production of additional inflammatory cytokines
and chemokines.65

The alveolar capillary endothelium exposed to a
cytokine-rich milieu develops a proinflammatory pheno-
type, including up-regulated expression of cell adhesion
molecules that promote leukocyte adhesion, transmigration,
and influx into alveolar spaces.66 Endothelial cells also
display features of complement activation evidenced by
deposition in the alveolar capillaries of MBL, C4, C3, and
C5b-9.67 Endothelial dysfunction and injury caused by in-
flammatory cytokines, ROS, NETs, and complement acti-
vation lead to disruption of the endothelial barrier function
and vascular leakage.9,16

Endothelial injury is manifested by disruption of the
endothelial glycocalyx, an antithrombogenic structure rich
in glycosaminoglycans and proteoglycans.68,69 Degradation
of the endothelial glycocalyx is evidenced by the presence
of high circulating levels of chondroitin sulfate, syndecan 1,
and hyaluronic acid in the plasma of severely ill patients
with COVID-19.70 Breakdown of the endothelial glyco-
calyx leads to reduced production of nitric oxide (NO), a
powerful vasodilator and inhibitor or platelet aggregation,
and release of vWF, a potent platelet aggregating molecule,
with resulting increase in vWF plasma levels.70 Concur-
rently elevated with glycocalyx breakdown products and
vWF in COVID-19 plasma is P-selectin, an endothelial- and
platelet-derived molecule that promotes platelet aggrega-
tion, platelet-endothelial interactions, and leukocyte
recruitment.70 The plasma of patients with COVID-19 also
contains increased levels of thrombomodulin, a glycocalyx-
associated thrombin receptor that physiologically inhibits
coagulation through the protein C-protein S pathway.71

Disruption of the glycocalyx can deplete the endothelium
of additional anticoagulants, such as heparan sulfate pro-
teoglycans, which bind antithrombin III, and CD39, an ecto-
ADPase that inhibits platelet adhesion.72

Additional molecules whose loss in the injured endothe-
lium may affect its antithrombogenic properties, are pros-
tacyclin, tissue factor inhibitor, and tissue-type and
urokinase-type plasminogen activators.9 Formation of
thrombi can be further promoted by cytokine-induced pro-
duction by endothelial cells of prothrombotic molecules,
including thromboxane, a prostaglandin that stimulates
platelet aggregation; plasminogen activator inhibitor 1,
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Endothelial Injury in COVID-19
which antagonizes the endothelial fibrinolytic activity; and
tissue factor, which initiates thrombin formation.9,73 In
addition, formation of NETs within the alveolar capillaries
has cytotoxic effects for the endothelium and promotes
clotting by several mechanisms, including recruitment and
activation of platelets.74 Activated platelets in turn regulate
leukocyte activity, further contributing to leukocyte cyto-
kine release.27 Platelet hyperactivation also results in
microvesicle and granule release, platelet cytokine/chemo-
kine secretion, platelet-leukocyte aggregates, and platelet
apoptosis and/or aggregation, which contribute to inflam-
mation and thrombosis.27 Thus, inflammation triggered by
SARS-CoV-2emediated injury of alveolar epithelial cells
creates a permissive environment in the alveolar microvas-
culature for the clotting of blood, the aggregation of plate-
lets, and the formation of thrombi.75
Mechanisms of Endothelial Injury and
Thrombosis in the Vasculature of Peripheral
Organs

Immune hyperreactivity or failure to resolve the inflamma-
tory reaction because of immune dysregulation in the lungs
leads to excessive production of cytokines/chemokines in
severely ill patients, causing a cytokine storm characterized
by elevated levels of circulating cytokines, systemic in-
flammatory symptoms, and multiorgan dysfunction.76e78

Inflammatory cytokines and chemokines that are elevated
in the circulation of patients with COVID-19 include IL-1b,
IL-6, TNF, IFN-g, monocyte chemoattractant protein 1
(MCP1/CCL2), macrophage inflammatory protein 1a
(MIP1a/CCL3), macrophage inflammatory protein 1b
(MIP1b/CCL4), angiopoietin 2, and vascular endothelial
growth factor.79 The cytokine storm is accompanied by
aberrant activation of circulating monocytes, increase in
neutrophils, and marked decrease in circulating T and B
lymphocytes.27,78

Formation of thrombi in the peripheral organs of severely
ill patients with COVID-19 with cytokine storm has been
attributed to the concurrent action of multiple prothrombo-
genic factors, including endothelial injury, platelet hyper-
activation, and an enhanced procoagulant state.75 Elevated
levels of circulating cytokines, such as TNF, can impair the
antithrombogenic properties of the endothelium by dis-
rupting its glycocalyx.68 Cytokines such as TNF, IL-1b, and
IFN- g can also cause inflammatory cell death of the
endothelium and activation of coagulation because of
exposure of the subendothelial matrix.80 Circulating NETs
and vWF, which are elevated in patients with COVID-19,
acting in concert with tissue factor and other prothrombo-
genic molecules released locally by the injured endothelium
that has lost its ability to maintain blood fluidity, can pro-
mote platelet aggregation and intravascular coagulation.70,75

Antiphospholipid antibodies, which are frequently detected
in the plasma of hospitalized patients with COVID-19,
The American Journal of Pathology - ajp.amjpathol.org
contribute additional prothrombogenic stimuli by binding
to and activating platelets and endothelial cells and trig-
gering release of NETs by neutrophils.81

Pericytes, like alveolar epithelial cells, express the ACE2
receptor,44,45 can become infected and injured in patients
with viremia, locally produce inflammatory cytokines,
become the site of complement activation, and release tissue
factor, triggering endothelial dysfunction and thrombosis.82

Although evidence of pericyte infection by SARS-CoV-2 is
currently lacking, a recent study found that pericyte defi-
ciency in mice leads to endothelial dysfunction and loss of
antithrombogenic properties, resulting in increased endo-
thelial expression and release of vWF, platelet aggregation,
and fibrin formation.44 The same mechanism of indirect
endothelial injury and resulting thrombosis in peripheral
organs could be triggered by SARS-CoV-2 infection of
other ACE2-positive nonendothelial cells, such as the kid-
ney tubular epithelial cells and intestinal epithelial cells.31,83
Predisposing Functional Abnormalities in the
Endothelium and Immune System of Patients at
Risk for Severe COVID-19

Hospitalization and death attributable to COVID-19 are
much more common among the elderly and those with
underlying disorders such as diabetes, obesity, and hyper-
tension.4 Impaired regulation of blood homeostasis by a
dysfunctional endothelium in these patients may render
blood vessels more susceptible to the thrombotic compli-
cations of COVID-19.

With aging, endothelial cells reduce their capacity to
produce and release the vasodilating molecule NO,84,85

while increasing production of ROS.86 This results in
defective regulation of vascular tone, increased oxidative
stress, and enhanced platelet activation.87 Aging also pro-
motes a proinflammatory endothelial phenotype character-
ized by greater nuclear translocation of NFkB and increased
endothelial production of IL-6, TNF and MCP1.88 In addi-
tion, expression of PAI-1, which antagonizes endothelial
fibrinolytic activity, is elevated in older individuals.89

Moreover, aging has been linked to thinning of the endo-
thelial glycocalyx which can impair the capacity of endo-
thelial cells to inhibit platelet adhesion and aggregation.70,90

These underlying endothelial abnormalities may further
facilitate formation of thrombi in elderly patients infected by
SARS-CoV-2.

In diabetes, endothelial cells manifest an impaired ca-
pacity to activate endothelial NO synthase (eNOS) in
response to physiological stimuli leading to reduced pro-
duction of NO.91 Bioavailability of NO is further compro-
mised by increased oxidative stress due to production of
ROS in response to elevated glucose levels.91,92 Patients
with diabetes also have increased circulating levels of in-
flammatory cytokines, such as TNF, IL-6, and intercellular
adhesion molecule 1, which indicates endothelial
1379
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Figure 2 Putative mechanisms of endothelial injury and thrombosis in
critically ill patients with coronavirus disease 2019 (COVID-19). The sche-
matic summarizes key processes implicated in the pathogenesis of COVID-
19 vasculopathy. Angiotensin-converting enzyme 2 (ACE2)epositive alve-
olar epithelial cells infected by severe acute respiratory syndrome coro-
navirus 2 trigger an inflammatory response, which, in the setting of
defective antiviral interferon signaling, fails to suppress the infection and
misfires, leading to overproduction of cytokines and chemokines, activa-
tion of complement, and recruitment of leukocytes, which release reactive
oxygen species (ROS) and neutrophilic extracellular traps (NETs). Endo-
thelial cells injured indirectly by the cytokines and other inflammatory
products lose their antithrombogenic properties and release factors that
promote coagulation and platelet aggregation. Hyperactivation of platelets
and systemic coagulopathy induced by the inflammatory reaction to the
infection contribute to the formation of thrombi. The same mechanisms of
inflammation-mediated endothelial injury can create a permissive pro-
thrombogenic environment in peripheral organs that contain ACE2-positive
nonendothelial cells. PAI1, plasminogen activator inhibitor 1; vWF, von
Willebrand factor.
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activation.93 Impaired regulation of blood homeostasis by
the endothelium in diabetes is also attributable to disruption
of the endothelial glycocalyx characterized by thinning and
shedding into the circulation of its molecular components,
including hyaluronic acid, syndecan 1, chondroitin sulfate,
and heparan sulfate.94 Mediators of hyperglycemia-induced
glycocalyx damage include ROS, advanced glycation end
products, and glycocalyx-degrading enzymes, such as hy-
aluronidase and heparanase.94,95

Reduced NO bioavailability, increased inflammation,
enhanced oxidative stress, and a prothrombotic phenotype
are also features of endothelial dysfunction in obesity and
hypertension.96,97 In patients with obesity, inflammation in
the perivascular adipose tissue, particularly in visceral or-
gans, has been implicated as the major source of locally
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released and circulating inflammatory cytokines responsible
for impaired endothelial function.97

Among patients with predisposing conditions, there is
great variability in the severity of COVID-19. Some recover
from the infection, whereas others experience cytokine
storm and multiorgan system failure.76 Recent studies have
found that excessive systemic inflammation, which plays an
important role in the COVID-19 vasculopathy, may be
attributable to an ineffective IFN response to SARS-CoV-2
and misfiring of the immune system to the unabated viral
infection. In one study, 3.5% of patients with life-
threatening COVID-19 pneumonia were found to have
inborn errors of TLR-3 and interferon regulatory transcrip-
tion factor 7 (IRF7)edependent type I IFN production and
amplification due to loss-of-function mutations of loci that
govern these genes.98 A separate study by the same group
identified neutralizing autoantibodies against type I IFNs
(IFN-a and IFN-u) in 10.2% of patients with severe
COVID-19 pneumonia.99 A defective IFN response, caused
by loss-of-function variants of TLR7 and characterized by
reduced expression of IFN-related genes, such as IRF7 and
IFNB1, has also been reported in young and previously
healthy male patients with severe COVID-19.100

An additional predisposing abnormality that can compli-
cate the clinical course of COVID-19 has been identified in
individuals of African ancestry who have developed renal
failure, proteinuria, collapsing glomerulopathy, and throm-
botic microangiopathy after SARS-CoV-2 infection. A high
percentage of these patients carry the G1 and/or G2 high-
risk apolipoprotein L1 (APOL1) alleles, which are evolu-
tionarily enriched in this population because of their pro-
tective action against African trypanosomiasis.23e25 APOL1
is expressed by glomerular endothelial cells and podocytes
and can be up-regulated by type I IFN.101 Although the
mechanisms of collapsing glomerulopathy are poorly un-
derstood, APOL1 high-risk variants have been implicated in
its pathogenesis for their ability to create pores in the cell
membrane, which would result in injury of glomerular cells
and collapse of the glomerular tuft.102 A similar mechanism
of injury may be responsible for the thrombotic micro-
angiopathy, which is often present in COVID-
19eassociated nephropathy.
Summary and Conclusion

Severe cases of COVID-19 are characterized by dysregu-
lation of the immune system and an excessive inflammatory
response to the viral infection. The clinical course of
COVID-19 is often complicated by endothelial dysfunction,
vasculopathy, and thrombosis of small, medium, and large
blood vessels. Two mechanisms have been advocated for
the vascular abnormalities of COVID-19: endothelial
infection by SARS-CoV-2 and endothelial injury caused by
excessive inflammation. Although initial reports, mostly
based on autopsy material, favored the direct endothelial
ajp.amjpathol.org - The American Journal of Pathology
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cell infection hypothesis, more recent molecular and
microbiological studies by different laboratories have found
that endothelial cells do not express significant levels of the
ACE2 receptor, which SARS-CoV-2 uses to gain entry into
cells, and are resistant to the infection. These new findings
strongly suggest that COVID-19 vasculopathy is caused by
an exaggerated immune response to viral infection of non-
endothelial cells, which results in indirect injury of the
vascular endothelium, loss of endothelial antithrombogenic
properties, endothelial release of prothrombogenic factors,
platelet hyperactivation, and coagulopathy, leading to
thrombotic occlusion of blood vessels (Figure 2).

Although considerable advances have been made since
the initial outbreak of COVID-19 in China, more studies are
needed to better characterize the causes of the excessive
inflammatory response to the infection, identify patients
more at risk for the dysfunctional immune response and its
vascular complications, and establish key molecular targets
for effective medical treatment. To that end, in vitro models
with cultured human cells or tissue organoids and in vivo
animal models have been developed to investigate the
mechanisms of SARS-CoV-2 infection and test new
therapies.103e105 Clinical trials are evaluating the safety and
efficacy of drugs directed against cytokines and their re-
ceptors, cytokine signaling pathways, complement compo-
nents, and other immune targets implicated in the
hyperinflammatory response.106 As more knowledge is
gained on the dysregulated immune response to the SARS-
CoV-2 infection and its deleterious effects on the vascula-
ture of the lungs and peripheral organs, clinical outcomes
are expected to improve with the introduction of new
therapies.
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