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Abstract: Electrical energy is generated in different ways, each located at some specific geographical
area, and with different impact on the environment. Different sectors require heterogeneous rates
of energy delivery, due to economic requirements. An important problem to solve is to determine
how much energy must be sent from each supplier to satisfy each demand. Besides, the energy
distribution process may have to satisfy ecological, technological, or economic cost constraints.

Keywords: electricity supply and demand; energy supply diversification; contamination constraints;
inverse problems; maximum entropy in the mean

1. Introduction

The problem of optimal and well-diversified energy distribution in a given country
is central to the well-functioning of economic and social infrastructures. There are two
aspects to the problem. On the one hand, we have to consider the problem of satisfying the
demand without unnecessary surplus (unless there is a market for the surplus). On the
other hand, we must ensure that the resulting distribution is well-diversified.

The first problem is a typical exercise of demand-supply with given cost constraints.
Costs include economic, ecological, and social costs. Any cost that can be translated into a
constraint on the energy flow between consumer and supplier (or source and sink) should
be taken into account. This problem has received considerable attention in the applied
mathematics literature when the data about the amounts produced are exact. A review of
the literature is available in [1].

In addition, as there might be uncertainties in the demand and/or the supply, it is
realistic to suppose that the data are specified up to intervals. Of course, there are obvious
interval constraints of this type: a given supplier cannot produce more than a certain
amount at a given site. However, the amount produced may fluctuate within a range
within the maximum capacity. Similar limitations can be observed on the demand side.

Linear programming techniques are one of the standard tools to deal with the problem,
especially when there is a monetary cost that must be minimized. The main goal of
this paper is to propose the method of maximum entropy on the mean to deal with the
transportation problem with cost constraints and range constraints on the solutions. The
method that we propose is based on an extension of the standard method of maximum
entropy proposed in [2]. Attempts to solve the problem using maximum entropy based
methods are long-dated (see Chapter 13 in Kapur’s [3] and the references in that chapter
for earlier work, in particular to the work by Wilson [4]). An interesting application can be
found in [5]. Our approach to the use of the method of maximum entropy is completely
different.
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The problem of diversification is reviewed in [6,7], where more references are listed,
and we bring in the entropy-based measure proposed there to measure the diversification
of the solution to the problem considered above.

To state the problems treated here, consider M sources of electricity and denote by
{S1, . . . , SM} the amount supplied by each source. The labeling addresses the possibility
that in the same geographical area there may exist two different types of electricity sources,
which would be labeled by two different subscripts.

Consider N different electricity consumers, each of whom requiring {D1, . . . , DN}
units of energy per unit time. These may describe geographical areas and/or different
types of consumer within a given area. For example, within a geographical area, there may
exist large chemical industries or mineral processing plants that may need large amounts
of electricity, besides what is needed for domestic use by the local population.

The first group of constraints is imposed by the nature of the generation process or by
the local demand of electricity: We suppose that the demand Di at each site i = 1, . . . , N
and the supply Sj at site j = 1, . . . , M are both known. Demand at site i represents the
demand by a type of energy consumer which might be distributed geographically, but
which shares some type of collective characteristic, such as being a domestic (household)
consumer in a geographic area.

1.1. Problem Statements

If there were no other constraints, the simplest problem of distributing the electricity
could be stated as follows.

Problem 1 (First electricity supply-demand problem). Denote by
{

xi,j : i = 1, . . . , N; j = 1, . . . , M
}

the amount of electricity required at site i and produced at site j per unit time. We suppose that
the network is such that the every electricity-producing site is connected to every consuming site.
Otherwise, we set the corresponding xi,j = 0 without further ado.

The electricity matching problem consists of determining values
{

xi,j : i = 1, . . . , N; j = 1, . . . , M
}

that satisfy the following demand-supply constraints:

M

∑
j=1

xi,j = Di, f or i = 1, . . . , N and
N

∑
i=1

xi,j = Sj f or j = 1, . . . , M. (1)

Comments:

(i) Production per unit time refers to an average produced or required during some
standardized time interval (one hour, for example).

(ii) These constraints can be replaced by intervals to allow for uncertainty in the demand
or uncertainty in the supply. We describe this further below.

(iii) Note that we are taking into account possible nonlinear constraints, resulting from
the actual physical transport of energy through the network, in which the losses could
depend on the amount of energy being transported.

In practice, cost constraints may also exist. Here, we suppose that costs are regulated
and fixed (by competition or government agencies) and fairly passed on to consumers, but
these constraints have to be taken into account.

There might also exist regulatory environmental constraints. Each mode of electricity
generation has an environmental impact, measured by Ci grams of contaminant per unit
of electricity generated by the ith supplier per unit time. Therefore, the total amount of
contaminants generated by the supplier is

i=N,j=M

∑
i=1,j=1

Cixi,j =
N

∑
i=1

Ci

(
M

∑
j=1

xi,j

)
.

With this, instead of Problem 1, we consider now the following:
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Problem 2 (Second electricity supply-demand problem). With the notation introduced above,
the electricity matching problem consists of determining

{
xi,j : i = 1, . . . , N; j = 1, . . . , M

}
that

satisfy the demand-supply constraints (1) as well as cost constraints solving:

i=N,j=M

∑
i=1,j=1

Cr,(i,j)xi,j = Kr, r = 1, . . . , R. (2)

Here, Kr is a maximum cost (environmental impact) generated (or incurred) by the
electricity-producing system that regulators allow. Most of the time the constraint will
not depend on the connection (edge) (i, j) but only on the source (type of energy that is
produced at the jth source). In this case, Cr,(i,j) does not change as i changes.

For a combination of technological and economical reasons, we might be forced to
consider flexible constraints. For example, to cover for possible downward or upward
movement in demand or supply, we might consider those values to fall in a range. Similarly,
we could include a tolerance for sudden fluctuations in the cost of production, or the
demand at a certain node. Instead of point-valued constraints, we might replace both
Problems 1 and 2 by:

Problem 3 (Third electricity supply-demand problem). To allow for different types of con-
straints, we extend our previous notation. Denote by C a R× d-matrix, where d = N ×M, and
denote its elements by Cr,(i,j), where 1 ≤ r ≤ R labels the cost constraints (or cost restrictions).
Now, instead of a point value K, we consider a range dataset given by:

K =
R

∏
r=1

[Kr
1, Kr

2], with Kr
1 ≤ Kr

2 f or r = 1, . . . , R. (3)

The problem to solve is to find xi,j in some given range such that:

Cx ∈ K. (4)

When K reduces to a point, that is, when K = {k} with k ∈ RR, we have a problem with point
constraints.

Problems 1–3 are ill-posed linear inverse problems subject to convex constraints. As
such, each might have infinitely many possible solutions because the number of unknowns
is usually significantly larger than that of the dataset. The convex constraints include
positivity constraints as well as those in (3).

The method of maximum entropy in the mean is especially designed to deal with
this type of problems. The representation of the solution is such that it allows for explicit
sensitivity analysis. The standard maximum entropy method (SME) is the stepping stone
towards the method of maximum entropy in the mean (MEM).

1.2. Contents of the Paper

Building on the aforecited notation, we briefly describe the solution to Problems 1–3
in Section 2. The solution of the three problems, given by (21), looks the same, although
what changes is the specification of the problem data. The actual derivation of the solutions
of Problems 1 and 2 follows the same pattern, and Problem 3 uses the solution of Problem
2 as a stepping stone.

In Section 3, we recall the mathematical details of the procedure to arrive at the
results listed in Section 2. We include a short digression on using the concept of entropy to
quantify how diversified is a solution to the supply-demand problem. Further, we explicitly
compute it for each of the examples.

In Section 4, we work out two illustrating toy examples which take into account all
the essentials. In the first one, we consider only point data, while, in the second example,
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we show the flexibility of the approach with some of the data in intervals. The natural
production constraints are specified up to an interval to incorporate the possibility of
fluctuation in the energy generation output.

2. Mathematical Model Derivation

Here, we collect the basics results about the SME method, MEM with point data, and
MEM with data in ranges. We explain the resulting (21).

2.1. MEM for Point Data

The standard maximum entropy (SME) method was almost simultaneously proposed
by Jaynes [2] and Kullback [8]. It is a variational method to determine a probability density
ρ(ξ) such that dP(ξ) = ρ(ξ)dQ(ξ) satisfying some integral constraints. MEM focuses on
how to transform an ill-posed linear inverse problem with constraints upon the solutions
into a problem of determining a probability density. This is explained in [9,10]. To continue,
we need to introduce some notations.

Let Ω = ∏d
i=1[ai, bi] and denote by F the Borel subsets of Ω. Consider a (reference)

measure dQ(ξ) upon F . Let P(Q) = {P probability measure on Ω : dP(ξ) = ρ(ξ)dQ(ξ)},
that is the class of probabilities absolutely continuous with respect to Q. Let X : Ω→ Ω
denote the coordinate or identity mapping, that is X(ξ) = ξ. Let C be a K× d-matrix and
let y ∈ RK be some given vector. The constraint set is defined by:

C(Q, y) = {P ∈ P|CEP[X] = y}. (5)

This is a convex set. The best way to choose a point in it is to maximize some meaningful
concave function defined on it.

Definition 1. The entropy of P ∈ P is defined by

SQ(P) = −
∫

Ω
ρ(ξ) ln ρ(ξ)dQ(ξ). (6)

whenever
∫

Ω ρ(ξ)|ln ρ(ξ)|dQ(ξ) < ∞, and equal to −∞ otherwise.

Then, we can state the entropy maximization problem:

Problem 4. Find ρ∗(ξ) at which SQ(P) achieves its maximum subject to the constraints (5). T hat
is, determine

ρ∗ = argsup
{

SQ(P)
∣∣ P ∈ C(Q, y)

}
.

Once dP∗ = ρ∗dQ has been determined, the solution to the algebraic problem is given
by

x∗ = EP∗ [X] =
∫

Ω
ξρ∗(ξ)dQ(ξ) (7)

which clearly satisfies x∗ ∈ Ω and Cx∗ = y. In our present case, a direct application of the
method of Lagrange multipliers leads to the representation

ρ∗(ξ) =
e−〈C

tλ∗ ,ξ〉

Z(λ∗)
(8)

where the normalization factor is given by

Z(λ) =
∫

Ω
e〈C

tλ,ξ〉dQ(ξ), λ ∈ RK. (9)
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The optimal Lagrange multiplier λ∗ is to be found minimizing the dual entropy function

Σ(λ, y) = ln Z(λ) + 〈λ, y〉 (10)

over λ ∈ RK. We use 〈λ, y〉 to denote the standard scalar. The connection between the
primal and the dual problems is explained in [11,12]. The importance of this connection is
that it transforms the search over an infinite-dimensional space (the class of densities) onto
the problem of finding a minimum of a convex function over a finite-dimensional space.

Below, we make use of the fact that the entropy of ρ∗ is given by:

SQ(P∗, y) = ln Z(λ∗) + 〈λ∗, y〉 = inf{ln Z(λ) + 〈λ, y〉} (11)

where the label specifying the point constraint is added for emphasis and used below.

2.2. MEM for Data in Ranges

The extension of the procedure described in the previous section to Problem (20) goes
as follows. Instead of (5), we now have

C(Q,K) = {P ∈ P|CEP[X] ∈ K} =
⋃

y∈K
C(Q, y). (12)

Therefore, we consider the extended entropy maximization problem:

Problem 5. Find ρ∗(ξ) at which SQ(P) achieves its maximum subject to the constraints (12).
That is, determine

ρ∗ = argsup
{

SQ(P)
∣∣ P ∈ C(Q,K)

}
.

Considering (12), we can rewrite (5) as

ρ∗ = argsup
{

sup
{

SQ(P)
∣∣ P ∈ C(Q, y)

}
,
∣∣ y ∈ K

}
= argsup

{
SQ(P∗, y)

∣∣ y ∈ K
}

Now, making use of (11), we rewrite the last identity as

sup
{

inf
{

ln Z(λ) + 〈λ, y〉
∣∣∣λ ∈ RK

}∣∣∣y ∈ K}.

We can exchange the maximization with the minimization to obtain

inf
{

ln Z(λ) + sup{〈λ, y〉 |y ∈ K}
∣∣∣y ∈ RK

}
.

To compute the inner maximization, we perform the following affine transformation

yr =
Kr

2 − Kr
1

2
ζr +

Kr
2 + Kr

1
2

=
Kr

2 − Kr
1

2

[
ζr +

Kr
2 + Kr

1
Kr

2 − Kr
1

]
r = 1, . . . , R

where ζr ∈ [−1, 1], r = 1, . . . , r. F or any λ ∈ RK we have

sup{λr, ζr|ζr ∈ [−1, 1] =|λr|.

Therefore, we obtain that ρ∗ is as (8), that is,

ρ∗(ξ) =
e−〈C

tλ∗ ,ξ〉

Z(λ∗)
(13)
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but this time λ∗ is to be found as the minimizer of

Σ(λ,K) = ln Z(λ) +
R

∑
r=1

(
Kr

2 − Kr
1

2

)
|λr|+

R

∑
r=1

(
Kr

2 + Kr
1

2

)
λr. (14)

2.3. Computation of Z(λ)
The last step in the mathematical procedure consists of the specification of the nor-

malization factor Z(λ). In the current setup, in which the constraint space is a Cartesian
product of intervals, that is, Ω = ∏d

i=1[ai, bi], the choice of reference measure is very simple:
just set

dQ(ξ) =
d

∏
j=1

(
εaj

(
dξ j
)
+ εbj

(
dξ j
))

where we use εa(dξ) for the point mass at a (sometimes written δ(ξ − a)dξ). The intuition
is that any point in [ai, bi] is the expected value with respect to a probability carried by the
end points of the interval. With this, the function (9) is given by

Z(λ) =
∫

Ω
e−〈C

tλ,ξ〉dQ(ξ) =
d

∏
j=1

(
e−(C

tλ)jaj + e−(C
tλ)jbj

)
. (15)

2.3.1. The Case of Point Constraints

When (4) consists of determining the energy supply pattern for a given point constraint
k, the dual entropy (10) now becomes

Σ(λ, k) =
d

∑
j=1

ln
(

e−(C
tλ)jaj + e−(C

tλ)jbj
)
+ 〈λ, k〉. (16)

This function is clearly defined, strictly convex in λ, and, since it tends to ∞ as ‖ λ ‖→ ∞, it
has a unique minimizer. In addition, from the first-order condition for λ∗ to be a minimizer,
it is easy to see that

x∗j = aj
e−(C

tλ∗)jaj

e−(C
tλ∗)jaj + e−(C

tλ∗)jbj
+ bj

e−(C
tλ∗)jbj

e−(C
tλ∗)jaj + e−(C

tλ∗)jbj
. (17)

The weights of aj and bj are positive and add up to 1 and can therefore be interpreted as
the (maxentropic) probability that the auxiliary random variable X assumes those values,
and x∗ is its expected value. They satisfy the constraint Cx∗ = k, as evidenced from the
first order condition for λ∗ to be a minimizer.

2.3.2. The Case of Data in Ranges

When the data are specified up to a range as in the previous section, the aforedescribed
approach can also be used. The function Z(λ) is as above, but this time the dual entropy is
different. According to the methods in Section 2 the dual entropy this time is

Σ(λ,K) =
d

∑
j=1

ln
(

e−(C
tλ)jaj + e−(C

tλ)jbj
)
+

R

∑
r=1

(
Kr

2 − Kr
1

2

)
|λr|+

R

∑
r=1

(
Kr

2 + Kr
1

2

)
λr. (18)

Again, this is a strictly convex function of λ that tends to ∞ as ‖ λ ‖→ ∞. Thus, it has a
unique minimizer at some point λ∗. Once this point has been found, the solution can be
represented by (17), and now we have that Cx∗ ∈ K.
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3. The Maxentropic Solution to the Energy Diversification Problem

In this section, we see how to relabel the unknowns, describe the maxentropic solution
to the resulting problem and describe how to compute the energy diversification index
from the resulting solution.

3.1. Statement of the Problems and Representation of the Solution
Relabeling the Problem

Here, we relabel the unknowns and the data, not only to simplify the presentation,
but also to allow the numerical implementation. We apply the following anti-lexicographic
labeling ` : {1, 2, . . . , N} × {1, 2, . . . , M} → {1, 2, . . . , d = NM} specified as follows:

(i, 1)→ i, for i = 1, . . . , N, & j = 1
(i, 2)→ i + N, for i = 1, . . . , N, & j = 2

...
(i, M)→ i + (M− 1)N, for i = 1, . . . , N, & j = M

Similarly, lets us write xi ∈ [ai, bi] to denote the constraints upon the unknowns in the
new labeling. Notice that each constraint might be repeated a number of times since it is
an energy production constraint and each source appears repeated as many times as its
connections to demand centers.

After the relabeling of the edges of the supply-demand system, the constraint matrix
C can be relabeled in the obvious way Cr,(i,j) → Cr,`(i,j) and our problem becomes

Problem 6 (Generic problem). Find x ∈ ∏d
j=1
[
aj, bj

]
such that either

Cx = k (19)

when we have point data or
Cx ∈ K. (20)

when the data are specified up to a range.

In general, supply-demand problems lead to singular constraint matrices C. This is
essentially due the fact that ∑ Di = ∑ Sj = T, which amounts to saying that there are
two sets of rows in C which have the same sum, therefore they are linearly related or C is
singular. As examples consider, the two matrices in Section 3.

The solution to Problems (19) and (20) is shown to be given by (17), which we display
as

x∗j = aj
e−(C

tλ∗)jaj

e−(C
tλ∗)jaj + e−(C

tλ∗)jbj
+ bj

e−(C
tλ∗)jbj

e−(C
tλ∗)jaj + e−(C

tλ∗)jbj
. (21)

The difference between its applicability to (19) and (20) comes from the fact that in
each case the λ∗ appearing in (21) is found minimizing a different (dual entropy) convex
function. Observe that x∗j is a convex combination of weights adding up to 1, and therefore
x∗j ∈

[
aj, bj

]
for j = 1, . . . , d. Note that either Cx∗ = k in the case of point constraints or

Cx∗ ∈ K in the case of extended constraints.

3.2. The Energy Diversification According to Stirling’s Measure

To analyze how well-diversified our numerical solutions turn out to be, we invoke
Stirling’s proposal of computing the entropy of a quantity directly related to the solution,
namely the energy transferred to site i form source j per unit of total demand. For this, note
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that the total demand T = ∑N
i=1 Di can also be written as T = ∑{i,j} xi,j. Define now the

energy transferred per unit demand by

pi,i =
xi,j

T
=

xi,j

∑{i,j} xi,j
(i, j) ∈ {1, . . . , N} × {1, . . . , M}. (22)

Conversely, using the lexicographic labeling,

pk =
xk
T

=
xk

∑n xn
k ∈ {1, . . . , NM}. (23)

Observe that with this rescaling, pk are a true probability distribution.
The Stirling energy diversification coefficient is defined as the Boltzmann-Gibbs-

Shannon entropy of p, namely:

ED(x) = −
NM

∑
k

pk ln pk. (24)

To check how well-diversified the maxentropic solution x∗ given by (21) is, we can compare
ED(x∗) versus the most diversified probability distribution on {1, . . . , NM}, namely the
uniform distribution which has an entropy ln NM.

4. Numerical Examples

Here, we implement the results obtained in the previous section in two illustrating
toy examples. In the first one, we consider the simplest case of a global aggregate demand,
and, in the second, we consider two possible demands: domestic and industrial.

4.1. Case 1: Aggregated Demand

The sources of energy, the bounds on their outputs, and their technological cost
constraints are given in Table 1. All of these costs are related to the emission of combustion
gases. It might be interesting to find ways of quantifying a technological (environmental)
cost for the electricity produced in nuclear plants. We mention as well that one could add
solar, eolic, sea wave, or geothermal energy. None of them contributes to the greenhouse
effect.

Table 1. Toy dataset.

Type Source Lower Bd. (a) Upper Bd. (b) Cost

1 Hydraulic 0.01 0.8 0.00
2 Gas 0.01 0.5 0.37
3 Fuel 0.01 0.7 0.76
4 Coal 0.01 0.4 0.96

We consider a uniform nonzero lower bound in all cases to accommodate the possi-
bility that no source fails completely. Otherwise, we can set the corresponding aj equal
to 0. The upper bounds can be thought to be given as fraction of a total possible maximal
demand.

We consider two constraints, one a total demand constraint and the other an ecological
or regulatory cost constraint. Thus, the constraint matrix becomes:

C =

[
1 1 1 1

0.0 0.3 0.7 0.9

]
.
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This matrix is clearly singular. The vector of unknowns xt = (x1, x2, x3, x4) is constrained to
be in Ω = [0.01, 0.8]× [0.01, 0.5]× [0.01, 0.7]× [0.01, 0.4]. As point data vector, we consider
kt = (1.8, 0.5). Thus, the problem that we have to solve is

Find x ∈ Ω such that
[

1 1 1 1
0.0 0.3 0.7 0.9

]
x1
x2
x3
x4

 =

[
1.2
0.5

]
.

Once the optimal λ∗ is available, the quantities to be supplied by the sources are computed
as shown in (21). The optimal solution is:

x∗ = (0.459, 0.253, 0.305, 0.181)

The diversification measure

With the entropic solution to Problem (19), we form pj = x∗/k1, which is the propor-
tion of the available energy supply to be provided by the jth supplier, and, with that, we
proceed as described in Section 2.2 and compute de entropic diversification measure as:

ED(x∗) = −
4

∑
j=1

pj ln pj. (25)

as proposed by Stirling, that is:

ED(x∗) = −
4

∑
j=1

pj ln pj = 1.329.

This should be compared with the entropy of the uniform distribution, which in this case is
ln 4 = 1.386. The relative error is about 4%.

4.2. Case 2: Disaggregated Demand

To continue with the toy examples, we now suppose that electrical power has to be
supplied to two types of consumers: domestic and industrial. Therefore, the supply of the
ith source is split into two components xi, x4+i, which means that our vector of unknowns is
an eight-dimensional vector xt = (x1, x2, . . . , x4, . . . , x8). The first four components describe
how much of the output of the ith source goes into domestic demand, and the last four
how much goes into industrial demand. This implies that the supply of the ith source has
to meet the additional demand constraint xi + x4+i ≤ bi, where the bis are given in Table
1. Let us suppose that we have one technological cost constraint and one production cost
constraint. The matrix of constraints is now

C =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

0.0 0.3 0.7 0.9 0.0 0.3 0.7 0.9
0.6 0.4 0.7 0.3 0.6 0.4 0.7 0.3
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


.

Note that the third and fourth rows consist of two equal halves. The third contains the
technological (environmental) cost constraint and the fourth contains the production cost
constraint. Note as well that the sum of Rows 1 and 2 equals the sum of Rows 5–8, therefore
the determinant of C is 0. That is, even though the matrix C is square, the problem is
nevertheless ill-posed.
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Let us now suppose that the aggregate domestic and industrial demands are, respec-
tively, k1 = 0.9; k2 = 1.05. This time the total is intentionally higher than before. Let the
technological constraint upon the energy production be k3 = 0.73 while the production
constraint is k4 = 1.06. Now, instead of point data for the remaining constraints, we have
xi + x4+i. Again, we are supposing that every supplier produces more than a minimum ai
and less than bi. The range for the data in this example is the following:

K = {k1} × {k2} × {k3} × {k4} ×
[
K5

1, K5
2

]
×
[
K6

1, K6
2

]
×
[
K7

1, K7
2

]
×
[
K8

1, K8
2

]
.

For the numerical computations, we use:

K = {0.9}×{1.05}×{0.73}×{1.06}× [0.65, 0.75]× [0.35, 0.45]× [0.65, 0.75]× [0.25, 0.35].

Clearly, some of the ranges are degenerate (just a point) while the others are just the
natural range for the corresponding supply. We still have to specify the range for the
components of x. The obvious choice is xi, x4+i ∈ [ai, bi], which suggests the following
choice for the constraint (or sample) space Ω:

Ω = [0.01, 0.8]× [0.01, 0.7]× [0.01, 0.5]× [0.01, 0.4]
×[0.01, 0.8]× [0.01, 0.7]× [0.01, 0.5]× [0.01, 0.4].

Note that we are assuming that the constraints upon the individual demands are the same
as the constraint upon the output of each source. This facilitates the typography.

The problem to solve now becomes:

Find x ∈ Ω such that Cx ∈ K.

As the previous case, the solution is also given by

x∗j = aj
e−(C

tλ∗)jaj

e−(C
tλ∗)jaj + e−(C

tλ∗)jbj
+ bj

e−(C
tλ∗)jbj

e−(C
tλ∗)jaj + e−(C

tλ∗)jbj
j = 1, . . . , 8.

In this case, C is the 8× 8-matrix specified above. The vector λ∗ is an eight-dimensional
vector that is obtained minimizing the dual entropy (18)

Σ(λ,K) =
8

∑
j=1

ln
(

e−(C
tλ)jaj + e−(C

tλ)jbj
)
+

8

∑
r=1

(
Kr

2 − Kr
1

2

)
|λr|+

8

∑
r=1

(
Kr

2 + Kr
1

2

)
λr.

When we separate the degenerate from the non-degenerate intervals, the second and
third summation become:

4

∑
i=1

λiki +
8

∑
r=5

(
Kr

2 − Kr
1

2

)
|λr|+

8

∑
r=5

(
Kr

2 + Kr
1

2

)
λr.

Undoing the lexicographic ordering, the maxentropic solution in this case is

xi,j 1 2 3 4
1 0.300 0.178 0.301 0.106
2 0.369 0.221 0.327 0.119

The diversification measure

Now that we have obtained the x∗j solving our problem, we apply (23), form pj =

x∗/(k1 + k2), and compute the entropic measure of diversity (24).

ED(x∗) = −
8

∑
j=1

pj ln pj = −∑
i,j

x∗i,j
k1 + k2

ln
x∗i,j

k1 + k2
= 2.00.
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Taking into account that the maximum diversification possible corresponds to a uniform
probability distributions qj = 1/8 and that ln 8 = 2.079, the maxentropic solution is well
diversified.

5. Conclusions and Policy Implications

The two illustrating toy examples considered show the viability of the method of
maximum entropy in the mean to solve constrained energy transportation problems. To
test the diversification of the transportation policies obtained, we rescaled the solution
x∗ to the energy transportation problem. That rescaling can be interpreted as the energy
transported per unit of total demand. It renders the solution as a probability distribution
on the edges of the transportation graph. The resulting entropy of the probability is a
measure of diversification.

An interesting aspect of the method of maximum entropy in the mean is that policy
requirements can be imposed as ab initio constraints on the solution.

In the two examples that we considered, the solution happened to be quite well
diversified, but a general comparison is still lacking.

Author Contributions: All coauthors have worked equally in terms of conceptualization, methodol-
ogy, software, validation, formal analysis, investigation, resources, data curation, writing-original
draft preparation, and writing-reviewing and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ku, A. Modeling Uncertainty in Electricity Capacity Planning, Thesis, 1995. Available online: www.s3.amazonaws.com/academia.

edu.documents/52911593/thesis_aku.pdf (accessed on 13 December 2020).
2. Jaynes, E. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [CrossRef]
3. Kapur, J.N. Maximum Entropy Models in Science and Engineering; Wiley: New York, NY, USA, 1998.
4. Wilson, A.G. Entropy in Urban and Regional Modeling; Pion: London, UK, 1970.
5. Xiao, X.Y.; Chao, M.A.; Yang, H.G.; Li, H.Q. Maximum entropy probability method applied to assess voltage sag frequency due to

transmission line fault in the electric power system. Appl. Stoch. Models Bus. Ind. 2009, 26, 595–608. [CrossRef]
6. Stirling, A. Multicriteria diversity analysis. A novel heuristic framework for appraising energy portfolios. Energy Policy 2010, 38,

1622–1634. [CrossRef]
7. Stirling, A. Diversity and ignorance in electricity supply investment. Energy Policy 1994, 22, 195–216. [CrossRef]
8. Kullback, S. Information Theory and Statistics, 2nd ed.; Dover Publications: New York, NY, USA, 1955.
9. Golan, A.; Gzyl, H. A generalized maxentropic inversion procedure for noisy data. Appl. Math. Comput. 2002, 127, 249–260.

[CrossRef]
10. Gzyl, H.; Velásquez, Y. Linear Inverse Problems: The Maximum Entropy Connection; World Scientific Publishers: Singapore, 2011.
11. Borwein, J.; Lewis, A. Convex Analysis and Nonlinear Optimization; CMS Books; Springer: New York, NY, USA, 2000.
12. Mead, L.R.; Papanicolau, N. Maximum entropy in the problem of moments. J. Math. Phys. 1984, 25, 2404–2417. [CrossRef]

www.s3.amazonaws.com/academia.edu.documents/52911593/thesis_aku.pdf
www.s3.amazonaws.com/academia.edu.documents/52911593/thesis_aku.pdf
http://doi.org/10.1103/PhysRev.106.620
http://doi.org/10.1002/asmb.802
http://doi.org/10.1016/j.enpol.2009.02.023
http://doi.org/10.1016/0301-4215(94)90159-7
http://doi.org/10.1016/S0096-3003(00)00172-7
http://doi.org/10.1063/1.526446

	Introduction 
	Problem Statements 
	Contents of the Paper 

	Mathematical Model Derivation 
	MEM for Point Data 
	MEM for Data in Ranges 
	Computation of Z( )  
	The Case of Point Constraints 
	The Case of Data in Ranges 


	The Maxentropic Solution to the Energy Diversification Problem 
	Statement of the Problems and Representation of the Solution 
	The Energy Diversification According to Stirling’s Measure 

	Numerical Examples 
	Case 1: Aggregated Demand 
	Case 2: Disaggregated Demand 

	Conclusions and Policy Implications 
	References

