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Abstract: This paper proposed an optimal spectral resolution for diagnosing cadmium-lead (Cd-Pb)
cross contamination with different pollution levels based on the hyperspectral reflectance of rice
canopy. Feature bands were sequentially selected by two-way analysis of variance (ANOVA2) and
random forests from the high-dimensional hyperspectral data after preprocessing. Then Support
Vector Machine (SVM) was applied to diagnose the pollution levels using different feature bands
combination with different spectral resolutions and cross validation was conducted to evaluate the
distinguishing accuracies. Finally, the optimal spectral resolution could be determined by comparing
the diagnosing accuracies of the optimal feature bands combination in each spectral resolution. In the
experiments, the hyperspectral reflectance data of rice canopy with ten different spectral resolutions
was captured, covering 16 pretreatments of Cd and Pb pollution. The experimental results showed
the optimal spectral resolution was 9 nm with the highest average accuracy of 0.71 and relatively
standard deviation of 0.07 for diagnosing the categories and levels of Cd-Pb cross contamination. The
useful exploration provided an evidence for optimal spectral resolution selection to reduce the cost of
heavy metal pollution diagnose.

Keywords: heavy metal pollution diagnosis; hyperspectral remote sensing; optimal spectral resolution
selection; cross contamination

1. Introduction

Heavy metal pollution is seriously jeopardizing food security, and this hazard is continuing to
intensify due to the increasing byproducts of frequent anthropogenic activities, such as industrial
pollutants, wastewater, mining wastes, and pesticides [1,2]. Traditional methods for heavy metal
diagnosis rely on wet chemistry analysis of a collection of soil samples, which has low-efficiency and is
time-consuming [3,4], so high-efficiency and time-saving visible-near infrared reflectance spectroscopy
(VNIRS) has become an alternative technology for diagnosing heavy metal pollutions.

Some investigations have shown the feasibility of VNIRS based methods to diagnose the polluted
or stressed categories the plants suffer, including pest stress, salinity stress, water stress, and heavy metal
pollution [5–13]. These studies explored its diagnostic ability on the basis of soil samples hyperspectral
datasets measured by VNIRS in the laboratory. For non-heavy metal diagnosis, Moshou et al. and
Huang et al. [5,14] explored the feasibility of using the spectral reflectance of wheat to detect pest
stress. Wang et al. [6] explored the possibility of interpreting water stress from plants using VNIRS.
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Tilley et al. and Rud et al. [7,15] investigated the feasibility of distinguishing salinity stress from plants
using VNIRS. For heavy metals pollution diagnosis, some researchers have also explored the feasibility
of diagnosing heavy metals based on VNIRS. Shi et al. [8] systematically explored the mechanisms of
predicted concentrations, acquisition methods, preprocessing technologies, and modeling strategies.
Liu et al. [9] investigated the feasibility of estimating heavy metal contaminations in floodplain soils.
Similar to the Liu et al. [9], St. Luce et al. [16] explored the feasibility of predicting heavy metal
concentrations based on visible near-infrared reflectance spectroscopy. Choe et al. [17] mapped heavy
metal pollution in stream sediments by combining geochemistry, field spectroscopy, and hyperspectral
remote sensing. Wang et al. [18] used VNIRS to predict low Pb concentrations and further investigated
the predictive mechanism of heavy metal concentrations. Liu et al. [19] used VNIRS to try to monitor
stress levels of rice with heavy metal pollution in a rice canopy, and recommended a fractal dimension
of reflectance with a wavelet transform of 480–850 nm as a comprehensive indicator. Chen et al. [10]
performed VINRS of 100 samples to rapidly identify the pollution risk of cadmium and identification of
pollution hotspots was achieved by interpolating the predicted values. Shi et al. [11] even considered
improving the diagnostic and predicted accuracies using combined VNIRS of rice plants and their soil.

However, these above studies only used a single spectral resolution with 1 nm for heavy metal
pollution diagnosing, thus there was a lack of the exploration of the diagnostic ability with the different
resolutions. The exploration does help to find an optimal spectral resolution for heavy metal pollution
diagnosing, especially for cross contamination diagnosing. Some researches [20–22] have indicated that
the higher spectral resolution not only increases the spectrometer production cost, but also involves
diagnostic accuracy due to Hughes phenomenon [23]. So, it is necessary to explore the optimal spectral
resolution for heavy metal cross contamination diagnosing.

Given the importance of optimal spectral resolution, this study aimed to propose a method
to determinate the optimal spectral resolution for heavy metal cross contamination diagnosing in
agricultural soils. To achieve this goal, the specific objectives were: (1) to design a cross contamination
experiment with Cd and Pb with four different pollution concentrations; (2) acquire the hyperspectral
reflectance of each sample at spectral resolutions; (3) select the number and combination of feature
bands for subsequent diagnosis based on two-way analysis of variance (ANOVA2) and random
forest (RF); and (4) determine the optimal spectral resolution for Cd-Pb pollution diagnosing based
on diagnostic accuracies of SVM. The result of this study is expected to give a suggestion for
sensors’ spectral resolution selection in heavy metal cross contamination diagnosing by using plant
reflectance spectroscopy.

2. Materials and Methods

2.1. Materials

Rice, the dominant staple food in China [18], was used as an indicator for cross contamination
diagnosing. Pb was the most seriously polluted source for rice in some southern provinces of China,
followed by Cd [24], so Cd and Pb were selected for the pollution sources for cross contamination in
this experiment. As opposed to soil cultures, water was used to plant rice to ensure the uniformity of
the contaminative concentration. To avoid the influence of environmental factors, the containers were
previously painted black [25]. Four different contaminative concentrations of Cd pollution, 0 mg/L,
2 mg/L, 5 mg/L, and 8 mg/L, were used, while the concentrations of Pb pollution were 0 mg/L, 50 mg/L,
100 mg/L, and 500 mg/L. Then, each Cd contaminative concentration as combined with that of Pb.
Including the normal group, there were totally 16 groups in the experiment. The details of pollution
pretreatments of the different groups are displayed in Table 1. In the paper, ZCd/ZPb, LCd/LPb,
MCd/MPb, and HCd/HPb represented zero, low-, medium-, and high-level concentrations of Cd/Pb
pollution, respectively. The contaminative concentrations were determined by early pre-test after
referring to the Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2008) of
China [26] and previous published papers [9,10,18,27–30]. These concentrations were also closed to the
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controlled value in (GB15618-2008)—3 mg/kg and 700 mg/kg for Cd and Pb respectively in farmland
soil [26].

Table 1. Pollution pretreatments of different groups.

Group Name Pollution Pretreatment Group Name Pollution Pretreatment

G01 ZCd-ZPb G09 LCd-MPb
G02 LCd-ZPb G10 LCd-HPb
G03 MCd-ZPb G11 MCd-LPb
G04 HCd-ZPb G12 MCd-MPb
G05 ZCd-LPb G13 MCd-HPb
G06 ZCd-MPb G14 HCd-LPb
G07 ZCd-HPb G15 HCd-MPb
G08 LCd-LPb G16 HCd-HPb

An ASD FieldSpec®3 portable spectrometer (ASD Inc., now PANalytical Company, Boulder, CO,
USA) with a spectral range of 350–2500 nm was used to measure the raw spectrum, and this equipment
performed data collection with 10 scans per second [31,32]. The spectral measurements were conducted
on a cloudless, sunny day between 10:00 am and 2:00 pm. For the measurements of each pollution
pretreatment group, a standardized plate with 100% reflectance was used to calibrate the reflectance
measurement [33]. To ensure the reliability of the measured spectrum, each sample underwent ten
parallel measurements, with the mean value used as the final determination of the hyperspectral
information. After screening, the spectral datasets, including six times complete measurements, were
selected from multiple datasets for subsequent diagnostic research.

Based on the raw reflectance with a 1 nm spectral resolution, we used average to resample to
different spectral resolution, and the subsequent diagnostic accuracies were also based on the spectral
average. This study acquired ten kinds of hyperspectral dataset with the different resolution from
1 nm to 10 nm.

2.2. Methods

To acquire the optimal spectral resolution for Cd-Pb cross contamination diagnosing, the
hyperspectral dataset with different band combinations and spectral resolutions were input the
diagnostic model by preprocessing and selection, followed by the accuracy’s comparison. This method
mainly included four parts: (1) the hyperspectral preprocessing, (2) feature bands selection, (3) Cd and
Pb diagnosing and accuracy evaluation, and (4) diagnosing accuracy comparison with different bands
and spectral resolutions. The technological workflow is shown as Figure 1.

2.2.1. Hyperspectral Data Preprocessing

Due to instrument noise, the spectral bands (1351–1440 nm, 1801–2030 nm, and 2351–2500 nm)
were removed to improve the signal-to-noise ratio. The representative curves of remained raw
reflectance were shown in Figure 2. To extract differences and eliminate redundancy, the following
preprocessing methods were performed for the raw hyperspectral data. The pretreatment of the
differentials [34], including the first differential and second differential, reduced the interference of
background noise. Savitzky and Golay smoothing [35] eliminated random noise. Normalization
or standardization reduced information redundancy and extracted the difference. In practice, the
combination of first derivative and normalization and the combination of second derivative and
Savitzky and Golay smoothing were used to select the bands that were sensitive to Cd pollution and
Pb pollution, respectively.
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Figure 1. Workflow of the method.

Figure 2. Raw reflectance after removing part of bands for first time measurement.

2.2.2. Feature Bands Selection

The number of input feature bands was one of the key factors for subsequent diagnosis. ANOVA2
and RF were used to determine the number. The three main steps of this analysis were as follows.

ANOVA2 was a statistical analysis method that could be used to analyze whether different levels
of two pollutions had a significant impact on the polluted results and distinguished whether there was
an interaction between the two pollutions based on the difference significances. Due to the uncertain



Sensors 2019, 19, 3889 5 of 15

inducement for interactions effects, ANOVA2 preferentially removed bands that were sensitive to
interaction effects, followed by the feature bands first time selection. These feature bands that were
sensitive to each of Cd and Pb pollutions were selected with less significance than preset value (0.05).

RF was used to rank the feature bands based on the Gini index and further reduced to ten bands
if the bands were more than ten, or all bands were reserved when the aforementioned bands did not
reach ten. The Gini index was used as an evaluation indicator to measure the contribution rate of each
feature band. The formula for Gini index displayed as following:

GIm =
∑
|K|

k=1

∑
k,,k

pmkpmk, = 1−
∑
|K|

k=1
p2

mk (1)

where K is the number of the pollution concentration, and its value is four in the study, pmk represents
the proportion of the pollution concentration K in the node m. In this experiment, the 0.75 dataset was
randomly selected as training data, and the remainder was used for validation datasets. Random
forest runs hundreds of times to eliminate the randomness of feature band selection. In each operation,
the band with the highest Gini index was reserved, and the feature band ranked on the basis of their
frequencies that Gini index was top one. Through testing, we found the feature band importance of
each band was stable when the program ran 1000 times repeatedly.

RF ranked the order of the bands based on the Gini index. However, RF did not determine the
number of band combinations, an important factor for determining subsequent diagnostic accuracy.
The overall diagnostic results of four different contaminative concentrations took the four overall
accuracies into consideration, resulting in a relatively sound value, so the overall diagnostic results
were used to determine the number of feature bands for each spectral resolution. For each spectral
resolution, the diagnostic results were achieved by subsequent SVM model and cross validation with
increasing the number of input bands.

2.2.3. Cd and Pb Diagnosing and Accuracy Evaluation

SVM was used as diagnostic models to distinguish the polluted categories and levels. The SVM
converted linearly indivisible low-dimensional data into high-dimensional data, making it linearly
separable by finding the optimal hyperplane, which was suitable for diagnosing and classifying the
study with small samples. All of the programs ran in the Matlab 2015a platform. Through testing,
the default settings for the SVM model with the linear kernel function reached the relatively optimal
setting values. For any spectral resolution, the SVM model run repeatedly to diagnose the special
categories and levels with the increase of the number of input bands from one to ten.

The leave-one-out cross-validation (LOOCV) were used to evaluate the diagnostic model
performance. Different from dividing the training dataset and the verification dataset proportionally,
the LOOCV method made full use of all hyperspectral data, which eliminated the randomness of
diagnosing small data samples. Based on the preset classification label, one data was reserved for
verification dataset each time, and the rest were used as training dataset. Finally, the average value of
all verification results was used as the accuracy of the diagnostic model.

2.2.4. Diagnosing Accuracy Comparison with Different Bands and Spectral Resolutions

The part aimed at selecting a spectral resolution that was applicable to diagnose a kind of Cd
and Pb pollution no matter how the levels changed. The average accuracy of different levels was
used as an indicator to determine the optimal bands and the optimal resolution. The highest average
accuracy firstly determined the optimal bands combination under a single spectral resolution, and
then determined the optimal spectral resolution. The optimal bands and the optimal resolution
were determined

The optimal bands =

{
the highest AV only top value
the highest AV with less band number two or more top value

(2)
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The optimal resolution =

{
the highest AV only top value
the highest AV with less coarser resolution two or more top value

(3)
with average accuracy (AV) of different pollution levels.

3. Results

3.1. Results of Feature Bands Selection

The feature bands were selected by ANOVA2, followed by the random forest algorithm. Before
preprocessing, there were 1660 bands. ANOVA2 greatly reduced the dimensions of hyperspectral data
by an order of magnitude. The number of sensitive bands of Cd was greater than that of Pb with the
exception at the 2 nm resolution.

Figures 3 and 4 showed the changes of the highest accuracies with the increase the number of input
bands from one to ten. The x-axis represented the number of input bands, and the y-axis represented
the spectral resolution.

Figure 3. Diagnostic accuracies of Cd pollution diagnosing for band combination selecting.

As shown in Figure 3, the average accuracies for Cd pollution were distributed in the range from
0.51 to 0.72 except the 0.47 in 8 nm resolution. As the input band changed, the relative highest accuracies
of each resolution ranged from 0.60 to 0.72, with a maximum of 0.72 at a 1 nm spectral resolution with
eight input bands and 3 nm spectral resolution with three input bands. As the resolution changed, the
maximum value of each resolution tended to decrease overall. There was a stable value at 3 nm, and
all accuracies were not less 0.65, no matter how the number of input bands changed.

The average accuracies for Pb pollution ranged from 0.45 to 0.75, but nearly half of the highest
accuracies were above 0.60, as shown in Figure 4. The accuracies at 1 nm and 2 nm had a distinct
advantage, displaying a saffron yellow color. The accuracies at 3 nm were generally low, and the lowest
at 10 nm. The highest accuracy of ten resolutions was 0.75 at 9 nm with two input bands. Overall,
the resolution of 1 nm and 2 nm stayed relatively stable with accuracies of more than 0.60. The ‘NaN’
represented that there were no feature bands.
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Figure 4. Diagnostic accuracies of Pb pollution diagnosing for band combination selecting.

By analyzing the diagnostic accuracies with the different band combinations and different
resolutions, the optimal bands of each spectral resolution were determined by the highest accuracy.
The details of the band combination selection for each spectral resolution were pretend in Table 2.
Primitive bands represented the number of the initial bands. ANOVA2 and RF were used to select the
band combinations, successively.

Table 2. Details of the band number at each spectral resolution.

Spectral
Resolution

Primitive
Bands

Cd Pb

Bands after
ANOVA2

Input Bands
after RF

Bands after
ANOVA2

Input Bands
after RF

1 nm 1660 48 8 50 1
2 nm 830 34 4 31 3
3 nm 552 26 3 20 2
4 nm 415 28 7 11 1
5 nm 332 23 5 14 2
6 nm 275 21 2 7 7
7 nm 235 19 2 14 1
8 nm 207 17 5 8 1
9 nm 183 19 2 6 2

10 nm 166 12 7 4 1

ANOVA2 = two-way analysis of variance; and RF = random forest.

After RF selection, the number of band combinations was not more than five for most spectral
resolutions. The number of sensitive feature bands of Pb pollution were generally less than that
of the Cd bands. For Cd pollution, the number of band combinations did not exceed five in six
different spectral resolutions. For Pb pollution, there was only one feature band in five different
spectral resolutions.
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3.2. Diagnostic Accuracies of Different Spectral Resolution for Different Levels

For each resolution, the diagnostic accuracies of each pollution level also depended on the highest
accuracy. After diagnosing with SVM and LOOCV validating, followed by band combination selecting,
the diagnostic accuracies of different pollution levels were obtained, as shown in Table 3.

Table 3. Details of the diagnostic accuracies with different spectral resolution.

ZCd LCd MCd HCd ZPb LPb MPb HPb

1 nm 0.75 0.73 0.69 0.72 0.69 0.71 0.73 0.74
2 nm 0.70 0.72 0.67 0.69 0.76 0.65 0.70 0.68
3 nm 0.72 0.68 0.73 0.75 0.85 0.31 0.72 0.61
4 nm 0.72 0.72 0.74 0.66 0.76 0.64 0.72 0.73
5 nm 0.55 0.64 0.68 0.73 0.79 0.69 0.68 0.68
6 nm 0.64 0.61 0.69 0.70 0.80 0.41 0.41 0.79
7 nm 0.69 0.54 0.66 0.66 0.77 0.73 0.73 0.69
8 nm 0.64 0.58 0.63 0.54 0.76 0.63 0.73 0.73
9 nm 0.61 0.65 0.71 0.71 0.85 0.70 0.75 0.71
10 nm 0.46 0.74 0.60 0.71 0.72 0.64 0.36 0.47

The results indicated that it was not uniform for the optimal diagnostic value of different pollution
categories and levels. The highest diagnostic accuracies of the zero, low, medium, and high levels of Cd
pollution were 0.75, 0.74, 0.74, and 0.75 at 1 nm, 10 nm, 4 nm, and 3 nm, respectively, while the highest
diagnostic accuracies for Pb were 0.85, 0.73, 0.75, and 0.79 at 9 nm, 7 nm, 9 nm, and 6 nm, respectively.
The highest diagnostic accuracies were above 0.70 no matter what categories and what levels the
rice subject. Among all the highest diagnostic accuracies, the diagnosis of the zero-concentration Pb
reached the optimal diagnosis with the accuracy of 0.85.

For the Cd pollution of the zero concentration, the accuracies were not less 0.70 before the spectral
resolution increased to the 5 nm. When the spectral resolution expanded 5 nm or more, all accuracies
were less than 0.65 except 0.69 at 7 nm. For the low concentration diagnosing, the highest diagnostic
accuracy was 0.74 at 10 nm resolution. In addition, the accuracies were more than 0.65 from 1 nm to
4 nm. For the spectral resolution in the range from 1 nm to 7 nm, the diagnostic accuracies of the
medium concentration were above 0.65, and the highest diagnostic accuracy was 0.74 at 4 nm. Similar
to the diagnosis of the zero concentration, the highest diagnostic accuracy of high concentration was
also 0.75, but the spectral resolution was different. Besides the highest diagnostic accuracy at 3 nm,
there were five resolutions with an accuracy of not less than 0.7. For the high concentration diagnosis,
the accuracies were not less than 0.60 except the poorest value 0.47 at 10 nm. The highest diagnostic
accuracy was 0.79 at 6 nm, and the accuracies exceeded 0.65 in the range from 4 nm to 9 nm.

For Pb pollution, the highest diagnostic accuracy of zero concentration reached 0.85, which was
the highest value in all diagnosis of different concentration, and there were two spectral resolutions,
3 nm and 9 nm, that all reached the highest diagnostic accuracy. Except for the spatial resolution of
1 nm and 3 nm, the rest of the accuracies exceeded 0.75. The accuracy at 1nm was the lowest, but
it was still close to 0.70. For the low concentration diagnosing, the accuracy fluctuated greatly, and
the resolution at 2 nm and 5 nm did not exceed 0.45. The highest diagnostic accuracy was 0.73 at
7 nm, while the minimum was only 0.31 at 3 nm, and the difference was more than 0.4. Similar to the
diagnosis of the low concentration, there were two resolutions that their accuracies were less than
0.45, with the worst accuracy being only 0.36 at 10 nm. The highest diagnostic accuracy of medium
concentration was 0.75 at 9 nm.
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4. Discussion

4.1. Suitable Wavelengths Analysis for Cd-Pb Pollution Diagnosing

The optimal spectral resolution affects the production cost of the sensor, and the wavelengths
coverage is related to the fabrication and spectral acquisition of sensor. So, we investigated the
wavelength coverage of the optimal bands for each spectral resolution.

Tables 4 and 5 show the wavelengths of the input bands from 1 nm to 10 nm for single Cd and
Pb diagnosing, and Figures 5 and 6 show the corresponding frequencies of the chosen wavelengths
in all ten spectral resolutions. Due to an excess of bands, the figures only show the bands with the
frequencies greater than one.

Table 4. Spectral location of the Cd pollution feature bands for any resolution.

Spectral Resolution Band Width

1 nm 734 nm, 754–755 nm, 768–769 nm, 776 nm, 1237 nm, 1309 nm, 1831 nm
2 nm 766–773 nm, 1310–1311 nm

3 nm 719–721 nm, 752–754 nm, 767–775 nm, 818–820 nm, 836–838 nm,
1214–1216 nm, 1310–1312 nm

4 nm 382–385 nm, 750–753 nm, 766–773 nm, 834–837 nm, 1082–1085 nm,
1298–1301 nm

5 nm 765–774 nm, 785–789 nm, 1015–1019 nm, 1080–1084 nm
6 nm 764–775 nm
7 nm 770–776 nm, 833–839 nm
8 nm 766–773 nm, 814–821 nm, 830–837 nm, 1078–1085 nm, 1222–1229 nm
9 nm 746–754 nm, 836–844 nm

10 nm 710–719 nm, 810–819 nm, 830–839 nm, 1020–1029 nm, 1310–1319 nm,
1340–1349 nm

Table 5. Spectral location of the Pb pollution feature bands for any resolution.

Spectral Resolution Band Width

1 nm 761 nm
2 nm 708–709 nm, 762–763 nm
3 nm 638–640 nm, 884–886 nm
4 nm 1174–1177 nm
5 nm 765–769 nm, 1891–1895 nm

6 nm 392–397 nm, 467–481 nm, 518–529 nm, 572–577 nm, 614–619 nm,
1394–1399 nm

7 nm 1771–1777 nm
8 nm 1174–1181 nm
9 nm 1178–1186 nm, 1870–1878 nm
10 nm 920–929 nm

Figure 5. Frequencies of the input bands for the primitive wavelength for Cd pollution.
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Figure 6. Frequency of the input bands of the primitive wavelength for Pb pollution.

As shown in Figures 5 and 6, there were forty-one bands of primitive reflectance to choose for
the Cd pollution diagnosing, while there were only eight bands for Pb pollution. For Cd pollution
diagnosing, the highest frequency was seven, including six primitive bands from 768 nm to 773 nm,
which were located in the near-visible wavelength coverage. Compared with the frequency of the
feature bands diagnosing Cd pollution, the distribution position of the input feature bands with
the highest frequency were relatively scattered, and the highest frequency was only two, including
eight primitive reflectance bands from 1174 nm to 1181 nm. Thus, subsequent research may consider
focusing on 768–773 nm and 1174–1181 nm for Cd-Pb cross contamination diagnosing.

4.2. Optimal Spectral Resolution Analysis

The average accuracy of the four levels was a key indicator of diagnosing ability, so the spectral
resolution, depending on the highest accuracy with different spectral resolution, could be used as a
reference for subsequent Cd-Pb diagnosis and even spectrometer production. Figures 7 and 8 showed
the changes of the diagnostic accuracies when only considering a single heavy metal diagnostic
results, and Table 6 displayed the highest accuracies of Cd-Pb comprehensive diagnosis after selecting
band combination.

Figure 7. Optimal accuracies (a) and corresponding boxplots (b) for diagnosing Cd pollution in
different resolutions.

As shown in Figure 7a, for diagnosed Cd pollution, the histograms of ZCd showed a downward
trend as a whole, but there was a small ridge at the 4 nm resolution. The low concentration diagnostic
histograms showed a trend of rising, falling, and rising again, and the accuracy at 10 nm was peak
value. The diagnostic accuracies of the medium concentration slightly fluctuated, between 0.6 and
0.7, and the maximum value appeared at 4 nm. Similar to the diagnosis of the zero concentration, the
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diagnostic accuracies of the high concentration were generally decreasing, but there was a peak at
3 nm.

Figure 8. Optimal accuracies (a) and corresponding boxplots (b) for diagnosing Pb pollution in
different resolutions.

Table 6. Statistical results of Cd-Pb comprehensive diagnosis after selecting band combination.

Spectral Resolution 1 nm 2 nm 3 nm 4 nm 5 nm 6 nm 7 nm 8 nm 9 nm 10 nm

AV 0.69 0.69 0.65 0.66 0.66 0.62 0.68 0.63 0.71 0.57
Standard Deviation 0.11 0.03 0.1 0.12 0.07 0.14 0.06 0.19 0.07 0.12

Recall Ratio 0.83 0.75 0.69 0.59 0.79 0.61 0.75 0.80 0.76 0.61
Range 0.40 0.13 0.35 0.43 0.23 0.41 0.23 0.55 0.24 0.35

Variable Coefficient 0.16 0.05 0.16 0.18 0.10 0.22 0.09 0.30 0.09 0.21

The boxplots in Figure 7b showed the overall diagnostic level for four different Cd contaminative
concentrations. There are not outliers for diagnostic accuracies. The resolutions of 1 nm and 3 nm had
a clear advantage with the overall better diagnostic level. The detailed accuracies at 1 nm were 0.75,
0.73, 0.69, and 0.72 for zero, low, medium, and high concentration, respectively, while the accuracies at
3 nm were 0.72, 0.68, 0.73, and 0.75, respectively. Taking the sensors production cost into consideration,
the 3 nm spectral resolution was a more appropriate spectral resolution for identifying whether the
rice was exposed to any concentration of Cd pollution.

As shown in Figure 8a, for Pb pollution under a single level, the highest accuracies were generally
not at 1 nm. For the zero-concentration diagnosing, the accuracies were flat between 4 nm and 8 nm,
and the maximum value was 0.85 at 3 nm and 9 nm. Due to the larger spectral resolution, the 9 nm
was more suitable for diagnosing ZPb concentration. In the low-concentrations histograms, there was
a minimum value, which indicated that it was not an appropriate resolution for 2 nm to diagnose the
low-concentration Pb pollution. The medium-concentration histograms showed a stable trend in the
range from 1 nm to 4 nm, and then fluctuated greatly with the increase of spectral resolution. If only
one pollution level was considered, the 7 nm was the most suitable spectral resolution for low-level
Pb pollution diagnosing, as 9 nm was suitable for medium-level diagnosis. For diagnosis of the high
level, there was an overall trend of falling, rising and falling again, and the accuracies reached the
peak value at 6 nm. In addition, the overall accuracy optimization might result in the poor diagnostic
accuracy of a certain pollution level diagnosis. There were some lower diagnostic accuracies, such as
the LPb diagnosis at 3 nm and the MPb diagnosis at 6 nm, which indicated that it was not appropriate
for these spectral resolutions to distinguish the LPb and MPb, respectively.

It was showed for the overall diagnostic level of Pb contamination in Figure 8b. There were four
spectral resolutions that the overall diagnostic levels were better than others, including 1 nm, 5 nm,
7 nm and 9 nm. The specific accuracies at 9 nm were 0.85, 0.70, 0.75, and 0.71 for zero, low, medium,
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and high concentration, respectively, and the corresponding average accuracy reached 0.75, which was
the highest values in all the average accuracies. Thus, 9 nm was a more suitable spectral resolution for
distinguishing whether rice is exposed to any concentrations of Pb pollution.

To find a universal spectral resolution for Cd-Pb cross contamination diagnosing, the
comprehensive accuracies of different Cd-Pb levels should be considered. Table 6 displayed the
average accuracies of Cd-Pb comprehensive diagnosis after selecting band combination.

Except 0.57 at 10 nm, all average accuracies overpassed 0.60. All AV values exceeded 0.65 before
the spectral resolution exceeded 5 nm. The average accuracy reached 0.71 at 9 nm, which was also the
highest value in all average accuracies. To further confirm the reliability of the highest accuracy, we
also calculated the standard deviation, the recall rate, range (xmax–xmin), and variable coefficient of
diagnostic accuracies at different resolutions.

The higher value of recall ratio represented the stronger diagnostic ability for pre-diagnostic
concentrations, while the smaller value of standard deviation (SD), ranges, and variable coefficient
represented the better stability in different concentrations. The calculated results showed that the
diagnostic accuracy at 9 nm had a relatively small standard deviation of 0.07 and a relatively high
recall rate of 0.76. In addition, the range and variable coefficient in 9 nm also kept a more stable
condition relatively with a value of 0.24 and 0.09 respectively. Although there was a better stability in
the resolution of 2 nm, the resolution of 9 nm was higher in AV and recall ration with a good stability.
Therefore, the 9 nm was optimal spectral resolution for Cd-Pb cross contamination diagnosing.

In this study, the diagnostic accuracies by high-resolution measurement were not always more
accurate than low-resolutions ones, for example, the diagnostic accuracies of Cd contamination at 8 nm
did not outperform the 9 nm ones. The effect might be related to the Hughes phenomenon [23] and the
collinearity between hyperspectral bands [20,21]. On the one hand, the spectral averaging eliminated
random errors, caused by the working state of the machine in the process of spectral acquisition. On
the other hand, some adjacent collinear bands with high sensitivity may be selected preferentially in
the process of selecting feature bands, which may cause the loss of spectral information [22,36,37].
As a result, higher accuracies might be obtained in low resolution. In addition, Marceau’s research
results [38] showed that the spectral variability within the category was also a cause.

Based on the above results and discussions, we propose that 9 nm is the optimal spectral resolution
to sensor production for Cd-Pb cross contamination diagnosing simultaneously in rice, and give a
suggestion that spectral resolutions of 3 nm and 9 nm should be the optimal resolutions for diagnosing
the single Cd and Pb pollution. The sampling interval of 1.4 nm, like ASD FieldSpec®3, may be
appropriate due to the closed relationship between the sensitive bands’ wavelength coverage and
short-wave infrared range. Using the optimal spectral resolution may improve diagnostic stability and
reduce the cost of the instrument.

5. Conclusions

This paper proposed an optimal spectral resolution for diagnosing the categories and levels of
Cd-Pb cross contamination in rice based on the hyperspectral dataset. ANOVA2 and RF were used
to select the feature bands, followed by SVM and cross validation to get diagnostic accuracies. By
analyzing diagnostic results of different band combinations and different spectral resolution, the
band combinations and the optimal spectral resolutions, ranging from 1 nm to 10 nm, were chosen
based on the highest accuracy. The results indicated that: (1) the hyperspectral technology was a
promising method for diagnosing heavy metal cross contamination of Cd and Pb. For each spectral
resolution, no matter what categories and levels of Cd and Pb rice suffered, the first-rank average
diagnostic accuracies were above 0.6, except for Pb pollution diagnosing with the 10 nm resolution.
(2) Wavelengths of 768–773 nm and 1174–1181 nm might be worth exploring to find a suitable index
for distinguishing the Cd and Pb pollution. (3) The 9 nm was the optimal spectral resolution to instruct
the sensor production for Cd-Pb cross contamination diagnosing.
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This experiment only investigated the optimal spectral resolution diagnosing the Cd-Pb cross
contamination. It is worthy of exploring the feasibility of the proposed method to determine the
optimal spectral resolution of other heavy metals cross contamination in the future research. This
future exploration may find a universal resolution diagnosing heavy-metal pollutions, which can help
expand the diagnostic scopes of the sensor.
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