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Perivascular adipose tissue (PVAT) directly juxtaposes the vascular adventitia and contains
a distinct mixture of mature adipocytes, preadipocytes, stem cells, and inflammatory cells
that communicate via adipocytokines and other signaling mediators with the nearby vessel
wall to regulate vascular function. Cross-talk between perivascular adipocytes and the cells
in the blood vessel wall is vital for normal vascular function and becomes perturbed in dis-
eases such as atherosclerosis. Perivascular adipocytes surrounding coronary arteries may
be primed to promote inflammation and angiogenesis, and PVAT phenotypic changes occur-
ring in the setting of obesity, hyperlipidemia etc., are fundamentally important in determining
a pathogenic versus protective role of PVAT in vascular disease. Recent discoveries have
advanced our understanding of the role of perivascular adipocytes in modulating vascular
function. However, their impact on cardiovascular disease (CVD), particularly in humans, is
yet to be fully elucidated. This review will highlight the complex mechanisms whereby PVAT
regulates atherosclerosis, with an emphasis on clinical implications of PVAT and emerging
strategies for evaluation and treatment of CVD based on PVAT biology.

Introduction
Over the past several decades, the prevalence of obesity has doubled, with a concomitant increase in risk of
associated cardiovascular complications. Understandably, obesity-related cardiovascular disease (CVD)
risk is often attributed to concurrent risk factors such as hypertension, diabetes mellitus, and dyslipi-
demia [1,2]. However, longitudinal studies have demonstrated an independent risk association between
obesity and CVD that is not fully accounted for by these traditional risk factors [2–4]. Moreover, some
obese patients are metabolically healthy, suggesting that the quality and distribution of adipose tissue is
a fundamental determinant of cardiometabolic disease, which highlights the complexity of adipose tissue
biology. The extent of inflammation of adipose tissue, which promotes insulin resistance and systemic
metabolic disease, appears to confer obesity-related risk; in this regard, attention has turned to the lo-
cal impact of perivascular adipose tissue (PVAT) on vascular disease. PVAT expansion and chemokine
production near the adventitia of large arteries have been detected early in the course of hyperlipidemic,
atherosclerosis-prone animal models, and in human arteries, resulting in a heightened state of inflamma-
tion that likely plays a fundamental role in the pathogenesis of CVD [1,2,5].

The term PVAT is applied to the adipose tissue that juxtaposes the outer adventitial regions of most
large arteries, irrespective of location [2,6]. Studies suggest that as an anatomically separated adipose
tissue, PVAT arises from unique progenitor cells, giving rise to its distinctive functional characteristics
[7]. Perivascular tissue surrounding coronary arteries is considered to be a part of the epicardial adipose
tissue since there are no clear anatomical boundaries separating the two [2]. However, functional differ-
ences have been described. For example, in vitro differentiated human coronary perivascular adipocytes
were reported to secrete more monocyte chemoattractant protein 1 (MCP-1) as compared with epicar-
dial adipocytes derived from the same healthy humans [8]. Although human coronary PVAT exhibits a
morphology similar to white adipose tissue, the adipocytes are smaller in size, heterogenous in shape, and
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Table 1 Mediators released from PVAT or PVAT resident immune cells along with their functions and major
cellular sources

Mediator Function Major sources References

Pro-atherogenic

MCP-1 Increases chemotaxis and transendothelial migration of
monocytes. Proangiogenic

Adipocytes, inflammatory cells
[1,6,8,11,22,28,30,31,45,46,48,53]

TNF-α Activates M1 macrophages, chemoattractant for neutrophils Macrophages and other inflammatory cells [6,11,18,22,28,50]

Leptin Increases TNF-α IL-6, IL-12, reactive oxygen species (ROS),
enhances macrophage phagocytosis, increases proliferation, and
migration of monocytes and VSMCs

Adipocytes [54]

Resistin Promotes endothelial cell activation by inducing endothelin-1
release and by up-regulating endothelial adhesion molecules (i.e.,
VCAM-1, MCP-1)

Adipocytes, macrophages [21,22,55]

Visfatin Increases IL-6, IL-8, TNF-α, VSMC proliferation and migration
Decreases apoptosis of neutrophils

Adipocytes, macrophages [56–58]

Osteoprotegerin Both pro-inflammatory and anti-inflammatory Adipocytes [8,59]

PAI-1 Fibrinolysis inhibitor, decreases plasminogen activation Adipocytes, platelets, vascular
endothelium,

[60,61]

IL-6 Decreases adiponectin section, lipoprotein lipase activity.
Increases lipolysis, suppressor of cytokine signaling type-3
(SOCS-3), proangiogenic

Macrophages, fibroblasts, endothelial cells,
adipocytes

[6,18,22,28,45,46]

IL-8 Increases chemotaxis of monocytes, neutrophils, T lymphocytes,
ROS production

Macrophages [6,46]

IL-1β Pro-inflammatory Macrophages [18,62]

Complement 3 Stimulates adventitial fibroblast migration and differentiation Adipocytes [63]

Complement 7 Complement systemic factor Adipocytes [8]

Complement H Complement systemic factor Adipocytes [60]

GM-CSF Regulates and promotes growth and population of monocytes and
macrophages

Macrophages and T cells [45]

VEGF Pro-angiogenic Macrophages [1,38,46]

Anti-atherogenic

Adiponectin Suppress synthesis of TNF-α, IFN-γ, NF-κB, phagocytosis, induce
production of IL-10, IL-1 receptor antagonist

Adipocytes [54,64]

Adrenomedullin Decreases inflammation Adipocytes [62,65]

TAIP6 Anti-inflammatory Adipocytes [8]

SOCS2 Anti-inflammatory Adipocytes [60]

IL-4 Stimulation of activated B-cell and T-cell proliferation, and
differentiation of B cells into plasma cells. Decreases production of
Th1 cells, macrophages

T cells, Basophils, Eosinophils [37]

IL-10 Down-regulates expression of molecules that activate T cells and
macrophages. Enhances B-cell survival. Inhibits synthesis of
pro-inflammatory cytokines

Monocytes, T cells, Eosinophils [66]

TGF-β Anti-inflammatory. Stimulates differentiation of PV-ADSCs into
VSMCs

T cells, B cells, Eosinophils [37,38]

Omentin Anti-inflammatory Adipocytes [67]

undergo less differentiation and maturation [8]. In contrast, PVAT surrounding the upper thoracic aorta of lean,
healthy humans may exhibit a morphology similar to brown adipose tissue; however, the majority of studies report
that white adipocytes predominate in human PVAT depots [9]. Conversely, PVAT surrounding the thoracic aorta of
rodents exhibits a predominant brown phenotype, whereas PVAT surrounding the abdominal aorta is phenotypically
a mixture of white and brown [10].

As a metabolically active endocrine tissue, PVAT is ideally positioned to directly govern vascular pathophysiol-
ogy relative to other fat depots [1,8,11]. In healthy conditions, PVAT appears to play a protective role in regulating
metabolism, inflammation, and function of associated blood vessels. In states of chronic caloric excess, perivascular
adipocytes undergo hypertrophy; the tissue hypoxia and mechanical stress that ensues in PVAT results in a detrimen-
tal change in the secretome profile and the ability to store lipids [5,12]. The spillover of cytokines and fatty acids into
the vascular adventitia, which is facilitated by the lack of a connective tissue barrier between PVAT and the adjacent
artery, promotes arterial inflammation that may augment atherosclerosis and increase risk of plaque rupture [12]. In-
deed, clinical observations suggest that the development of inflamed and dysfunctional coronary PVAT is positively
correlated with coronary plaque burden and CVD mortality risk [1,13].
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As PVAT’s role in the development of CVD is becoming more widely accepted, a PVAT-centered revolution in
vascular biology may be on the verge. The focus of this review will be on the growing body of data linking PVAT to
the pathogenesis of the most common cause of CVD, atherosclerosis [14].

Adventitial inflammation and the pro-inflammatory
phenotype of PVAT
The location of PVAT, abutting the nearby adventitia of blood vessels without a physical anatomical barrier, facilitates
its ability to govern the focal vascular milieu via paracrine and vasocrine routes [1,6,8]. The traditional ‘inside to
outside’ model of atherosclerosis pathogenesis centered on endothelial cell dysfunction, inflammation, and intimal
foam cell formation as the root cause of atherosclerotic vascular disease [6]. However, most investigators systemically
removed PVAT from blood vessels before performing biochemical testing, immunostaining, or functional studies
as PVAT was considered to be an inert, non-vascular tissue [15]. More recent evidence suggests that communica-
tion between the vascular wall and PVAT may be bidirectional, with an ‘outside to inside’ inflammatory signaling
triggered by dysfunctional PVAT more influential than previously thought [6,9,16]. For example, in hyperlipidemic
atherosclerosis-prone apolipoprotein E (ApoE)-deficient mice, the major site of vascular inflammatory cell accumu-
lation was reported to be the adventitia rather than the intima, and in atherosclerotic human aorta, inflammatory
cells were observed to be densely clustered in PVAT at the adventitial margin, suggesting that PVAT has the potential
to foster vascular inflammation [8,17].

Interest in PVAT biology has been driven in large part by studies examining the phenotype of human PVAT
procured from patients undergoing surgical procedures. Human epicardial adipose tissue removed from patients
undergoing coronary artery bypass grafting surgery demonstrated significantly higher levels of chemokines (i.e.
MCP-1) and inflammatory cytokines [i.e. interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α] in com-
parison with subcutaneous adipose tissue obtained from the same patients [18]. Conversely, anti-inflammatory
adiponectin expression was found to be significantly lower in epicardial fat samples from patients with significant
coronary atherosclerosis compared with those without, suggesting an imbalance in PVAT inflammation in the set-
ting of atherosclerosis [19]. Furthermore, macrophage infiltration in human PVAT has been reported to colocalize
with resistin, an adipokine that was shown to increase the permeability of endothelial cells in vitro, shedding light
on the multiple mechanisms whereby PVAT may contribute to the pathogenesis of atherosclerosis [20,21].

The epicardial portion of human coronary arteries is both richly endowed in PVAT and particularly susceptible
to atherosclerosis. Chatterjee et al. [6] investigated the phenotype of PVAT and in vitro differentiated adipocytes
surrounding coronary arteries of healthy humans. Differentiated pericoronary perivascular adipocytes released sub-
stantially more IL-8, IL-6, and MCP-1 than adipocytes derived from other fat depots under basal conditions, sug-
gesting that they may be primed to amplify adventitial inflammation and inflammatory cell recruitment. Moreover,
osteoprotegerin, a member of the TNF-related family that is correlated with increased atherosclerotic progression and
instability, was strongly up-regulated in human coronary perivascular adipocytes [8]. These and other studies suggest
that PVAT may be more susceptible to inflammation than other regional adipose depots. The extent of inflammation
in PVAT raises the possibility that its expansion could also amplify disease at remote sites in the vasculature. Indeed,
transplantation of abdominal aortic white PVAT harvested from high fat fed mice promoted inflammation (elevated
TNF-α and MCP-1 expression), endothelial dysfunction, and atherosclerosis remotely in thoracic aorta, properties
that were not shared by subcutaneous or visceral (epididymal) adipose tissue [11].

PVAT also contains endogenous anti-inflammatory pathways that may function to limit the extent of local inflam-
mation. Low-density lipoprotein receptor-related protein-1 (LRP1) is a type 1 transmembrane protein receptor that is
ubiquitously expressed, particularly in adipose tissue, and plays a role in endocytic and cell signal transduction [22].
LRP1 dysfunction in the liver, smooth muscle cells (SMCs), and macrophages was reported to augment atheroscle-
rosis [23]. Investigating the role of LRP1 in PVAT, Konaniah et al. [22] found that LRP1-deficient PVAT exhibited a
pro-inflammatory phenotype and elevated resistin expression. Furthermore, transplantation of LRP1-deficient PVAT
to the carotid artery produced a three-fold increase in atherosclerosis development compared with control, associated
with increased macrophage recruitment and MCP-1, IL-6, and TNF-α expression. Mechanistically, LRP1-deficient
PVAT exhibited impaired lipid storage, suggesting an increase in free fatty acids that may augment lipotoxicity and
adventitial inflammatory signaling.

Oxidized lipoproteins are atherogenic and promote vascular inflammation via multiple mechanisms [24–26]. Inter-
estingly, Uchida et al. [27], using immunohistochemistry, showed evidence of oxidized low-density lipoprotein (LDL)
and high-density lipoprotein (HDL) stored in human coronary PVAT. This was observed in all coronary PVAT sam-
ples, irrespective of the extent of underlying coronary disease, suggesting that the storage of lipoproteins may occur
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prior to the formation of atherosclerotic fatty streaks. Meticulous examination of the deposition pattern of oxidized
LDL led to the speculation that macrophages engulf oxidized LDL within the coronary PVAT and migrate to the in-
tima via the interstitial space or vasa vasorum, while oxidized HDL particles are likely to be supplied from PVAT to
the intima principally by the vasa vasorum. These findings suggest that PVAT may be an unrecognized supplier of
oxidized lipoproteins to the vascular intima.

The renin–angiotensin system (RAS) contributes importantly to vascular inflammation and atherosclerosis. Irie
et al. [28] reported that in ApoE-deficient mice fed a high-cholesterol diet (HCD), components of the RAS [i.e.
angiotensinogen, angiotensin-converting enzyme, and angiotensin II receptor type 1a (AT1a)] were specifically
up-regulated in PVAT, in conjunction with increased macrophage markers (i.e. CD68 and CD206); transplantation
of PVAT from these mice into ApoE-deficient recipient mice produced a striking increase in atherosclerosis develop-
ment. Interestingly, inflammation and atherosclerosis were significantly reduced by treating these mice with an an-
giotensin II receptor blocker or by transplanting PVAT from mice lacking AT1 receptors, suggesting an AT1-receptor
dependent mechanism of inflammation regulating PVAT phenotype in the pathogenesis of atherosclerosis.

Interplay between inflammation and vascular function:
potential atheroprotective effects of PVAT
While much of the interest in PVAT biology centers on its ability to promote inflammation and atherosclerosis in
obesity, interestingly, healthy PVAT may be home to immune cells that attenuate atherosclerosis development. B-1
cell-derived IgM has been shown to attenuate pro-inflammatory cytokine production by M1 macrophages in visceral
adipose tissue [29]. Srikakulapu et al. [29] demonstrated that in young ApoE-deficient mice, B-1 cells abundantly
secreting IgM were present at surprisingly higher numbers in PVAT compared with aorta, and the PVAT B-1/B-2 ratio
suggests an anti-inflammatory influence of PVAT. Furthermore, immunohistochemistry data from human coronary
PVAT demonstrated that B cells were found aggregated in close proximity to the coronary artery in fat-associated
lymphoid clusters. Notably, levels of IgM to oxidation-specific epitopes on LDL were shown to be inversely associated
with MCP-1 levels in the plasma and with the development of atherosclerosis in humans [30,31]. More studies are
needed to determine if enhancing B1 activity to increase focal IgM production will indeed neutralize the oxidized
LDL particles stored in PVAT, and the impact this may have on atherosclerosis. Understanding immune modulation
by healthy PVAT may thus improve our knowledge of endogenous atheroprotective pathways.

Healthy PVAT also possesses anti-contractile properties that are abolished in obesity, thus causing increased ar-
terial tone, which is thought to be a key mechanism of obesity-associated hypertension and vascular dysfunction.
Interestingly, Withers et al. [32] demonstrated that obesity is accompanied by a significant reduction in the number
of resident eosinophils in PVAT, which may lead to the loss of anti-contractile function. Indeed, PVAT from eosinophil
deficient-mice lost its anti-contractile effect, which was restored after purified eosinophils were added back to those
vessels with intact PVAT. These findings suggest the existence of an eosinophil-derived soluble anti-contractile factor
released by PVAT. Mechanistically, this factor was dependent on B3 adrenoreceptors, resulting in downstream sig-
naling of adiponectin and nitric oxide pathways independent of other immune cells. These findings are the first to
identify eosinophils as novel therapeutic targets for obesity associated CVD.

Dendritic cells (DCs), professional antigen presenting cells, are found in the border of adventitia and PVAT, where
they may promote pro-inflammatory cytokine production from T cells contained in PVAT. The increase in arterial
tone due to chronic inflammation and vascular dysfunction was shown to be associated with DC accumulation in
PVAT in a murine type 2 diabetes mellitus (T2DM) model, and DC depletion improved both the vascular dysfunc-
tion and pro-inflammatory environment, suggesting a critical role of DC in PVAT inflammation associated with
atherosclerosis [33]. Expression of adiponectin, an anti-inflammatory adipokine, was decreased in the PVAT of these
mice [33], suggesting a possible mechanistic link between adipokine perturbations in PVAT and atherosclerosis pro-
gression in T2DM. Interestingly, PVAT inflammation, but not systemic inflammation, was observed in a non-obese
and non-hypertensive prediabetic rat model, which was ameliorated by anti-diabetic drugs such as metformin and
pioglitazone, also suggesting the potential association of PVAT inflammation and diabetes [34].

Natural killer (NK) cells and invariant natural killer T (iNKT) have also been identified in PVAT. NK cells were
reported to regulate visceral adipose tissue inflammation via interferon (IFN)-γ release [35], and iNKT cells promoted
adipose tissue inflammation and atherosclerosis in diet-induced obesity mouse models [36]. However, the regulatory
role of NK cells or iNKT cells specifically in PVAT, and whether their presence in this niche modulates atherosclerosis,
is not clear.

Terada et al. [37] investigated whether PVAT may have anti-atherogenic properties under healthy conditions and
pro-atherogenic effects under diseased conditions. Thoracic aortic PVAT from healthy mice was transplanted to the
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infrarenal aorta of ApoE-deficient mice, resulting in diminished atherosclerosis in the suprarenal aorta of recipient
animals via systemic endocrine mechanisms. Increased transforming growth factor (TGF)-β1 mRNA expression,
and positive TGF-β1 immunostaining co-localizing with M2-like macrophages, was detected in the transplanted
PVAT. This remote anti-atherogenic effect of transplanted PVAT was neutralized by the administration of TGF-β1
antibody injections, consistent with the finding that patients with advanced atherosclerosis have a significant decrease
in circulating active TGF-β1. Furthermore, an accumulation of alternatively activated macrophages was observed in
the transplanted PVAT, in association with an increase in percentage of eosinophils and a time-dependent increase
in anti-inflammatory IL-4 expression after transplantation. It should be noted, however, that the transplanted PVAT
in the present study was phenotypically brown, so the relevance to atherosclerosis in humans is less clear.

Most studies published thus far have attributed the function of PVAT to secreted adipocytokines. However, Gu
et al. [38] identified and highlighted the importance of the PVAT-derived mesenchymal stem cells (PV-ADSCs)
in vascular remodeling. By conducting a single-cell RNA-sequencing analysis, two unique populations (clusters)
of PV-ADSCs were identified with distinct gene expression signatures, signaling pathways, and metabolic profiles.
Cluster 1 signaling pathways featured vascular endothelial growth factor (VEGF)-activated receptor activity and per-
oxisome proliferator-activated receptors (PPAR) signaling that are essential for angiogenesis, while cluster 2 featured
platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF) binding, PI3K-Akt signaling, and TGF-β
signaling that are essential in SMC differentiation. Using red fluorescent protein-labeled PV-ADSCs, the investiga-
tors demonstrated the participation of these cells in vascular remodeling in vivo via migration from the adventitia
across to the intima. Moreover, in vitro studies demonstrated differentiation of PV-ADSCs into SMCs after TGF-β1
stimulation.

The differentiation of resident PV-ADSCs into SMCs is accompanied by metabolic reprogramming of mitochon-
drial function and lipid metabolism that are thought to drive SMC differentiation [38]. Interestingly, this metabolic
reprogramming and differentiation of PV-ADSC was found to be induced by microRNA (miR)-378a-3p. Studies in
the literature have demonstrated that in atherosclerosis, adventitial stem cells travel to sites of endothelial injury and
differentiate in response to their respective microenvironments; this investigation presents the first data suggesting
that PV-ADSCs may participate in pathophysiology in the intima. More studies are needed to validate the role of
PV-ADSCs in the pathogenesis of atherosclerosis, and to investigate the efficacy of miR-378a-3p as a potential ther-
apeutic target to regulate differentiation of PV-ADSCs to SMCs.

PVAT and adventitial vasa vasorum
The vasa vasorum is a network of microvessels originating primarily in the adventitia of conduit arteries that serves
to deliver oxygen, nutrients etc. to medial and outer layers of the arterial wall [39]. In atherosclerosis, thickening
of the neointima is thought to limit luminal diffusion of oxygen, thereby causing hypoxia of the deeper layers of
the vessel wall, which in turn stimulates angiogenesis of the adventitial vasa vasorum [39]. Indeed, animal studies
suggested that disruption of the vasa vasorum could promote medial necrosis and intimal thickening, leading to
the notion that the vasa vasorum is atheroprotective [39]. However, more recent studies have challenged this dogma.
First, in a pig model of hypercholesterolemia, proliferation of vasa vasorum was detected within the first few weeks of
high fat feeding, even before the onset of endothelial dysfunction, suggesting that factors other than intimal hypoxia
were responsible for its proliferation [40]. Second, in the same pig model, prevention of vasa vasorum prolifera-
tion using a pharmacological approach attenuated atherosclerosis [40]. Proliferation of vasa vasorum in atheroscle-
rotic plaque is also increasingly recognized to contribute to lesion progression and destabilization in humans [41,42].
Postmortem retrospective studies have demonstrated that vasa vasorum density is positively correlated with progres-
sive fibrous cap thinning; these fragile neovessels arising at the borders of the of the plaque necrotic core may leak
macromolecules, including cholesterol-laden erythrocytes, that are taken up by macrophages, thereby promoting in-
flammation and rapid plaque growth [5,43,44]. Taken together, these studies suggest that vasa vasorum proliferation
contributes to plaque vulnerability; thus, understanding mechanisms that promote vasa vasorum proliferation and
function in atherosclerosis is crucial to devising new approaches to prevent and treat coronary artery disease.

Adipose tissue is inherently angiogenic, suggesting that PVAT could play a previously unrecognized but important
role in proliferation of vasa vasorum in atherosclerosis. Using a model of PVAT transplantation to the mouse carotid
artery, Manka et al. [1] demonstrated a significant increase in adventitial neovascularization compared with sham
control. This mechanism was mediated in part by MCP-1, as PVAT from MCP-1 knockout mice did not demonstrate
the same potent angiogenic properties. Moreover, in the same study, differentiated human perivascular adipocytes
exhibited greater angiogenic potential as compared with subcutaneous and perirenal adipocytes derived from the
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same patients. Thus, in addition to being primed to amplify inflammation, perivascular adipocytes may be uniquely
poised to promote angiogenesis leading to vasa vasorum proliferation.

Ying et al. [45] investigated the potential contributary role of PVAT in plaque vulnerability using a PVAT trans-
plantation model. PVAT from donor wild-type mice fed a high fat diet (HFD) for 4 weeks was implanted next to
the carotid artery of atherosclerotic prone ApoE-deficient mice. The transplanted PVAT led to an enhanced plaque
vulnerability with a higher intraplaque macrophage number, an increase in lipid core size, elevation in matrix met-
allopeptidase (MMP)-2 and -9 expression, and a thinner fibrous cap in comparison with transplanted subcutaneous
and sham procedure. Furthermore, transplanted PVAT promoted intraplaque angiogenesis along with an elevation in
several pro-angiogenic factors, MCP-1, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and
up-regulation of anti-angiogenic factor 4. Interestingly, most of these changes were ameliorated by the administra-
tion of an endoplasmic reticulum (ER) stress inhibitor to the transplanted PVAT, suggesting that ER paracrine stress
may be contributing in PVAT dysfunction. Using in vitro models, Ying et al. [45] provided evidence that induction
of GM-CSF by ER stress in PVAT may contribute to the pathogenesis of vulnerable plaques via a nuclear factor κ
B (NF-κB)-dependent mechanism. GM-CSF is a pro-inflammatory, pro-angiogenetic, hematopoietic growth factor
that may play a significant role in plaque destabilization by facilitating macrophage apoptosis and plaque necrosis.
Taken together, these findings suggest that ER stress in PVAT may contribute to destabilizing atherosclerotic plaques,
and an ER stress inhibitor may serve as a promising therapeutic avenue for treating high risk atherosclerotic plaques.

In addition to promoting neovascularization, VEGF produced by PVAT may augment vascular smooth muscle cell
(VSMC) proliferation. Schlich et al. [46] demonstrated that PVAT-conditioned media induced VSMC proliferation
via a VEGF-dependent mechanism. Addition of oleic acid produced a synergistic proliferative response, which was
significantly greater than that observed with conditioned media from subcutaneous or visceral adipose tissue. In-
triguingly, PVAT from obese subjects with type 2 diabetes exhibited a high level of VEGF section, along with elevated
expression of VEGF-R1 and -2, and a strong proliferative effect on VSMC. A VEGF-specific antibody only partially
attenuated the VSMC proliferation, suggesting that other adipokines, such as activin A, IL-6, IL-8, or MCP-1 may also
be contributory. These findings suggest that dysfunctional PVAT may play a particularly important role in promoting
atherosclerosis in patients with obesity and diabetes.

Clinical significance of PVAT imaging
Noninvasive detection of vulnerable atherosclerotic plaques has been acknowledged as the ‘holy grail’ in cardiovascu-
lar medicine in the hopes that it would allow for earlier detection of vulnerable plaques and improve cardiovascular
risk stratification [47]. Currently, most available methods to evaluate vascular inflammation provide structural infor-
mation only and cannot specifically discriminate vulnerable atherosclerotic lesions [48]. However, coronary arteries
with atherosclerotic plaques appear to have a larger amount of PVAT encroaching into their outer adventitia as de-
tected by computed tomography (CT) [49]. Moreover, atherosclerotic plaque size and complex lipid core composition
were positively correlated with PVAT volume and macrophage infiltration in a postmortem study of human subjects
[13]. Thus, imaging of coronary PVAT holds promise as a non-invasive method to detect unstable coronary lesions
[49,50].

Antonopoulos et al. [47] demonstrated key features of both epicardial and thoracic PVAT that can potentially be
monitored via noninvasive imaging. Taking advantage of the fact that PVAT inflammation is linked to impaired dif-
ferentiation and lower adipocyte lipid content, the authors examined high resolution CT scans and quantified fat
attenuation index (FAI), an index of water to lipid ratio, in PVAT. The FAI was demonstrated to exhibit excellent
sensitivity and specificity for identifying PVAT inflammation when validated against adipose tissue specimens. Im-
portantly, the PVAT FAI was higher in PVAT surrounding unstable plaques and predictive of cardiovascular mortality
in a retrospective patient cohort [47]. The authors concluded that imaging of PVAT can provide spatially localized
information regarding the inflammatory microenvironment of human coronary arteries, which might enable early
identification of high risk plaques and create an opportunity to pursue more intensive therapies.

Oikonomou et al. [49] analyzed two prospective cohorts who received coronary CT scans and found the PVAT FAI
to be a strong predictor of all-cause and cardiac mortality. Moreover, the PVAT FAI was observed to be beneficial in
the risk stratification of patients without coronary artery disease who might benefit from intensive primary therapy to
reduce their CVD risk. Elnabawi et al. [50] studied the efficacy of novel biologic therapies (i.e. anti-TNF-α, anti-IL-17,
and anti-IL12/23 therapy) in psoriasis patients. They demonstrated for the first time that these types of therapies
significantly reduced coronary inflammation as measured by the PVAT FAI in patients with and without coronary
artery disease. Incorporation of the PVAT FAI into the standard coronary CT analysis may represent a promising
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Figure 1. Proposed mechanisms whereby PVAT modulates vascular function and atherosclerotic development

In healthy PVAT, perivascular adipocytes play an important role in regulating vascular functions through releasing anti-atherogenic

adipokines (i.e. TGF-β, IL-4 etc.). PVAT-resident immune cells such as eosinophils or subsets of B lymphocytes also serve to

down-regulate the inflammatory microenvironment to promote vascular health. On the other hand, unhealthy PVAT augments pro-

duction of pro-atherogenic and pro-angiogenic adipocytokines (i.e. MCP-1, VEGF, GM-CSF etc.), leading to inflammation, VSMC

proliferation and vasa varosum neovascularization for development of atherosclerosis. Unhealthy PVAT also induces metabolic

reprogramming of PVAT-resident stem cells which facilitates differentiation into VSMCs to promote atherosclerosis.

method to quantify coronary inflammation and mark the beginning of primary or intensive secondary prevention
strategies for those patients not identified by traditional CV risk factors [50].

Conclusions
Cross-talk between PVAT and the underlying vasculature occurs bidirectionally and plays a significant role in vascular
homeostasis and disease. PVAT dysfunction is suggested to contribute to the pathogenesis of atherosclerosis in both
animal and human studies, while vascular inflammation is associated with PVAT phenotype changes that may help to
identify vulnerable atherosclerotic lesions. On balance, the evidence suggests an important role of PVAT in regulating
the focal inflammatory state and vessel homeostasis via pro-atherogenic or anti-atherogenic mechanisms depending
on the PVAT state of health (Table 1 and Figure 1).

Emerging evidence suggests that PVAT may serve as a promising target for atherosclerosis interventions and treat-
ments. For example, targeting pro-inflammatory adipokines secreted by PVAT may reduce the rate of vulnerable
plaque rupture, while investigating different ways to enhance anti-atherogenic adipokines, such as TGF-B targeted
therapy, may facilitate vascular repair. Meanwhile, enhancing unique resident PVAT immune cells, such as eosinophils
or subsets of B lymphocytes, may serve to down-regulate the inflammatory microenvironment and promote vascular
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health. Also, utilizing the PVAT FAI may help to assess the efficacy of novel therapeutics to inhibit vascular inflam-
mation and improve cardiovascular mortality and morbidity. Furthermore, studies in mice suggest that exercise and
brown adipocyte inducers such as cold exposure and pharmacological β-adrenergic stimulation can enhance the
protective effects of PVAT on vascular function through PVAT browning [51,52]. While this is an attractive poten-
tial strategy to improve PVAT function, more studies are required to understand the therapeutic implications and to
validate these findings in humans.
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