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Abstract: This work studied the feasibility of using a novel microreactor based on torus geometry
to carry out a sample pretreatment before its analysis by graphite furnace atomic absorption. The
miniaturized retention of total arsenic was performed on the surface of a magnetic sorbent material
consisting of 6 mg of magnetite (Fe3O4) confined in a very small space inside (20.1 µL) a polyacrylate
device filling an internal lumen (inside space). Using this geometric design, a simulation theoretical
study demonstrated a notable improvement in the analyte adsorption process on the solid extractant
surface. Compared to single-layer geometries, the torus microreactor geometry brought on flow
turbulence within the liquid along the curvatures inside the device channels, improving the efficiency
of analyte–extractant contact and therefore leading to a high preconcentration factor. According
to this design, the magnetic solid phase was held internally as a surface bed with the use of an
8 mm-diameter cylindric neodymium magnet, allowing the pass of a fixed volume of an arsenic
aqueous standard solution. A preconcentration factor of up to 60 was found to reduce the typical
“characteristic mass” (as sensitivity parameter) determined by direct measurement from 53.66 pg to
0.88 pg, showing an essential improvement in the arsenic signal sensitivity by absorption atomic
spectrometry. This methodology emulates a miniaturized micro-solid-phase extraction system for
flow-through water pretreatment samples in chemical analysis before coupling to techniques that
employ reduced sample volumes, such as graphite furnace atomic absorption spectroscopy.

Keywords: torus microreactor; magnetic solid microextraction; arsenic preconcentration; graphite
furnace detection

1. Introduction

The development of microfluidics, an emerging field of science and technology, fo-
cuses on the design and development of small devices that explore, from a miniaturized
perspective and level, new scientific avenues for manipulating fluids and objects to obtain
assemblies with different functionalities, monitor environmental or bodily analytes or per-
form chemical, pharmaceutical, and biological analyses [1,2]. As a result, this technology
has found application in a variety of fields, including biomedicine [3,4], analytical bio-
chemistry, microbiology [5], medical diagnostics, nanobiotechnology, and environmental
monitoring and treatment [6,7]. In this regard, many of these devices have been used for
detecting and quantifying environmental pollutants and heavy metals very precisely [8,9].
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Conversely, numerous reports can be found in the literature related to miniaturized analyti-
cal devices for metals such as nickel, copper, cadmium, lead, mercury, and arsenic [10–15].

Microfluidic devices for analytical analyses offer several advantages, including simple
pre-treatment sample procedures, significantly reduced amounts of samples and reagents,
highly controlled mixing and separation processes, and in situ analyte detection due to the
ease of use of the instrumentation and automation [16,17]. Compared with conventional
analytical systems, this might also translate into a significant reduction in operation time
and labor, much less waste produced, and consequently, an overall reduction in operation
costs and the potential for higher profitability. In addition, these devices can be relatively
easily coupled with other analytical techniques without major investments or manipulation,
as is the case of the use of liquid-phase microextraction (DLLME) techniques for the
determination of analytes of relevant interest [18]. In this scenario, it is reasonable to
consider that solid-phase extraction techniques can also be incorporated into microfluidic
devices as has been the case for liquid–liquid extraction systems [19,20]. Miniaturization of
such systems maintains their efficiency and at the same time allows avoiding the use of
organic solvents for sample pre-treatment, which might limit the durability of the device
materials.

Despite these benefits, microfluidics devices have shown some drawbacks. In the
case of analytical systems, perhaps the most important is the inherent inefficient mixing
resulting from the prevalence of laminar flow. This has been addressed by incorporating
complex channel geometries (e.g., serpentines and chambers with circular or semicircular
features) that usually improve the contact between the fluids and promote forced diffusive
convection. The convex alignment of semicircular elements produces a flow pattern that
improves mixing. One channel geometry that falls in such category and that has been
recently considered to enable applications in wastewater treatment is the toroidal [21]. In
this regard, a torus microreactor exhibits a “coupled mobility matrix” that offers a resistance
to flow throughout the translational propulsion of the geometry, around a central rotation
point [22,23].

Based on the performance of micromixers and microreactors with curved channels,
we hypothesized that a torus-type microreactor could potentially improve the possible
interactions between an analyte dispersed in a mobile aqueous phase and the active sites of
a solid phase packed within the device. On this basis, we decided to conduct an efficient
flow-through static preconcentration process of arsenic within the microreactor by making
use of the well-known iron oxide nanoparticles (IONPs) as a solid microphase. IONPs have
been already explored as potent adsorbents of metallic analytes with little to no impact on
surface charges, pH, ionic concentrations, or temperature [24]. Either bare or functionalized
IONPs such as hematite, goethite, ferrihydrite, maghemite, and magnetite (Fe3O4) have been
widely employed for heavy metal extraction purposes [25]. IONPs have been particularly
useful in the extraction of different chemical forms of arsenic [26–32], due to their ability to
be easily isolated (collected) upon extraction with the aid of magnetic fields.

The preferred analytical strategy for the detection of an analyte is to make use of a
certain device alone; however, this approach fails to provide the required sensitivity, since
the collected amount of analyte might be insufficient for in-line detection. This suggests
that a pre-concentration stage may be needed to reach the analyte levels [16] required for
the subsequent analysis with a separate technique. In the particular case of heavy metals,
one of the techniques that can be used is atomic absorption spectroscopy, which not only
provides superior sensitivity but also can operate with very small sample volumes (from
2 up to 40 µL). This is advantageous, as the eluted extract (rich in arsenic) from the IONPs
is in the same range.

This study was therefore dedicated to implementing a previously introduced toroid
microfluidic device packed with magnetite nanoparticles as analyte adsorbents to pre-
concentrate heavy-metal-containing samples before their analysis via atomic graphite
furnace absorption spectroscopy [33]. The performance of the device compared with that of
other geometries was first studied in silico with the aid of COMSOL Multiphysics®. As the
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case study, the device was evaluated with model aqueous samples containing arsenic. All in
all, the developed analytical technique could be included in the realm of micro-solid-phase
extraction coupled to graphite furnace detection (µ-SPE–GF-AAS) methods.

2. Results and Discussion
2.1. Multiphysics Simulations of Arsenic Retention on Solid Nanoparticles

Figure 1 shows the particle tracing results, which indicate that the devices were able
to retain the MNPs in close proximity to the magnet. Figure 1a,b show that after 10 s, the
device was only able to retain a few MNPs, which is also evidenced by the large number
of MNPs that came out of the device after the same time (888 particles, or 74% of the total
particles).
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Figure 1. Results of MNPs retention according to the particle tracing simulations. The particles are
displayed in color according to their velocities. (a) Side view of the particles trajectory after 10 s
in the microfluidic device without a loop, (b) top view of the particles trajectory after 10 s in the
microfluidic device without a loop, (c) side view of the particles trajectory after 10 s in the one-loop
torus microreactor, and (d) top view of the particles’ trajectories after 10 s in the one-loop torus
microreactor.

On the other hand, Figure 1c,d show the corresponding results for the one-loop torus
microreactor. Compared with the other device, the number of particles retained by the
magnet was significantly higher. Likewise, the number of particles coming out of the
device was much lower (97 particles, or 8.04% of the total particles). Based on its superior
particle retention performance, we selected the one-loop torus microreactor for further
experimental testing.

2.2. Characterization of the MNPs

The characterization of the nanoparticles was carried out by powder X-ray diffraction
(XRD) using an X-ray diffractometer (Model Empyrean from PANanalitical, Almelo, The
Netherlands) (Figure 2). Data collection was performed using Co Kα (λ = 1.7890 nm)
radiation (step time, 10 s; step size, 0.065◦; 2θ angular range = 5–95◦). The size of the
particles was also determined by small-angle X-ray scattering (SAXS) (Model Empyrean
from PANanalitical, Almelo, The Netherlands) in the same apparatus. Figure 2 shows the
diffractogram of the synthesized MNPs in comparison with that reported in the literature
and the ICDD PDF database file (International Center for Diffraction Data: PDF file number
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72-2303) [34–37]. The diameter of the MNPs, determined by SAXS, approached 45 nm on
average.
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Figure 2. XRD patterns of the synthesized magnetite nanoparticles compared with those in a database
(ICDD data: PDF file number 72-2303).

2.3. Impact of pH on Arsenic Adsorption

To determine the optimal adsorption pH for arsenic on MNPs, 5 mL of a 50 µg·L−1

arsenic stock solution was placed in different test tubes followed by the addition of 1.0 mL
of 0.01 M sodium acetate/acetic acid buffer solution. Nitric acid and sodium hydroxide
were used to adjust the pH to 2, 3, 4, 5, and 6. In the same way, a 0.01 M solution of
potassium hydrogen carbonate was employed to adjust the pH between 7 and 9.

Phosphate buffers were avoided, as some fine-structure background signals corre-
sponding to the P–O diatomic molecule might have been present and absorb in the vicinity
of the arsenic absorption wavelength (193.696 nm), which was not observed when using
carbonate buffers (Figure 3).
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Figure 3. Average arsenic atomic absorption spectrum in the vicinity of 193.696 nm. Direct injection
of 5 µL of MNPs slurry (1 mg·mL−1), enriched with arsenic, in the presence of 0.01 M of carbonate
buffer, evidencing the absence of any possible interfering molecular phosphate signals (spectrum
corresponding to potassium dihydrogen phosphate, 0.1 M, overlapped in red).

Then, 300 µL (4.89 mg) of the synthesized MNPs suspension was added to each tube,
followed by vortexing for 5 min. The MNPs enriched with arsenic were separated with the
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aid of a neodymium magnet, and finally, the arsenic content in each supernatant solution
was measured by GF-AAS. This experiment was carried out in triplicate.

Figure 4a shows that arsenic adsorption was favored at pH values close to 6, with the
relative retention approaching 98% of the mass contained in a 50 µg·L−1 standard. This
relative retention percentage was determined by the difference between the initial arsenic
concentration and its relative ratio in the remaining supernatant (Equation (1)).

% Retention =

(
C0 −

Csuprenatant

C0

)
× 100% (1)
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Figure 4. Influence of pH on arsenic retention by the MNPs from 5 mL of a 50 µg·L−1 arsenic stock
solution. (a) Concentration of arsenic in the collected supernatants and (b) respective retention
percentages. Mean values (three measurements); the error bars represent the corresponding standard
deviations.

On the other hand, a significant reduction in the percentage of arsenic retention was
observed at pH above 8, which could be attributed to some interfering anions from the
buffer solutions used to adjust the alkalinity of the aqueous medium. According to previous
studies, the adsorption of arsenic on magnetite should be independent of the pH for values
between 4 and 10 [38,39]. Therefore, this result demonstrates that a rigorous study of the
chemical components that might interfere with the adsorption process is required before
using this preconcentration methodology for the eventual quantification of real samples.

2.4. Desorption of Arsenic from the MNPs

Desorption studies were conducted to determine the best arsenic desorption agent
and its optimal concentration. Sodium hydroxide and ammonium hydroxide were used
as desorption reagents in concentrations ranging from 0.001 M to 5 M. For this purpose,
10 mL of 25 µg L−1 arsenic standard solution was adjusted to pH 6 and mixed with 8.0 mg
of MNPs. After manual stirring, the mixture was left to rest for one hour followed by three
washes with deionized water aided by a magnet. The MNPs were enriched with arsenic
and were resuspended again in 250 µL of deionized water. Separately, 300 µL of each
NaOH or NH4OH solution was tested as a desorption agent by mixing it with 10 µL of
the arsenic-enriched MNPs. The mixture was stirred manually for a few seconds and left
to stand for 30 min; then the measurement of the arsenic content in the supernatant was
carried out.

Figure 5 shows that the desorption of arsenic from the MNPs was enhanced by increas-
ing the pH of the medium, as evidenced by the increased amount of arsenic recovered in the
supernatant. The absorbance of each supernatant eluted solution was compared with that
produced by a mixture (homogenized by manual agitation) made with 300 µL of deionized
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water and 10 µL of the enriched MNPs suspension and directly injected into the graphite
furnace. This allowed us to take advantage of the graphite furnace capacity for direct
analysis of solid samples in suspension (slurry sampling). Importantly, despite the spectral
proximity with one of the secondary iron absorption lines, no significant interference was
observed with that of arsenic (Figure 3).
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Figure 5. Evaluation of NaOH and NH3 for arsenic desorption from the MNPs. Arsenic absorbance
in the supernatant, after carrying out the desorption with 300 µL of the alkali and 10 µL of an
MNPs suspension enriched in arsenic. Mean values (three measurements); error bars represent the
corresponding standard deviations.

The highest recovery percentages were obtained at NaOH concentrations of 3 and 5 M,
approaching about 60% of the total recovery. Sodium hydroxide showed higher efficiency
compared to ammonium hydroxide, most likely due to a more effective exchange effect on
the active sites of magnetite.

2.5. µ-SPE–GF-AAS Microextraction Method

For the µ-SPE procedure, the MNPs needed to be magnetically retained in the device’s
loop. This was achieved by infusing the device with 10.0 mL of diluted suspension contain-
ing 6 mg of magnetite (prepared from the initial stock (16.3 mg·mL−1)) at a rate of 14 mL
per hour to avoid material losses. After the MNPs were retained in the device, 10.0 mL of a
1.0 µg·L−1 solution of arsenic (pH adjusted to 6 with 100 µL of carbonate buffer 0.01M) was
infused at the same rate. Subsequently, 5.0 mL of deionized water was infused to remove
the free arsenic. Exhaustive retention of arsenic was verified by measuring the element
levels in the eluted solution and comparing their concentrations with the limit of detection
(LOD) (i.e., 2.216 µg·L−1). Further, the method also reduced the typical “characteristic
mass” determined by direct measurement from 53.66 pg to 0.88 pg, greatly improving the
detection sensitivity. Similar results in terms of sensitivity were found using 10.0 mL of
a 2.0 µg·L−1 solution of arsenic (obtaining a characteristic mass of 0.83 pg). The whole
process is summarized in Table 1.
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Table 1. General operation procedure for the µ-SPE–GF-AAS system.

Step Reagents Volume
(mL)

Flow Velocity
(mL·h−1)

Charging loop Magnetite suspension (0.6 mg·mL−1) 10 15
Standard load Arsenic standard, with known concentrations 10/20 30

Washing Deionized water 3 30
Desorption Sodium hydroxide, 3 mol·L−1) 0.200 15

MNPs removal and cleaning Hydrochloric acid 2% (v/v) 5 30
Regeneration of the medium Deionized water 3 30

Measurement of the arsenic signal in 20 µL of the alkaline extract by GF-AAS.

2.6. Evaluation of the Preconcentration Factor for the Measurement of Total Arsenic (TAs) by
GF-AAS

The extracting power of the method (MF–µMSPE) was determined at sub-trace levels
of the analyte. A preconcentration factor for the method was determined by introducing
20.0 mL of a solution at a very low arsenic concentration (i.e., 1 µg·L−1, which was below
the LOD) into the device, following steps 1–3 according to the procedure described above.
For analyte desorption, 1.8 mL of NaOH 3 M was used, and 10 fractions (200 µL each) eluted
consecutively were then collected at the device’s outlet (Figure 6), showing a significant
increase in the corresponding arsenic signal.
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Compared with the standard arsenic solution (100 ppb), the first alkaline eluate
(200 µL) accounted for 61.17% of it, which corresponded to a preconcentration factor of 61.
This factor was defined as the ratio between the analyte sensitivities of the two methods
when operating at the same initial concentration.

Considering other methods, this factor appears similar (Table 2). However, the pro-
posed coupling strategy exhibited a higher reproducibility (3–6%). Moreover, its LOD was
superior to that of HPLC–ICP–MS approaches [40] and comparable with that of HG–FAAS-
based methods [38]. Finally, it was possible to carry out the exhaustive cleaning of the
nanoparticles using 5 mL of a 2% HCl solution.
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Table 2. Comparison of some analytical methods for the preconcentration of arsenic.

Sample Arsenic Species Enrichment
Method

Instrumentation
Method LOD (ng L−1) RSD% Preconc.

Factor Ref.

Garlic Inorganic As

Ionic liquid-assisted multiwalled
carbon nanotube-dispersive
micro-solid phase extraction

(IL-MSPE)

ETAAS 7.1 4.8–5.4 70 [40]

Seawater Total As SPE HG-FAAS 0.02–0.03 5.3 - [41]
Rice Inorganic As GPE LC–HG–in situ

DBDT–AFS 0.05 <2 11 [42]

Fish Inorganic As
Ionic imprinted

polymer-solid-phase extraction
(IIP-SPE)

HPLC–ICP–MS 0.32–0.39 12 50 [43]

Rice Inorganic As In situ quaternary ammonium salt
solid-phase extraction (ISQAS- SPE) FI–HG AAS 0.04 5.5 17 [44]

Water As(III), As(V),
MMA

Micro-solid-phase extraction
(µ-SPE) ETAAS 0.02 5.4 98 [30]

Water,
vegetables and

rice
As(III) UA–µSPE on a magnetic

ion-imprinted polymer HG-AAS 0.003 3.21 120 [45]

Water Inorganic As MF–µMSPE GF-AAS 0.033 3–6 60 This work

3. Materials and Methods
3.1. Instrumentation

All the arsenic measures were carried out whit an HR–CS–AAS, CONTRAA800-D,
atomic absorption spectrophotometer (Analytik Jena, Jena, Germany), equipped with a
continuum source consisting of a xenon lamp, a high-resolution monochromator (DEMON),
and a 200 pixels diode-array detector. This equipment has the advantage that the optical
system itself carries out the BG correction in the vicinity of the analyte signal, in this
case at the principal and more sensitive 193.696 nm arsenic working wavelength. The
absorbance measurement was determined according to the integrated area, by adding the
signals registered in 3 pixels corresponding to the central one (pixel 101) and its immediate
adjacent (CP ± 1).

High-purity argon at 2.0 L·min−1 was used as the operation inert gas along with
pyrolytically coated graphite tubes with an integrated L′vov platform (Analytik Jena Part
No. 407-A81.025, Jena, Germany). The tubes were arranged by default in a transverse
layout. The employed furnace temperature program is shown in Table 3. We used 12.5 µg
Pd as a matrix modifier to improve the arsenic sensitivity, while avoiding losses of the
analyte by evaporation during the stages before atomization.

Table 3. Graphite furnace temperature program. High-purity argon was used in all steps except
during the atomization (and reading) when the gas flow was turned off.

Step Temperature (◦C) Heating Ramp
(◦C·s−1) Hold Time (s) Argon Flow Rate

(L·min−1)

Drying 1 80 6 10 2.0
Drying 2 110 3 5 2.0

Pyrolysis 1 300 80 5 2.0
Pyrolysis 2 a 1100 350 5 2.0

Gas adaptation b 1100 0 5 Stopped
Atomization 2400 2400 4 Stopped

Cleaning 2500 500 4 2.0
a The modifier was injected alone, running steps 1 and 2, and cooling the atomizer, before the standard injection.
b The argon flow was adjusted to the atomization conditions.

A pH/ORP/Temperature meter, Model PT-380 (BOECO, Hamburg, Germany) equipped
with a basic electrode BA 25, Noryl plastic shaft and gel electrolyte was used for pH
adjustment. The solutions were pumped into the device by a pulseless infusion single-
syringe pump (KDS-100, W.P. Instruments, Holliston, MA, USA).
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3.2. Reagents and Solutions

All reagents used were analytical-grade. The arsenic standard solution (1.0 g·L−1)
and concentrated ammonia (30% as NH3) were purchased from PanReac AppliChem,
Barcelona, Spain. Nitric acid (65% RE, Pure) was purchased from Carlo Erba, Milano,
Italy. The palladium graphite matrix modifier (10.0 g·L−1) was a commercial solution
(Pd(NO3)2·2H2O in 13–20% nitric acid) from Sigma-Aldrich, Darmstadt, Germany. Water
was obtained from a Milli-Q deionization system (resistivity of approximately 18 MΩ·cm).
All solutions and arsenic standards were prepared fresh before the experiments by direct
dilution in deionized water.

3.3. Synthesis of the Solid Extractant

The magnetite nanoparticles (MNPs) were synthesized based on the co-precipitation
method as described by Mascolo et. al. [34] with slight modifications. To avoid the forma-
tion of both maghemite, γ-Fe2O3, and hematite, α-Fe2O3, all processes were performed
under nitrogen bubbling to displace some oxygen from the synthesis medium. Initially,
100.0 mL of deionized water was heated to 80 ◦C under a permanent nitrogen flow. Subse-
quently, 1.00 g of FeCl2·4H2O and 2.72 g of FeCl3·6H2O were added, so that the molar ratio
of Fe (II) to Fe (III) in the mixture was 1:2. After dissolution, 4.0 mL of concentrated ammo-
nium hydroxide (NH4OH) was slowly and progressively added until the pH was raised to
10 to obtain a black precipitate that was stirred for 15 more minutes. The magnetization
of the MNPs was verified by collecting them using a permanent neodymium (NdFeB)
magnet (30 × 10 × 4 mm block, 1.4 Tesla of field intensity). The MNPs were thoroughly
washed with 20 mL of deionized water five times. The supernatant was easily removed by
taking advantage of the MNPs magnetism. The obtained MNPs were resuspended again in
40.0 mL of deionized water, obtaining a final suspension (16.3 mg·mL−1) with a pH of 7.9.

3.4. Modeling of the Microtorus Reactor

The arsenic retention on the MNPs was studied with a particle tracing approach
in the COMSOL Multiphysics 6.0® software (COMSOL Inc., Stockholm, Sweden). The
fluid was considered under a laminar regime governed by the Navier–Stokes equations
according to the conservation of momentum (Equation (2)) and the continuity equation for
the conservation of mass (Equation (3)).

ρ(u·∇)U = ∇·[−pI + µ (∇U + (∇U)ˆT)] + F (2)

ρ∇·U = 0 (3)

where µ represents the fluid dynamic viscosity, u the fluid velocity, p the fluid pressure,
ρ the fluid density, I the identity matrix, and F the external forces applied on the system.
Particle transport was modeled with the aid of the particle tracing module according to the
second Newton’s law (Equation (4)).

Ft =
d
(
mpv

)
dt

(4)

where Ft corresponds to the sum of all forces acting on the particles, v represents the particle
velocity, and mp is its mass. The drag force was considered according to (Equation (5)).

Fd =
1
τp

mp(u− v), (5)

where τp is defined by equation (Equation (6))

τp =
ρpd2

p

18 µ
(6)
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where ρp is the particle density, dp is the particle diameter, and µ is the fluid viscosity.
Finally, the magnetophoretic force on the particles exerted by a magnetic field applied

was modeled according to (Equation (7)).

Fmap = 2πr3
pµ0µr

µrp − µr

µrp + 2µr
∇H2 (7)

where µr is the relative fluid permeability, rp is the particle radius, µrp is the relative particle
permeability, and H is the applied magnetic field. The magnetic field was calculated by
solving the Maxwell’s equations (Equations (8) and (9)).

H = −∇Vm (8)

∇·B = 0 (9)

In these equations, Vm corresponds to magnetic scalar potential, and B is the magnetic
flux density given by (Equation (10)).

B = µ0µrH + Br (10)

where µ0 is the vacuum permeability, µr is the relative permeability, and Br is the remnant
flux density.

The simulations to solve the set of equations of the model were conducted via a
bidirectionally coupled particle tracing study with an MUMPS solver. The boundary
conditions for these simulations are shown in Figure 7. The computational domain for
system 1 (Figure 7a) was meshed with 141,982 domain elements and 9920 boundary
elements, while the computational domain for system 2 (Figure 7b) was meshed with 74,941
domain elements and 6618 boundary elements. These meshing levels allowed convergence.
The boundary conditions imposed were the drag and the magnetophoretic forces acting
on the entire computational domain representing the microfluidic system. In addition,
the input of 200 particles to the system every 0.1 s for 0.5 s and the zero magnetic scalar
potential at the edge of the computational domain were imposed.
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Figure 7. Boundary conditions for the simulations. (a) Torus microreactor with one loop for arsenic
retention on solid nanoparticles with one loop, (b) microfluidic system for arsenic retention on
the MNPs. For both systems, the drag force and the magnetophoretic force were imposed on the
microfluidic channel, where the inlet is shown in green, and the outlet in yellow, and a zero magnetic
scalar potential was assumed at the edge of the computational domain.

The model assumed a neodymium magnet and water as the channel fluid. All the
simulation parameters are summarized in Table 4.
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Table 4. Parameters for the simulation of arsenic retention on the MNPs.

Parameter Value Units

Water relative permeability (ρw ) 1 Dimensionless
Air relative permeability (ρA ) 1 Dimensionless

Neodymium relative permeability (µN) 1.05 Dimensionless
Velocity inlet (u0) 0.0067 m/s

Pressure outlet (PO) 0 Pa
Particle density (ρp) 5180 kg/m3

Particle radius
(
rp ) 45 nm

Particle relative permeability
(
µp ) 5000 Dimensionless

Remnant flux density (Br) 0.35 T

3.5. Device Fabrication and Multiphysics Simulations

Figure 7b shows the computational domain of the one-loop torus microreactor as built
in COMSOL Multiphysics 6.0® (COMSOL Inc., Stockholm, Sweden). This geometry was
chosen to evaluate whether by maximizing the interaction between the MNPs confined
to the loop and the flowing arsenic solution, it was possible to improve the solid–liquid
extraction efficiency. The device was manufactured by assembling three sheets of poly-
methylmethacrylate (PMMA) 3 mm thick and with a 75 × 25 mm area. The microchannels
(1 mm deep) were engraved using a laser cutting system, Speedy 100, 60 W (TROTEC,
Marchtrenk, Austria), followed by gluing them together by applying a thin layer of 96%
(v/v) ethanol and maintaining the assembly under constant pressure for 8 min at 105 ◦C.
Finally, commercially available fittings were inserted in the device inputs and outputs to
facilitate further hose connection. Once the devices were manufactured, a constant flow of
water was infused through the device by using a syringe pump to check for possible leaks.

A 9 mm-diameter orifice was drilled in all the layers to place a permanent neodymium
(NdFeB) magnet (8 mm–diameter cylinder, 0.35 Tesla of field intensity), destined to attract
the MNPs and retain them in the device’s loop.

4. Conclusions

In this study, it was possible to couple a microfluidic device conditioned with a solid
microphase extraction process (MF–µMSPE) to a technique such as atomic absorption to
further increase its high sensitivity. In this case, the device was used for the detection of
arsenic at sub-trace levels and below the usual limit of detection (LOD) when using the
graphite furnace modality (GF-AAS). Compared with some reported SPE pre-concentration
methods, automation instead of a batch procedure introduced several important potentiali-
ties in terms of simplicity in the treatment (in situ) of the sample and reproducibility of the
results (3–6%). Our methodology allowed a relatively good enrichment, since the microre-
actor geometry assured an efficient contact between the phases in a reduced extraction time.
Using a 20 mL volume of standard, or an aqueous sample, a preconcentration factor close
to 60 could be achieved using only 200 µL of eluent solution. This factor could be increased
even by taking only the first 100 µL. It was determined that 5 M NaOH is an effective and
economical eluent for the desorption of the retained arsenic from the magnetite surface of
the nanoparticles.

Other important benefits should be highlighted, such as the use of magnetite as a solid
extractant, whose synthesis is easy and fast, which showed a high power of concentration
of the analyte on its naked, not functionalized, surface. Functionalization, associated with
the variation of other factors such as the pH of the aqueous medium, could be carried out to
improve the specificity of the extraction process or allow the application to other analytes,
potentially reusing the magnetite nanoparticles as the solid extractant. Washing with 5 mL
of 2% HCl represents an economic alternative and is time-efficient.
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