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Abstract

Tumors of the central nervous system represent a major source of cancer-related deaths, with medulloblastoma and
glioblastoma being the most common malignant brain tumors in children and adults respectively. While significant
advances in treatment have been made, with the 5-year survival rate for medulloblastoma at 70–80%, treating patients
under 3 years of age still poses a problem due to the deleterious effects of radiation on the developing brain, and the
median survival for patients with glioblastoma is only 15 months. The transcription factor, STAT3, has been found
constitutively activated in a wide variety of cancers and in recent years it has become an attractive therapeutic target. We
designed a non-peptide small molecule STAT3 inhibitor, LLL12, using structure-based design. LLL12 was able to inhibit
STAT3 phosphorylation, decrease cell viability and induce apoptosis in medulloblastoma and glioblastoma cell lines with
elevated levels of p-STAT3 (Y705). IC50 values for LLL12 were found to be between 1.07 mM and 5.98 mM in the five cell lines
expressing phosphorylated STAT3. STAT3 target genes were found to be downregulated and a decrease in STAT3 DNA
binding was observed following LLL12 treatment, indicating that LLL12 is an effective STAT3 inhibitor. LLL12 was also able
to inhibit colony formation, wound healing and decreased IL-6 and LIF secretion. Our results suggest that LLL12 is a potent
STAT3 inhibitor and that it may be a potential therapeutic treatment for medulloblastoma and glioblastoma.
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Introduction

While tumors of the central nervous system account for only a

small percentage of cancer diagnoses, they represent a major

source of cancer-related deaths. Almost 13,000 deaths occur

annually in the US from primary malignant brain and CNS

tumors [1]. The most common pediatric and adult CNS tumors

are medulloblastoma and glioblastoma respectively [2]. Medullo-

blastoma accounts for approximately 20% of all pediatric CNS

tumors, making it the most common malignant brain tumor in

children [1]. Medulloblastomas are typically very radiosensitive

tumors and the current standard for treating average risk patients

is surgical resection followed by radiation and chemotherapy.

However, in patients younger than 3 years of age, radiation is

often avoided if possible due to the highly deleterious effects seen

on the developing brain [3].

Glioblastoma is the most common brain tumor in adults [4] but

8–9% of cases are diagnosed in children [5]. The tumor is difficult

to treat due to its invasive, aggressive and diffuse nature and the

typical course of treatment is surgical resection, followed by

radiation and chemotherapy [6,7]. However, even with treatment,

the median survival period is only 15 months [7]. The difficulty

experienced trying to treat these tumors, combined with the highly

toxic effects of radiation on the brains of young children, make

alternative therapies highly desirable.

Signal transducer and activator of transcription 3 (STAT3) is a

member of the STAT family of transcription factors which

activates a variety of genes such as c-myc, survivin, cox-2 and cyclin D1

[8,9,10,11]. Activation of STAT3 and its target genes can lead to

cell-cycle progression, immune evasion, proangiogenesis, anti-

apoptotic effects, tumor invasion and metastasis [12,13], all of

which are typical characteristics of cancer [14]. Experiments have

shown that constitutively active STAT3 alone is able to induce

cellular transformation [15]. It is no surprise then that the

constitutive activation of the STAT3 pathway has been found in a

variety of cancers and is typically associated with a poorer

prognosis [9,12]. While STAT3 is critical during early embryo-

genesis, it is largely dispensable in the majority of adult cell types

which makes it an attractive therapeutic target [16,17,18].

The inhibition of the STAT3 signaling pathway in cancer cells,

using antisense oligonucleotides, RNA interference and dominant-

negative STAT3, has been shown to cause decreased cellular

growth and induce apoptosis [19,20,21,22,23]. Other indirect

methods of inhibiting STAT3 have also been examined. The

selective inhibition of the upstream tyrosine kinase, JAK2, can

prevent the phosphorylation and activation of STAT3 and several
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JAK2 inhibitors, such as WP1066, SD-1029 and AG490, have been

reported [24,25,26]. An intact SH2 domain is critical for STAT3

activation which makes it another reasonable target to disrupt

STAT3 signaling [27]. Peptide-based SH2 inhibitors have been

created, however they have low in vivo stability, poor cell permeability

and the potential for immunogenicity [28,29]. In order to overcome

the shortcomings of peptide-based inhibitors, several non-peptide

small molecular SH2 inhibitors including Stattic, STA-21 and S3I-

201, have recently been reported [27,30,31].

Using a structure based computer design our collaborators

designed a non-peptide small molecule, termed LLL12 (Figure S1).

LLL12 was shown to bind directly to the phosphoryl tyrosine 705

(pY705) binding site of the STAT3 monomer on computer models

with docking simulation. Here we show that LLL12 inhibits

STAT3 phosphorylation, decreases cellular viability, downregu-

lates STAT3 target gene and induces apoptosis in medulloblas-

toma and glioblastoma cell lines.

Materials and Methods

Cell Culture
The medulloblastoma cell lines (Daoy, UW426, UW288-1, D341

and D283) were provided by Dr. Corey Raffel (The Research

Institute at Nationwide Children’s Hospital). The glioblastoma cell

lines U373 and U87D were provided by Dr. Sean Lawler (The Ohio

State University). The WI-38 (normal human lung fibroblasts) and

U87 (glioblastoma) cell lines were purchased from American Type

Culture Collection. HH (human hepatocytes) were purchased from

ScienCell and maintained in Hepatocyte Medium (ScienCell,

#5201) supplemented with hepatocyte supplement, 5% FBS and

1% streptomycin/penicillin solution. All other cells were main-

tained in 1X Dulbecco’s Modification of Eagle’s Medium (DMEM)

with 4.5 g/L, L-glutamine and sodium pyruvate (Mediatech, #10

013 CV) supplemented with 10% fetal bovine serum (FBS) (Sigma,

Table 1. IC50 values for medulloblastoma and glioblastoma
cell lines.

LLL12 LLL3 AG490 S3I-201

Daoy 2.79 82.81 20.9 .100

UW426 4.03 17.45 .100 .100

UW288-1 1.07 22.0 .100 .100

U87 1.99 12.9 .100 .100

U87D 5.98 14.8 .100 .100

The half-maximal inhibitory concentrations (IC50) calculated for LLL12 and other
STAT3/JAK2 inhibitors (mM) in medulloblastoma and glioblastoma cell lines.
Cellular proliferation was measured using a MTT Assay following 72 hours of
treatment.
doi:10.1371/journal.pone.0018820.t001

Figure 1. Western blot analysis of cells treated with LLL12. (A) Medulloblastoma cell lines and (B) glioblastoma cell lines which express
constitutively active STAT3 exhibit a decrease in p-STAT3 (Y705) following treatment with LLL12 for 6 and 24 hours respectively. No effect is seen on
other kinases such as p-AKTand pERK. Apoptosis is indicated by the cleavage of caspase 3. (C) Normal human lung fibroblasts (WI-38) and human
hepatocytes (HH) that do not express p-STAT3, did not show an induction of cleaved caspase-3.
doi:10.1371/journal.pone.0018820.g001

LLL12 Inhibits p-STAT3 in Brain Tumors
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#F1051), and 1% Penicillin/Streptomycin (P/S) (Sigma,#P0781)

in incubators set at 37̊C and aired with 5% CO2.

Synthesis of LLL12
LLL12 was synthesized in the laboratory of Dr. Pui-Kai Li as

previously described [32].

MTT Assay
Cells were seeded in 96-well plates in triplicate at a density of

3,000 cells per well and given 24 hours to adhere. Cells were then

treated with varying concentrations of the inhibitors in the

presence of 10% FBS. The cells were incubated for 72 hours at

37uC. 25 ml of MTT dye (Sigma, #M5655) was added to each

sample and incubated for 3.5 hours. After this, 100 ml of N,N-

dimethylformamide (Sigma, #D4551) solubilization solution was

added to each well. The absorbance at 450 nm was read the

following day. Half-Maximal inhibitory concentrations (IC50) were

determined using Sigma Plot 9.0 software (Systat Software Inc.).

CyQuant NF Cell Proliferation Assay
Cells were seeded in white, clear bottom 96-well plates in

triplicate at a density of 5,000 cells per well and allowed to adhere

Figure 2. Cell Death ELISA analysis following LLL12 treatment. (A) UW288-1, (B) U87, and (C) U87D exhibit a dose dependent increase in
apoptosis following treatment with LLL12 for either 18 hours (UW288-1) or 24 hours (U87 and U87D).
doi:10.1371/journal.pone.0018820.g002

Figure 3. RT-PCR Analysis of STAT3 target genes. LLL12 treatment was able to downregulate the expression of STAT3 target genes: Cyclin D1,
Survivin, Bcl-2 and Bcl-xL following 24 hours of treatment.
doi:10.1371/journal.pone.0018820.g003
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for 24 hours. Cells were then treated with varying concentrations

of LLL12 in the presence of 10% FBS and incubated at 37uC for

72 hours. The medium was then removed from the cells and

100 mL of 1X dye binding solution was added and plates were

incubated for one hour at 37uC. The fluorescence was then

measured with excitation at 485 nm and emission detection at

530 nm.

Western Blot Analysis
LLL12 and IL-6 (Invitrogen, #PHC0061) were both dissolved

in sterile dimethyl sulfoxide (DMSO) to make stock solutions of

20 mM and 10 ng/mL respectively. The cells were grown to semi-

confluency and then treated with LLL12 for either 6 or 24 hours.

For the IL-6 experiments, cells were pretreated with LLL12 for

2 hours and then treated with IL-6 for 30 minutes before being

harvested. For the IFN-c (Cell Signaling Tech., #8901) and LIF

(Invitrogen, #PHC9464) experiments, cells were pretreated with

LLL12 for 2 hours and then treated with either IFN-c or LIF for

24 hours. For western blots, 30 mg of total cell lysates were

resolved by SDS polyacrylamide gel electrophoresis (PAGE) and

transferred to PVDF membrane (GE Healthcare, #45-000-931).

These membranes were then blotted with phospho-specific

STAT3 antibody [Tyrosine 705] (#9131), phospho-independent

STAT3 antibody (#9132), cleaved caspase-3 [Asp175] antibody

(#9661), phospho-specific AKT [Serine 473] (#9271), phospho-

specific ERK [Threonine 202/Tyrosine 204] (#9101) and

GAPDH antibody (#2118). All antibodies were purchased from

Cell Signaling Tech. Membranes were analyzed with enhanced

chemiluminescence Plus reagents (GE Healthcare, #RPN5781)

and scanned with a Storm Scanner (Amersham Pharmacia

Biotech Inc.). Integrated densities of the bands in the western

blots were measured using Image J software (NIH). Densities were

individually normalized to GAPDH in each cell line and the

relative levels of p-STAT3, STAT3, cleaved caspase-3, p-AKT

and p-ERK were compared to the DMSO control, which was set

as 1.0.

Reverse-transcriptase PCR
Following 24 hours of treatment with LLL12, RNA was

collected from cells using a RNeasy Kit (Qiagen, #74104). cDNA

was generated from 500 ng of sample RNA using Omniscript RT

(Qiagen, #205111). Subsequently, 2 ml of cDNA was used for

PCR. PCR amplifications were performed as follows: 5 min at

94uC followed by 25 cycles of [30 sec at 94uC, 30 sec at 55uC,

30 sec at 72uC] and a final extension at 72uC for 5 min. The PCR

products were then run on 2% agarose gels, stained with ethidium

bromide and visualized under UV light.

Immunofluorescence
Cells were seeded on coverslips and grown until 80% confluent.

After either 6 or 24 hours of treatment with LLL12, cells were

fixed with ice-cold methanol for 30 minutes, washed and blocked

in 5% normal goat serum (Jackson ImmunoResearch Laborato-

ries, #005-000-121) in PBS for 1 hour at room temperature. The

coverslips were then incubated overnight at 4uC in a 1:100

dilution of cleaved caspase-3 (Asp175) antibody (Cell Signaling

Tech., #9661), washed and then incubated at room temperature

in a 1:1000 dilution of Alexa Fluor 594 conjugated goat anti-rabbit

IgG antibody (Invitrogen, #A-11037). Fluorescence staining was

examined using a Leica MZ 16FA inverted microscope (Leica

Figure 4. STAT3 DNA Binding Assay. Cells showed a dose-dependent decrease in STAT3 activation following treatment with LLL12 for either
18 hours (UW288-1) or 24 hours (u87 and U87D), indicating that LLL12 is able to effectively inhibit STAT3’s ability to bind DNA.
doi:10.1371/journal.pone.0018820.g004
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Microsystems, Bannockburn, IL) with a 7.4 slider digital camera

(Diagnostic Instruments Inc.).

Colony Formation
Cells were grown to semi-confluency in 10 cm plates and then

treated for either 6 hours or 24 hours. Cells were then trypsinized,

stained with trypan blue and counted. A low number of cells

(3,000 for UW288-1, 1,000 for U87 and 500 for U87D) were then

seeded on 15cm plates in duplicate and allowed to grow for two

weeks. Cells were then fixed in methanol for 30 minutes and

stained with 1% crystal violet dye.

Cell Death ELISA
Cells were seeded in 96 well plates at a density of 104 cells per

well and allowed to adhere overnight. They were then treated with

5 mM of LLL12 for either 18 or 24 hours. Cells were lysed directly

in the plate and 20 ml of lysate was transferred to a new plate and

the level of apoptosis was measured using the Cell Death

Detection ELISAPLUS assay following the manufacturer’s protocol

(Roche, #11774425001).

DNA Binding Assay
Cells were grown to semi-confluency in 10 cm plates and then

treated with varying concentrations of LLL12 for either 18 or

24 hours. Cells were collected and the nuclear fraction was

extracted using a Nuclear Extract Kit (Active Motif, #40010)

according to the manufacturer’s protocol. 20 mg of nuclear extract

was used to analyze STAT3 activation using the TransAM

STAT3 Activation Assay (Active Motif, #45196) following the

manufacturer’s protocol. Samples were assayed in triplicate and

the error bars represent one standard deviation.

Wound Healing Assay
Cells were seeded in 6 well plates and allowed to grow until

confluent. They were then treated with varying amounts of LLL12

and the tip of a 1–10 ml disposable pipette tip was used to create a

wound by dragging it across the surface of the plate and dislodging

a line of cells. Cells were allowed to grow for 48 hours and images

were captured using a Leica MZ 16FA inverted microscope (Leica

Microsystems) with a 7.4 slider digital camera (Diagnostic

Instruments Inc.).

ELISA
To measure baseline levels of IL-6, cells were grown in 6 well

plates in DMEM supplemented with 10% FBS until ,70%

confluent. The media was then replaced and cells were allowed

to continue growing for 48 hours before the media was collected,

filter-sterilized and stored at 280uC. To examine the effect of

LLL12 on IL-6 secretion, cells were grown in 6 well plates until

,70% confluent and then the media was replaced and cells were

treated with either DMSO (control) or LLL12. Media was

collected at 8, 16 and 24 hours, filter-sterilized and stored at

280uC. IL-6 secretion was quantified using an IL-6 ELISA kit

(PeproTech, #900-K16) according to the manufacturer’s

Figure 5. Wound Healing Assay. Cells showed a dose-dependent decrease in their ability to migrate and heal the created wound following
treatment with LLL12.
doi:10.1371/journal.pone.0018820.g005
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protocol. The same samples were also used to measure LIF

secretion (RayBiotech Inc., #ELH-LIF-001). Samples were

assayed in triplicate and error bars represent one standard

deviation.

Results

LLL12 inhibits cellular viability/proliferation in human
medulloblastoma and glioblastoma cell lines

Cell Viability assays were run on several human medulloblas-

toma and glioblastoma cells lines which express elevated levels of

phosphorylated STAT3 (Figure 1A and 1B) in order to assess

LLL12’s inhibitory effects. After 72 hours of treatment, a dose-

dependent inhibition of cellular viability was seen. IC50 values

were calculated for LLL12 and other previously reported

inhibitors (Table 1); LLL3 [33] and S3I-201 [31], both STAT3

inhibitors, and AG490 [34], a JAK2 inhibitor. LLL12 was found

to be much more potent than the other inhibitors tested in the

inhibition of cell viability and proliferation. Cellular viability was

confirmed using a CyQuant NF assay, which measures cellular

content via fluorescent dye binding (data not shown). The

calculated IC50 values for LLL12 were very similar to those

determined by MTT, ranging from 0.7 mM to 3.68 mM.

LLL12 inhibits STAT3 phosphorylation and induces
apoptosis in human medulloblastoma and glioblastoma
cell lines

Several medulloblastoma and glioblastoma cell lines which

overexpress phosphorylated STAT3 (Daoy, UW426, UW288-1,

U87 and U87D) were used to evaluate the effects of LLL12 on

STAT3 phosphorylation and the induction of apoptosis. LLL12

inhibited the phosphorylation of STAT3 at tyrosine residue 705

(Y705) in all cell lines tested (Figure 1A and 1B). LLL12 did not

inhibit the phosphorylation of other kinases, such as ERK 1/2 and

AKT, indicating that LLL12 is specific for STAT3. LLL12 was

also able to induce apoptosis as evidenced by the cleavage of

caspase-3 (Figure 1A and 1B) which is consistent with the

inhibition of p-STAT3 (Y705) seen. LLL12 did not induce

apoptosis in normal human hepatocyte and lung fibroblast cell

lines, indicating that its toxicity is confined to cancer cells which

express p-STAT3 (Figure 1C). Using a Cell Death Detection

ELISA, which measures cytoplasmic histone-associated-DNA-

fragments, we saw a dose-dependent increase in apoptosis in

UW288-1, U87 and U87D cell lines after 18 and 24 hours of

treatment with LLL12 respectively (Figure 2A–2C). Cell death

through apoptosis was additionally confirmed in UW288-1, U87

and U87D cell lines using immunofluorescence to look for the

cleaved form of caspase 3 (Figure S2).

LLL12 inhibits the transcription of downstream STAT3
target genes

As previously mentioned, STAT3 activates the transcription of

a variety of genes responsible for cell cycle regulation, anti-

apoptotic effects and other hallmarks of cancer. Using Reverse

Transcriptase PCR, we examined LLL12’s effect on the activation

of these genes after 24 hours of treatment. We found that LLL12

inhibited the transcription of the STAT3 downstream target

genes, cyclin D1, survivin, Bcl-2, and Bcl-xL in medulloblastoma

and glioblastoma cell lines (Figure 3).

LLL12 is specific for STAT3 and does not inhibit STAT1
Two cell lines which express lower levels of p-STAT3 (Y705),

D283 (medulloblastoma) and U373 (glioblastoma), were used to

assess LLL12’s specificity. Cells were treated with IFN-c in order

Figure 6. Colony Formation Assay. Medulloblastoma and glioblastoma cell lines showed a decreased ability to form colonies following treatment
with LLL12 for either 6 hours (UW288-1) or 24 hours (U87 and U87D).
doi:10.1371/journal.pone.0018820.g006
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to stimulate the phosphorylation of STAT1 following pretreatment

with LLL12. LLL12 was not able to block the activation of

STAT1, indicating that it is specific for STAT3 (Figure S3).

LLL12 inhibits STAT3 DNA binding activity
We examined LLL12’s effect on DNA binding activity in order

to assess the drug’s ability to inhibit STAT3 signaling. Using an

ELISA-based assay, we measured the DNA binding ability of

STAT3 in the cell lines UW288-1, U87 and U87D. We found a

dose-dependent decrease in STAT3 binding (Figure 4). This

method was previously utilized in our lab to examine LLL12’s

effect on STAT1 DNA binding and we found no inhibition of

STAT1 DNA binding activity, indicating once again that LLL12

is a specific inhibitor of STAT3 [32].

Wound Healing and colony formation are inhibited in the
presence of LLL12

Many cellular processes, such as proliferation, angiogenesis,

invasion and migration are common to both wound healing and

cancer [35] and these similarities have given rise to the concept

that tumors are ‘‘wounds that do not heal’’ [36]. In order to assess

LLL12’s ability to inhibit wound healing, a wound healing assay

was performed on UW288-1, U87 and U87D cells. After the

creation of a wound, cells were treated with varying concentrations

of LLL12 and allowed 48 hours to proliferate and migrate into the

wound. Treatment with LLL12 resulted in a decreased ability for

cells to migrate and heal the created wound (Figure 5).

We also examined the ability of the cells to recover after

treatment with LLL12 by performing a colony formation assay.

The cell lines UW288-1, U87 and U87D were treated with LLL12

for 4 and 24 hours respectively and then the same number of

living cells was reseeded at very low cell densities and allowed to

grow for 2 weeks. Cells were then fixed and stained and the plates

were scanned. The cancer cells showed a decreased ability to

recover and form colonies following treatment with LLL12

(Figure 6).

LLL12 is able to inhibit the secretion of IL-6 and LIF in
Medulloblastoma and Glioblastoma cell lines

IL-6 is a pleiotropic cytokine which has been shown to be

overexpressed in response to infection, injury and inflammation.

Many tumor cells have been found to produce excess amounts of

IL-6 or alternatively, express an IL-6 receptor which allows

them to respond to IL-6 produced by the tumor microenviron-

ment [37]. The binding of IL-6 to its receptor leads to the

activation of the Janus kinase family which in turn phosphor-

ylate STAT3 [38]. Using an ELISA, we measured the amount of

IL-6 secreted by our medulloblastoma and glioblastoma cell

lines. We found that UW288-1, UW426 and U87D secreted

measurably higher levels of IL-6 than the other cell lines tested

(Figure 7). Next we wanted to see whether or not LLL12 could

block the secretion of IL-6 since the gene encoding it is one of

STAT3’s targets [39]. Cells were treated with LLL12 and their

media was collected after 8, 16 and 24 hours for analysis. LLL12

was able to inhibit the secretion of IL-6 in UW288-1, U87 and

U87D cells as early as 8 hours after treatment and the decrease

was still seen at 24 hours post treatment (Figure 8A–8C). We

also saw a decrease in the expression of IL-6 mRNA following

LLL12 treatment (Figure 8D). We also looked at LLL12’s ability

to inhibit the induction of p-STAT3 following IL-6 treatment in

cell lines that do not express activated STAT3. Cells were

pretreated with LLL12 for 2 hours and then IL-6 was added for

30 minutes. We found that LLL12 was able to completely block

the phosphorylation of STAT3 caused by IL-6 treatment

(Figure 9A and 9B).

We also wanted to examine the secretion of leukemia inhibitory

factor (LIF) because it is an IL-6 family member [40] that has been

shown to be constitutively expressed both in vitro and in vivo in

medulloblastoma cells [41]. We found elevated levels of LIF in

UW288-1 and UW426 cells and treatment with LLL12 was able

to inhibit LIF secretion and decrease the expression of LIF mRNA

(Figure S4A–4C). We also wanted to see if LLL12 could block the

activation of STAT3 by LIF. Cells were pretreated with LLL12 for

2 hours and then treated with LIF for 24 hours. LLL12 was found

to be able to inhibit the phosphorylation of STAT3 caused by LIF

treatment but had no effect on the phosphorylation of AKT or

ERK (Figure 9C).

Discussion

Despite several new treatment options, the prognosis for

patients diagnosed with glioblastoma remains poor with a median

survival of 15 months for glioblastoma patients [7] and although

treatment for medulloblastoma has proven more effective,

resulting in a 5-year survival of 70–80% [42], the long term

effects can be severe [2]. More effective and less toxic treatment

Figure 7. IL-6 secretion in medulloblastoma and glioblastoma
cell lines. IL-6 secretion was measured by ELISA after 48 hours. The cell
lines UW288-1, UW426 and U87D secreted elevated levels of IL-6.
doi:10.1371/journal.pone.0018820.g007
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options need to be developed to increase patient survival rates and

combat these devastating tumors. Our collaborators developed a

non-peptide small molecule inhibitor of STAT3, LLL12, which

has shown promising results in the treatment of several types of

cancer [32].

We examined the effects of LLL12 on medulloblastoma and

glioblastoma cell lines which express phosphorylated STAT3.

We found that LLL12 is able to inhibit cell viability, decrease

STAT3 target gene expression, decrease STAT3 DNA binding,

inhibit wound healing and colony formation and induce

apoptosis. LLL12 did not have any effect on the phosphorylation

of ERK or AKT, and it did not inhibit STAT1 activation caused

by IFN-c treatment, indicating that it is a specific inhibitor of

STAT3. The cytokine IL-6 has been found to be a major

contributor to the tumor microenvironment and many tumors

have been found to express high levels of IL-6 or an IL-6

receptor [37,43]. We found that UW288-1, UW426 and U87D
secrete high levels of IL-6 and that LLL12 was able to decrease

IL-6 expression and secretion. This is significant because while

not all tumors overexpress activated STAT3, IL-6 secreted in the

microenvironment may be able to activate STAT3 and LLL12

can block that activation and inhibit the pro-tumorigenic effects

of STAT3. We also examined the ability of LLL12 to inhibit

STAT3 activation caused by LIF. LIF has been shown to be

constitutively expressed in medulloblastoma cells [41] and we

found high levels of LIF secreted in UW288-1 and UW426 cells.

Treatment with LLL12 was able to block the secretion of LIF

and downregulate the expression of LIF, however the exact

mechanism is unclear since LIF is not a target gene of STAT3

like IL-6.

Figure 8. LLL12 inhibition of IL-6 secretion. (A–C) Cells were treated with LLL12 for 8, 16 and 24 hours and IL-6 levels were measured using an
ELISA. IL-6 secretion was reduced at all three time points. (D) LLL12 inhibits the expression of IL-6 mRNA.
doi:10.1371/journal.pone.0018820.g008
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LLL12’s drug-likeness characteristics were previously evaluated

using parameters such as molecular weight, cell permeability,

solubility, and metabolic stability and its toxicity, absorption,

metabolism and excretion were also measured. LLL12 was shown

to have decent drug-like properties which warrant further

investigation [32].

One of the problems encountered when trying to treat brain

tumors is drug delivery across the blood brain barrier (BBB). There

have been many new techniques and strategies employed to disrupt

the BBB or to deliver drugs across the barrier including: transient

osmotic BBB disruption (BBBD), biochemical BBBD, ultrasound-

mediated BBBD, implanted polymers, intra-cavitary delivery

systems and convection-enhanced delivery [44] but these techniques

need to be paired with novel therapies in order to truly gauge the

effectiveness of new treatments. We have shown LLL12 to be an

effective inhibitor of STAT3 and it has been shown to reduce to

reduce tumor size in vivo [32] but it remains to be seen whether or

not LLL12, in conjunction with available BBBD methods, can

effectively cross the barrier and suppress tumor growth. Additional

studies need to be done employing more advanced mouse models

and BBBD techniques to further evaluate LLL12’s effectiveness

against glioblastoma and medulloblastoma but our early findings

indicate that LLL12 merits further investigation.

Supporting Information

Figure S1 Chemical Structure of LLL12.

(TIF)

Figure S2 Immunofluorescence for cleaved caspase-3.
Cells were treated with LLL12 for either 6 (UW288-1) or 24 hours

(U87 and U87D) and stained for cleaved caspase-3. LLL12

induced apoptosis in all cell lines as evidenced by the presence of

cleaved caspase-3.

(TIF)

Figure S3 LLL12 does not inhibit IFN-c induced STAT1
activation. D283 and U373 cells were pre-treated with LLL12

for 2 hours and then treated with IFN-c for 24 hours. IFN-c
induced the phosphorylation of STAT1 but pre-treatment with

LLL12 was not able to inhibit this induction, indicating it is

specific for STAT3.

(TIF)

Figure 9. LLL12 inhibits IL-6 and LIF induced STAT3 phosphorylation. (A) D283 and (B) U373 cells were pretreated with LLL12 for 2 hours
and then treated with IL-6 for 30 minutes to induce p-STAT3. LLL12 was able to block STAT3 activation by IL-6 and did not have an effect of p-AKT or
p-ERK. (C) D283 cells were pretreated with LLL12 for 2 hours and then treated with LIF for 24 hours to activate STAT3. LLL12 was able to inhibit the
phosphorylation of STAT3 induced by LIF and did not inhibit p-AKT or p-ERK expression.
doi:10.1371/journal.pone.0018820.g009
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Figure S4 LIF Secretion in medulloblastoma cell lines.
(A) ELISA analysis showed elevated levels of LIF in UW288-1 and

UW426 cell lines. (B) LLL12 was able to block the secretion of LIF

in UW426 cells. (C) LLL12 was able to downregulate the

expression of LIF mRNA.

(TIF)
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