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A B S T R A C T

Lung cancer has the lowest survival rate spread globally resulting in a large number of deaths. This is attributed to
insufficient measures such as lack of early detection and chemoresistance in the patients. It can be subdivided into
two histological groups: Non-Small-Cell Lung Cancer (NSCLC), which is most prevalent (85% of all lung cancers)
but less destructive; and Small-Cell Lung Cancer (SCLC), which is intermittently metastatic and less prevalent
(15% of all lung cancers). The present study deals with the analysis of gene expression of two subtypes to identify
the Differentially Expressed Genes (DEGs). For this study, we selected two datasets from the Omnibus database,
which included 50 non-small cell lung cancer samples, 31 small cell lung cancer samples, and 48 samples from
normal lung tissue. After DEGs identification using the meta-analysis approach, they were then subjected to
further analysis following p-value adjustment via the Benjamini-Hochberg method. We identified 440 overex-
pressed and 489 underexpressed genes in NSCLC, and 489 overexpressed and 525 underexpressed genes in SCLC,
compared with normal lung tissues. Furthermore, we identified 3 overlapping genes between upregulated DEGs in
NSCLC and downregulated DEGs in SCLC; and 8 overlapping genes between upregulated DEGs in SCLC and
downregulated DEGs in NSCLC. Accordingly, a Protein-Protein Interaction (PPI) network of the overlapping genes
was generated, which contained a total of 261 genes, of which the top five were TRIM29, ANK3, CSTA, FGG, and
AGR2. These five candidate genes reported herein may prove to be potential therapeutic targets.
1. Introduction

Smoking, pollution and unhealthy toxic environment are the most
prominent causes of lung cancer causing deaths world over [1]. Despite
glaring advancements in the area of lung cancer-related treatment set-
tings, its rate of cure remains low. This is attributed to several factors
such as delayed diagnosis, impoverished prognosis, and enhanced drug
resistance. Based on histology, lung cancer is classified into Small-Cell
Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC) [2].
SCLC is a fatal tumor of epithelial cells. The cellular morphology of SCLC
comprises cramped cells including inconspicuous nucleoli, insufficient
cytoplasm, obscured cellular margins and extreme granular nuclear
chromatin [3]. SCLC has an expeditious growth rate, exaggerated initial
response rates, early metastases and a strong association with smoking
[4, 5]. NSCLC consists of adenocarcinoma, large cell carcinoma and
squamous cell (epidermoid) carcinoma. Adenocarcinoma and large cell
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carcinoma are peripheral tumors originating from the obscured bronchi,
bronchioles, or alveoli of lungs, whereas Squamous cell carcinoma pos-
sesses a central origin [6]. Squamous cell carcinoma displays delayed
development of distant metastases and is described by hemoptysis or
obstructive pneumonia and lobar collapse. On the other hand, few pri-
mary tumors of adenocarcinoma are peripheral lesions without any
symptoms related to primordial metastases development. Large cell
carcinoma exhibits populous peripheral masses, along with occasional
cavitation [7]. Lung cancer is the result of augmentation of several ge-
netic and epigenetic modifications, which could be due to multiple rea-
sons [5]. Protracted exposure to carcinogens such as tobacco smoke or
asbestos is the customarily identified reason for such alterations. Iden-
tification and determination of new diagnostic or prognostic biomarkers,
along with the evolution of innovative therapeutic approaches for lung
cancer is a foremost upcoming area of translational cancer research.
Nonetheless, there are certain limitations to the above owing to the
2019
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scarcity of complete understanding of the heterogeneous nature of the
tumor and involvement of multiple factors in the process of lung carci-
nogenesis. Lucrative methods of molecular testing for early stage diag-
nosis also require an extensive understanding of molecular events
involved in tumorigenesis and monitoring the expression of one or few
genes would not be much helpful [8]. A comprehensive genetic analysis
would thus, be more beneficial in elucidating the complex disease. High
throughput gene expression analysis has recently come into the limelight
in this direction and has enhanced the likelihood of identifyingmolecular
events associated with lung carcinogenesis. A large number of studies
have reported multiple plausible biomarkers of cancer and the classifi-
cation of lung carcinomas on the basis of their gene expression profile.
Therefore, the biological connotation of extensive microarray data seems
to be a great challenge at this point in time. Microarray technology is a
high throughput and highly cost-effective technique as it measures the
mRNA levels of several thousands of genes simultaneously [9]. Certain
highly significant molecular signature has been identified by microarray
technology, and they are currently evaluated in prospective randomized
clinical trials. Despite the advantages of microarray technology, there are
several studies reporting irreproducibility and non-robustness of the
technique, even with moderate alterations. Incompetent reporting of
methods, inadequate control of false positives and improper analysis or
validation are the most common causes of irreproducibility of the tech-
nique. Moreover, gene expression profiling experiments are customarily
scrutinized in solitude and are barred by a small number of samples [10,
11, 12]. Thus, the widespread application requires a pre-assessment of
generalizability across broad studies. This is where meta-analysis comes
into action. A meta-analysis is a combinatorial approach for bringing
together the information from multiple extant studies to aggravate the
authenticity and generalizability of results from separate analogous
studies [12]. However, meta-analysis is not just statistical technique, but
a wide description of the whole study process. It increases the statistical
competency, leading to the generation of a higher explicit assessment of
differential gene expression and evaluation of diversification of the
long-term projection. Comprehensive utilization of already available
data makes it a relatively inexpensive approach. A scrupulous
meta-analysis combining multiple data of a large number of patient
populations from several platforms, institutions and numerous methods
of data procurement would unravel functionally relevant genes that may
have been differently neglected by the secluded analysis of analogous
studies of gene expression [13]. It has been customarily observed that
there are compelling genetic and molecular perturbations in cells during
the process of carcinogenesis. These changes can be dynamic, permanent
or irreversible and may cause momentous changes in gene expression.
Thus, the detection of these genetic changes would contribute to
providing diagnosis markers. Most of the contemporary studies are based
on classifying NSCLC or identifying diagnostic/prognostic biomarkers
depending upon the gene expression profile [14, 15, 16, 17, 18]. Here,
the objective is to select gene expression differentials between the two
subtypes (NSCLC and SCLC) of lung cancer through meta-analysis of
mRNA expression profiles from different studies to overcome the limi-
tations of individual studies. These gene expression differentials were
further functionally enriched to identify the perturbations in regulating
pathways, which would further enhance the understanding of the rela-
tionship between SCLC and NSCLC besides providing a new context to
the research. A Protein-Protein Interaction (PPI) network was con-
structed to further understand and predict the biological activity of the
selected gene expression differentials at the molecular level.

2. Materials and methods

2.1. Gene expression dataset selection for meta-analysis

Gene Expression Omnibus (GEO) [19] databases were exhaustively
searched for microarray datasets. The selection process was based on the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis
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(PRISMA) guidelines published in 2009 [20]. Inclusion criteria set for
the selection of datasets: control studies involving human cases include
both lung cancer subtypes (NSCLC and SCLC), comparable conditions,
data squeak (both raw and processed data), datasets with greater than 20
samples. Review articles, non-human studies and combined analysis of
expression profiles were precluded.

2.2. Data pre-processing

Data pre-processing operations including normalization and probe ID
mapping were performed preceding the meta-analysis. The unprocessed
CEL info was redressed and graded via Robust Multichip Average using
the Affy [21] and Oligo [22] packages in R statistical software to procure
the respective probe expression data. After retrieving the data, we
created a tab-delimited input text file of normalized intensities for further
analysis. The gene probe IDs from each study were mapped to Ensembl
gene IDs using different tools such as Synergizer [23], gProfiler id con-
verter [24], DB2DB conversion [25] and GEO2R [19]. It is customarily
found that numerous probes map to a specific Gene Symbols for the genes
with multifarious splice variants. Thus, the average expression value of
such probes was used for gene mapping.

2.3. Meta-analysis of microarray datasets

R statistical software (http://www.r-project.org/) using metaMA
[26], limma [27] and MAMA [28] packages were used to conduct a
meta-analysis of the gene expression profiles obtained from the selected
datasets. This software followed the t-test and p-value combining method
for performing meta-analysis. We used the False discovery rate (FDR)
approach, as given in Benjamini-Hochberg (BH) method [29] to adjust
the p-values. The genes with p-value, less than 0.05 and fold change
greater than 2 were selected as differentially expressed genes (DEGs)
between normal and cancerous tissue samples.

2.4. Functional enrichment analysis

DEGs identified after meta-analysis were subjected to functional
enrichment analysis, in order to understand their biological implications.
The gene ontology (GO) [30, 31] function and the Kyoto Encyclopedia of
Gene and Genomes (KEGG) [32, 33, 34] pathway enrichment analysis
was carried out using the contrivances available in the Database for
Annotation, Visualization and Integrated Discovery (DAVID; David.abcc
.ncifcrf.gov) [35]. A BH-corrected p-value of less than 0.05 was used as
the parameter to select the significantly enriched KEGG pathway.

2.5. PPI network analysis

The identified DEGs were subjected to create protein-protein inter-
action network using Cytoscape (www.cytoscape.org) [36]. The proteins
encoded by DEGs and their interactions with other proteins were
computed from the Biological General Repository for Interacting Datasets
(BioGRID, http://thebiogrid.org/) [37, 38].

3. Results

3.1. Selection and normalization of microarray datasets

We selected two datasets with accession numbers GSE6044 and
GSE40275. The two datasets consisted of a total of 131 samples; 50 of
which were non-small cell lung cancer, 31 were small cell lung cancer, 48
were normal tissues, which include 5 samples from different control
patients without tumor and rest had been purchased from OriGene
technologies and 2 samples were from carcinoma tissues, but their dis-
ease type was not defined, so we excluded them, and the total samples we
used in this study were 129. The required dossiers were extricated from
exclusive studies: platform, type of samples, GEO accession number,
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Table 1
Characteristics of individual studies retrieved from GEO Database included in
meta-analysis.

GEO accession
no.

Disease Samples Platform

GSE6044 NSCLC,
SCLC

n ¼ 47 Affymetrix Human HG-Focus Target
Array

GSE40275 NSCLC,
SCLC

n ¼ 84 Affymetrix Human Exon 1.0 ST
Array
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number of case and controls, and gene expression profile (Table 1).
Significant differential distribution of data was observed before and after
normalization of the datasets. They were demonstrated by a box plot of
intensity sample CEL files of the two datasets (Fig. 1). Relative changes in
differential expression were clearly identified by intensity scatter plots of
normal vs NSCLC and normal vs SCLC pertaining to the two datasets
(Fig. 2).
3.2. A set of genes differentially expressed in SCLC and NSCLC

A total of 1,943 genes were identified as differentially expressed ones
in both the datasets, including 1,014 DEGs in SCLC samples and 929
DEGs in NSCLC samples. DEGs were identified following more than 2.0-
fold enrichment (fold change, biological significance) over random
expectation (P< 0.05, statistical significance). Using the same criteria for
screening - BH-corrected p-value, less than 0.05 and FC (fold change) of
more than 2, an integral 489 DEGs were endowed as up-regulated and
525 DEGs were down-regulated in SCLC samples, whereas 440 DEGs
were up-regulated and 489 DEGs were down-regulated in NSCLC
Fig. 1. Distribution of Expression Data Before and After Normalization in (A) GSE
expression values. Before normalization box plot shows median of data at different

3

samples. Our data reports a momentous negative regulation of several
genes in both NSCLC and SCLC groups. However, SCLC group had highly
deregulated genes as compared to the NSCLC one (Fig. 3). The leading 10
upregulated and downregulated genes in both NSCLC and SCLC are listed
in Table 2. Genes were stacked acceding the fold change, superseded by
adjustment of the corresponding p-values using the Benjamini-Hochberg
procedure, positioning the false discovery rate.
3.3. Overlapping DEGs of NSCLC and SCLC

To find out how many of the genes differentially expressed are spe-
cific to each group, we checked for the overlap between a differentially
expressed gene in non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC). For this purpose, we used the Venny 2.1.0 (http://bioinfo
gp.cnb.csic.es/tools/venny/). 642 genes were included exclusively in
“SCLC”, 557 genes were included exclusively in “NSCLC” and 372 genes
were common in “NSCLC” and “SCLC”. 221 genes were commonly up-
regulated in NSCLC and SCLC whereas 140 genes were commonly
down-regulated in NSCLC and SCLC (Fig. 4A). 3 genes (GUSBP8, CHL1,
CXCL1) were common between up-regulated DEGs in NSCLC and down-
regulated DEGs in SCLC and 8 genes (FGG, IL33, AGR2, ANK3, CSTA,
FABP6, S100P, TRIM29) were common between up-regulated DEGs in
SCLC and down-regulated DEGs in NSCLC (Fig. 4B).
3.4. Characterization of DEGs

We classified the DEGs into different functional categories of cellular
integrals, biological systems, and molecular functions with a compelling
threshold of <0.05, based on the GO hierarchy and KEGG pathway. The
6044 and (B) GSE40275 . X-axis represents the sample lists; Y-axis represents
levels whereas after n normalization median is adjusted.
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Fig. 2. Intensity Scattered Plot showing the relationship
between expression values of Normal vs NSCLC and
Normal vs SCLC in datasets (A) GSE40275 and (B)
GSE6044. (A) represents the comparison of expression
value of genes in dataset GSE40275 between normal and
NSCLC samples and between normal and SCLC samples.
(B) represents the comparison of expression value of
genes in dataset GSE6044 between normal and NSCLC
samples and between normal and SCLC samples. x-axis
represents the expression value of normal samples
whereas y-axis represents the expression values of
diseased samples.

Fig. 3. Volcano plot highlighting DEGs: (A) A fold vs -log10(p-value) plot, highlighting DEGs in SCLC, indicates that the down-regulated DEGs highlighted with blue
color are more in number than the up-regulated DEGs highlighted with red color. The second fold vs -log10(p-value) plot (B) highlights DEGs in NSCLC, up-regulated
DEGs are highlighted with orange color and down-regulated DEGs are highlighted with green color. X-axis represents the fold change (log2 scale) and Y-axis represents
the p-value (-log10 scale).
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Table 2
Top 10 upregulated and downregulated DEGs in NSCLC and SCLC.

Genes BH-p-value Fold change Genes BH-p-value Fold change

Upregulated DEGs (SCLC) Downregulated DEGs (SCLC)

AGER 8.40E-29 5.070 TMSB15B 0.000902695 �5.462
SFTPC 1.77E-07 4.982 BEX1 4.07E-14 �5.418
GSTA1 0.0016756 4.858 DLK1 0.0076076 �4.984
CYP2B7P 2.49E-22 4.732 TOP2A 3.80E-16 �4.926
AQP4 8.46E-11 4.712 ASCL1 6.08E-06 �4.883
CLDN18 3.94E-17 4.682 HIST1H3C 4.49E-10 �4.721
C4BPA 1.87E-11 4.658 HIST1H3B 4.35E-17 �4.671
ADH1B 1.03E-12 4.643 DCX 2.89E-10 �4.557
LRRK2 2.53E-10 4.582 TUBB2B 4.59E-14 �4.472
MSMB 0.00387654 4.473 HIST1H3I 2.63E-18 �4.415

Upregulated DEGs (NSCLC) Downregulated DEGs (NSCLC)

MSMB 1.95E-10 5.855 TOP2A 1.63E-17 �4.515
SFTPC 3.66E-09 4.866 SPP1 8.22E-15 �4.464
SCARNA17 1.58E-08 4.550 RPS27 3.86E-10 �4.444
GSTA1 1.35E-09 4.326 LOC727900 6.24E-09 �4.302
AQP1 9.81E-13 4.278 ANLN 1.65E-14 �3.858
AGER 1.39E-23 4.235 TPX2 2.89E-13 �3.847
TCF21 3.50E-22 4.226 LOC727929 1.29E-10 �3.744
ADH1B 2.37E-11 4.130 CKS2 2.24E-12 �3.713
SLC6A4 1.53E-31 4.028 LOC732426 5.52E-06 �3.711
CENPVL3 2.01E-09 3.991 DLGAP5 4.55E-12 �3.669

Fig. 4. (A) Venn diagram showing overlap in the number
of genes identified as differentially expressed in SCLC and
NSCLC. As shown in figure (A), 642 genes were included
exclusively in “SCLC”, 557 genes were included exclu-
sively in “NSCLC” and 372 genes were common in
“NSCLC” and “SCLC”. Blue circle denotes the number of
DEGs in SCLC group and yellow circle denotes number of
DEGs in NSCLC group. (B) Venn diagram showing overlap
between the up-regulated and down-regulated differen-
tially expressed genes in SCLC and NSCLC. As shown in
Figure (B), 221 genes were commonly up-regulated in
NSCLC group and SCLC group whereas 140 genes were
commonly down-regulated in NSCLC group and SCLC
group and also 3 genes (GUSBP8, CHL1, CXCL1) were
common between up-regulated DEGs in NSCLC and down-
regulated DEGs in SCLC and 8 genes (FGG, IL33, AGR2,
ANK3, CSTA, FABP6, S100P, TRIM29) were common be-
tween up-regulated DEGs in SCLC and down-regulated
DEGs in NSCLC. The four ovals highlighted with
different colors represent the type of differential expres-
sion pattern. Blue color represents up-regulated DEGs in
SCLC, yellow color represents up-regulated DEGs in
NSCLC, green denotes down-regulated DEGs in SCLC and
red shows down-regulated DEGs in NSCLC.
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DEGs in the small cell lung cancer group were significantly enriched in
the following GO terms (most significant) under the biological process's
category (descending order): ‘DNA replication’ (GO:0006260), ‘cell di-
vision’ (GO:0051301) and ‘DNA replication initiation’ (GO:0006270).
‘Protein binding (GO:0005515) and ‘extracellular space’ (GO:0005615)
were highly enriched GO terms under the molecular functions and
cellular components categories. The most enriched KEGG pathway terms
in which the DEGs in the small cell lung cancer group were convincingly
enriched (in descending order): ‘Systemic lupus erythematosus’
(hsa05322), ‘DNA replication’ (hsa03030) and ‘Cell cycle’ (hsa04110)
(Table 3). On the other hand, the DEGs in the non-small cell lung cancer
group were highly important for the following GO terms (most signifi-
cant) under the biological processes such as ‘cell division’ (GO:0051301)
‘mitotic nuclear division’ (GO:0007067) and ‘xenobiotic glucur-
onidation’ (GO:0052697). The most convincing GO terms under the
molecular functions and cellular component categories were ‘protein
5

binding’ (GO:0005515) and ‘extracellular exosome’ (GO:0070062). The
most enriched KEGG pathway terms in which the DEGs in the non-small
cell lung cancer group were significantly enriched (in descending order):
‘Ascorbate and aldarate metabolism, (has: 00053) ‘Drug metabolism-
cytochrome P450’ (hsa00982) and ‘Pentose and glucuronate in-
terconversions’ (hsa00040) (Table 4).
3.5. PPI network analysis

The PPI network generated for 8 DEGs (CXCL1, FGG, IL33, AGR2,
ANK3, CSTA, S100P, TRIM29) by Cytoscape software included 261
nodes and 265 edges as shown in Fig. 5. Nodes represent proteins, edges
represent the interaction between two proteins. The higher the node
shape, the greater the degree of connection. The significant hub proteins
containing TRIM29 (Tripartite Motif-Containing Protein 29, Degree ¼
119), ANK3 (Ankyrin 3, Degree ¼ 42) and CSTA (Cystatin A, Degree ¼



Table 3
Functional enrichment analysis representing top 10 GO terms and pathways of
DEGs in the SCLC group. Enriched terms were ranked based on the BH-adjusted
p-value.

GO ID GO term No. of Genes BH-p-
value

Biological Process
GO:0006260 DNA replication 38 2.82E-11
GO:0051301 Cell division 59 1.96E-11
GO:0006270 DNA replication initiation 17 1.33E-09

Molecular Functions
GO:0005515 Protein binding 559 3.30E-09
GO:0046982 Protein heterodimerization

activity
60 1.12E-07

GO:0042393 Histone binding 22 4.28E-04
Cellular Components
GO:0005615 Extracellular space 144 7.73E-15
GO:0070062 Extracellular exosome 242 5.36E-15
GO:0000786 Nucleosome 30 2.94E-13

KEGG ID KEGG pathway No. of Genes BH-p-
value

hsa05322 Systemic lupus erythematosus 37 1.17E-11
hsa03030 DNA replication 18 1.33E-09
hsa04110 Cell cycle 29 2.23E-07
hsa04640 Hematopoietic cell lineage 20 4.25E-05
hsa04512 ECM-receptor interaction 16 0.0113025

Table 4
Functional enrichment analysis representing the top 10 GO terms and pathways
of DEGs in the NSCLC group. Enriched terms were ranked based on the BH-
adjusted p-value.

GO ID GO term No. of
Genes

BH-p-
value

Biological Processes
GO:0051301 Cell division 55 3.55E-13
GO:0007067 Mitotic nuclear division 42 1.28E-10
GO:0052697 Xenobiotic glucuronidation 9 1.01E-07

Molecular Functions
GO:0005515 Protein binding 459 6.17E-10
GO:0044822 Poly(A) RNA binding 87 1.49E-05
GO:0005178 Integrin binding 19 9.27E-05

Cellular Components
GO:0070062 Extracellular exosome 215 5.72E-18
GO:0005654 Nucleoplasm 188 7.68E-10
GO:0005615 Extracellular space 108 6.86E-09

KEGG ID KEGG pathway No. of
Genes

BH-p-
value

hsa00053 Ascorbate and aldarate metabolism 11 1.25E-04
hsa00982 Drug metabolism – cytochrome P450 16 1.92E-04
hsa00040 Pentose and glucuronate

interconversions
11 8.21E-04

hsa05150 Staphylococcus aureus infection 13 9.92E-04
hsa04110 Cell cycle 20 9.99E-04
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31). Top five genes having a higher number of interacting partners were
identified (Table 5).

4. Discussion and conclusion

Lung cancer is a foremost cause of deaths globally. Currently avail-
able options of treatment are restricted due to the chemoresistance and
resurgence of recurrence. The two different subtypes of cancers (SCLC
and NSCLC) are distinctly different with respect to their characteristic
features. These characteristics can be explored to understand the
magnitude of the disease. This would serve as a tool for identifying
effective therapeutic strategies for the disease. Differential expression
analysis is the most commonly used method for identification of aber-
rantly expressed genes in disease. This analysis utilizes several statistical
approaches such as t-tests of cohorts to identify differences in the level of
6

expression between diseased and normal individuals. These differentially
expressed genes are then disintegrated into specific dysregulated path-
ways. Despite the clear expediency of approach, it is limited by a high
level of noise in the gene expression data, reproducibility of the results
and individual differences due to factors such as age, gender, genotype,
and disease stage. Moreover, different stages of treatment, differences in
cohort and experimental methods may also result in disparities between
studies. Thus, meta-analysis of statistically combining multiple studies is
a more powerful tool to abode these issues and elicitate the relevant
information from multiple datasets. This would result in identifying
disease signatures that are largely consistent across several studies,
enhancing the potential of the technique. In order to evaluate the unique
contribution of meta-analysis in identifying significant differences in two
subtypes of lung cancer in this study, we first applied inclusion criteria to
identify datasets available in each subtype specific dataset. All the
required information was extracted, and data was normalized before
processing it by meta-analysis. We then performedmeta-analysis using R-
statistical software and identified 1,943 differentially expressed genes,
among which 1,014 were differentially expressed in SCLC and 929 were
differentially expressed in NSCLC. These genes were then evaluated for
GO and KEGG pathway functional enrichment with Padj. < 0.05 for each
method. The DEGs found in SCLC group were enriched for DNA repli-
cation, cell division, and DNA replication initiation by GO enrichment
and; in Systemic lupus erythematosus, DNA replication and cell cycle by
KEGG pathway enrichment. DEGs found in NSCLC group were exigently
enriched for cell division, mitotic nuclear division, and xenobiotic glu-
curonidation by GO enrichment and cytochrome p450 and Pentose and
glucuronate interconversions by KEGG pathway enrichment. Notably,
GO functional enrichment results in a considerably smaller set of
enriched GO terms, mostly falling into metabolic, cell division, cell cycle
and DNA replication categories. We identified selective biological signals
associated with different subtypes of lung cancer. On further examining
the differential expression of genes in detail, we found that 3 genes
(GUSBP8, CHL1, CXCL1) were common between upregulated DEGs in
NSCLC and downregulated DEGs in SCLC and 8 genes (FGG, IL33, AGR2,
ANK3, CSTA, FABP6, S100P, and TRIM29) were common between
upregulated DEGs in SCLC and downregulated DEGs in NSCLC. These are
important findings as they provide an opportunity to look for consensus
of the genes affected in two different types of lung cancer. Besides using
these genes for diagnostic purposes, they may prove to be authentic
targets for therapeutics and for eventual management of lung cancer.

CHL1 is a cell adhesion molecule which acts as a helicase protein
during the interphase stage of mitosis during cell cycle. It is known to
promote invasion and metastasis in other types of cancers such as breast,
colon and ovary. It acts as tumor suppressive or oncogenic factor
depending upon the stage and types of cancer [39]. Thus, it might act as a
diagnostic biomarker for NSCLC differentiating the stages of tumor
growth. GUSBP8, a marker of mature β cells and upregulation of GUSBP8
suggests its role in immune evasion by cancer cells. CXCL1, a small
cytokine associated with processes of arteriogenesis, angiogenesis,
inflammation and tumorigenesis [40]. Upregulation of CXCL1 might be
correlated with aggressiveness of the tumor as infiltration of cytokines at
the tumor site promotes tumorigenesis. They also direct the tumor cells to
metastatic sites by enhancing angiogenesis of tumor cells. Thus, their
expression levels might indicate the aggressiveness of NSCLCs.

On the other hand, FGG, a gene encoding γ component of fibrinogen,
has vasonstriction and chemotactic activities that regulates cell adhesion
and spreading [41]. Upregulation of the gene in SCLC can be correlated
with high metastatic capability of the subtype. IL-33 is another cytokine
upregulated in SCLC, can be associated with high initial response rates, as
it signals inflammatory cascades by acting upon macrophages, neutro-
phils and B cells which are the early responding cells of the immune
system [42]. Upregulation of AGR2 (anterior gradient 2, also called
adenocarcinoma antigen) can be associated with survival, as it is corre-
lated with reduced p53 response and enhanced cell migration and
transformation [43]. ANK3, a proteoglycan plays a key role in cellular



Fig. 5. Protein-protein interaction (PPI) network: This PPI-interaction network was constructed from the 8 overlapping differentially expressed genes (DEGs). A total
of 261 proteins participated in this network. Yellow nodes represent 8 DEGs.

Table 5
Degree of the top 10 genes in the protein-protein
interaction network.

Gene Symbol Degree

TRIM29 119
ANK3 42
CSTA 31
FGG 27
AGR2 27
S100P 24
IL33 10
CXCL1 9
CDH1 3
SPTBN4 2
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motility, proliferation, activation, contact and maintenance of special-
ized membrane domains [44]. Upregulation of ANK3 can be associated
with typical cellular morphology of SCLC tumors. Upregulation of CSTA
(cystatin A), a stefin that forms tight complexes with papain and
cathepsin B, H and L, acts as a cysteine protease inhibitor [45] and can be
associated with neoplastic changes in squamous cell epithelium. It might
serve as a plausible biomarker for differentiation of the two subtypes
based on cellular morphology. FABP6, a gene involved in fatty acid
metabolism [46], is associated with nutrient availability for cancer cells.
S100P increases cancer cell migration, invasion, and metastasis [47] and
is envisaged to be associated with metastasis of SCLC. Similarly, TRIM29
promotes cellular proliferation by reducing acetylation of p53, thereby
affecting DNA damage responses, UV resistance, cell adhesion, invasion,
and differentiation [48]. Thus, it can be associated with resistance in case
of SCLC. From the above, we could find that DEGs associated with the
two subtypes are implicated in several aspects of tumorigenesis such as
cell cycle, cell division, and DNA replication. But there are other genes to
which the DEGs are closely connected. These genes may also undergo
several alterations at numerous levels, such as the post-transcriptional
level, which might contribute to the process of carcinogenesis. Thus,
an accompanying network analysis of 8 DEGs (CXCL1, FGG, IL33, AGR2,
7

ANK3, CSTA, S100P, TRIM29) genes was conducted. The protein infor-
mation for the rest of the 3 overlapping genes was not available, due to
which they were not used for PPI network analysis. Five genes (TRIM29,
ANK3, CSTA, FGG, and AGR2) with a higher number of interacting
protein partners were identified. TRIM29 is a co-transcriptional regula-
tory factor which encodes a 588 amino acid protein. It is intricated into
differentiation or carcinogenesis of several types of cancers. It is upre-
gulated in bladder, ovarian, endometrial, colon and colorectal cancer but
downregulated in prostate and breast cancer [49, 50, 51, 52, 53, 54]. The
changes in expression are suggestive of the involvement of particular
cellular specificities or connections and conglomerate pathways of
signaling. The upregulation of TRIM29 in SCLC and downregulation in
NSCLC corresponds with the above findings indicating the importance of
a gene in differentiation of the disease. The higher degree of protein
interactions is indicative of their roles in several pathways related to cell
adhesion, invasion, radioresistance and DNA damage responses. More-
over, it also plays an important role in activating macrophages in
response to bacterial or viral infections. An exaggerated polarization of
macrophage leads to more conspicuous inflammation, thereby enhancing
the severity of the disease. Thus, it might serve as an impressive thera-
peutic target of lung cancer. Similarly, ANK3 is an integral membrane
protein convoluted in the processes of proliferation, activation, and
motility. It has been found to be associated with poor prognosis and
metastasis. As seen in the PPI network, it has a higher degree of protein
interactions and is associated with several proteins such as TIAM1, where
it promotes Rac1 signaling and migration in breast SP cells [55]. Thus,
upregulation of ANK3 might be responsible for high cell motility and
poor prognosis in case of lung cancer. CSTA, another DEG associated with
lung cancer has anti-apoptotic properties associated with neoplastic
changes in squamous cell epithelium. It has been reported that its
expression is regulated by several factors such as smoking, COPD and
genetic variability [45]. These findings can be correlated with higher
degree of protein interactions in the PPI network constructed in our
study. FGG, as discussed before is a gene encoding γ component of
fibrinogen, which is involved in the process of blood clotting. Any per-
turbations in these genes are associated with the homeostatic imbalance
between coagulation and anticoagulation [41]. Thus, differentially
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expressed FGG might contribute to the processes of pathologic throm-
bosis and angiogenesis associated with cancer cells. Similarly, AGR2 is
also a multi-faceted protein known to affect several aspects of tumori-
genesis. This is clear from the interactions observed in the PPI network.
Thus, this study has identified the differentially expressed genes in
NSCLC and SCLC. We have also tried to find out the interactions of their
protein products with other proteins. When once this part of the study is
complete, that would provide deeper insight into the mechanistic dy-
namics of lung cancer.

We have identified differential expression of genes in NSCLC and
SCLC. However, gene expression changes are driven by alterations in
regulatory pathways. Therefore, understanding the regulatory network
would lead us to the development of the competent approach in building
predictive models of the disease. Notwithstanding this challenge, we
used meta-analysis to identify certain gene signatures associated with
NSCLC and SCLC. Meticulous statistical analysis using heterogeneous
data from multiple studies has enabled us to uncover biologically sig-
nificant elements for modeling transitional relationships between geno-
type and phenotype of the lung cancer.
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