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Abstract: Estrogen receptor α (ERα) is closely associated with both hormone-dependent

and hormone-independent tumors, and it is also essential for the development of these

cancers. The functions of ERα are bi-faceted; it can contribute to cancer progression as

well as cancer inhibition. Therefore, understanding ERα is vital for the treatment of those

cancers that are closely associated with its expression. Here, we will elaborate on ERα based

on its structure, localization, activation, modification, and mutation. Also, we will look at co-

activators of ERα, elucidate the signaling pathway activated by ERα, and identify cancers

related to its activation. A comprehensive understanding of ERα could help us to find new

ways to treat cancers.
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Introduction
Estrogen receptors (ERs) consist of nuclear ERs, extra-nuclear ERs, and G protein-

coupled ERs (GPERs).1 Nuclear ERs, including estrogen receptor α (ERα) and

estrogen receptor β (ERβ), are located in the nucleus and are encoded by ESR1

and ERS2, respectively.2 Once activated, nuclear ERs transcriptionally regulate the

expression of targeted genes.3 Extra-nuclear ERs include cytosolic ERα and ERβ,
both of which are located in the plasma membrane.4 GPERs are expressed both in the

plasma membrane and cytoplasm,5 and are structurally different from ERα and ERβ.6

ERs show similar main structures; however, their sequential homology is as low as

47%.2 The different functions of ERs depend on structural differences. ERs can be

activated when cells are exposed to estrogen.7–9 Emerging evidence shows that the

activation of ERs is highly associated with cancer formation and metastasis, 10–12

extracellular matrix (ECM) remodeling2,13 and drug resistance.14–17

Here, we focus on providing a comprehensive understanding of ERα. We hope

this will help doctors to find more effective ways to treat ERα-related cancers.

The Structure of ERα
ERα was the first ER to be discovered and cloned.9 The gene ESR1 that encodes ERα
is located on chromosome 6.18 As shown in Figure 1, the ERα protein consists of 595

amino acids with a molecular weight of approximately 66.2kD.18 The ERα protein

contains six domains (A-F), three of which are functionally significant.19 The three

functional domains are the N-terminal A/B domain (NTD), the C domain (which

includes the DNA-binding domain, DBD), and the E domain (the ligand-binding

domain, LBD).19 NTD has a low degree of conservation and contains AF-1, which

has the function of transcriptional activation and is also the main reason for ERα’s
endocrine-sensitivity.20 AF-1 is critical to the transactivation function and shows the
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highest variability among ERs.2 DBD in the C domain is

highly conserved and exerts its function by binding to the

estrogen-responsive element (ERE), which subsequently

regulates the expression of target genes.21 The D domain

shows 30% homology among ERs and links the C and

E domains.22,23 LBD (also called AF-2) or the E domain,

showing 55% homology with other ERs, is mainly involved

in protein and estradiol (E2) binding.22 LBD combines with

estrogen to form a homodimer that regulates gene suppres-

sion and activation and contributes to transcriptional

activation.22,23 Studies have also shown that LBD is respon-

sible for nuclear localization.22,24 The F domain, which is

not conserved and shows only 18% homology, is regarded

as an extension of the E domain.22 Although the structure of

ERα has been studied extensively, the function of the

F domain has not been clarified. Understanding the struc-

ture of ERα is essential for the treatment of ERα-over-
expressing cancers.

Localization and Activation of ERα
ERα is widely expressed in human tissues, including breast,

prostate, uterus, liver, and bone.25 As stated above, there are

two types of ERα, nuclear and extra-nuclear. Proteins are

generally synthesized in the ribosome and then relocated

under the guidance of a signal peptide.26 In the nuclear

ERα, the LBD region contains nuclear localization signals

that guide the estrogen-ERα homodimer transfer from the

cytoplasm to the nucleus.24,27 Once ERα has been relocated

to the nucleus, its DBD then links with an ERE on the

DNA.4,9,28 Through this process, nuclear ERα is

activated.4,9,28

Activated nuclear ERα regulates the expression of tar-

get genes by activating transcription factors downstream.29

The E domain is fundamental to membrane translocation

of ERα.30 Studies have shown that membrane ERα acts as

a kind of G protein-coupled receptor, activates G proteins,

and stimulates G protein-induced signal transduction.31,32

Therefore, the interaction between E2 and membrane ERα
activates various signaling pathways and signaling mole-

cules, subsequently triggering downstream gene transcrip-

tion and affecting cancer progression.33–39 It is, for that

reason, understandable that different locations of ERα
exert distinct functions in multiple ways.

Post-Translational Modification and
Function of ERα
Proteins exert their functions, including phosphorylation and

dephosphorylation, lipidation or palmitoylation, methyla-

tion, acetylation, and SUMOylation, after post-translational

modifications.40–42 Common post-translational modifica-

tions of For ERα include phosphorylation, palmitoylation,

and ubiquitination.43–47 Studies have revealed that frequent

phosphorylation sites of ERα are Ser118, Ser167, and

Ser305.43,44 The phosphorylation of these three sites leads

to cancer progression, tumor metastasis, and endocrine ther-

apy resistance.43,44 Interestingly, the phosphorylation of

Ser305 activates the phosphorylation of Ser118, which sub-

sequently promotes cancer development.48

The palmitoylation site of ERα is Cys-447, and studies

have demonstrated that the palmitoylation of ERα is essen-

tial for locating ERα in the plasma membrane.4,49 By

binding to E2, the palmitoylation of ERα activates down-

stream signaling pathways.45 The ubiquitination of ERα is

the primary way of degrading ERα. However, emerging

evidence shows that the function of the ubiquitination of

ERα is complicated.46,47,50 ERα ubiquitination promotes

tumorigenesis in hepatocellular carcinoma,46 resulting in

the slow growth of cancer cells in breast cancer.47,50 In

Figure 1 Structure of the ERα protein.

Note: Adapted from Bioorg Chem, 71, Jameera Begam A, Jubie S, Nanjan MJ. Estrogen receptor agonists/antagonists in breast cancer therapy: a critical review, 257–274,

Copyright (2017), with permission from Elsevier.18
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conclusion, the function of ERα is dependent on post-

translational modifications.

Mutation of ERα
ER-positive (ER+) breast cancer has a good prognosis,

mainly owing to endocrine therapy,51,52 which has shown

great success.52 However, endocrine resistance is partially

responsible for patient relapse,53–55 and the mutation of

ERα plays a significant part in endocrine resistance.56

Modification of ERα frequently results in changes in the

activity of ERα and variations in protein expression and

function, which lead to the proliferation of cancer cells.56,57

ERα mutations are commonly observed in ER+ breast

cancer. Two ESR1 mutations, Y537S and D538G, are most

easily identified.56,58 Investigations have demonstrated that

ESR1 mutations result in cancer cell resistance to tamoxifen

(TAM) in breast cancer patients.56,58 Y537S mutants report-

edly are not dependent on estrogen, but D538G mutants

are.56 Both mutants have been shown to be associated with

endocrine resistance,56 and neither change the ability of

ERs to bind to transcription factors.59–61 We may, therefore,

conclude that the mutation of ERα is critical for cancer

development and drug resistance.

Co-Activators of ERα
ERα regulates the expression of its target genes through the

participation of its co-activators.62 In the presence of E2, co-

activators combine with ERα and subsequently activate tran-

scription factors, which contribute to the transcription of target

genes (Figure 2).62 Many co-regulators have been found;

however, their mechanism of action is not always clear Co-

activators act as co-regulators, exerting their effect through

variousmechanisms. Specifically, SRC-1 and SRC-2 are func-

tionally similar and contribute to the activation of ERα.63–65

Previous research revealed that SRC-1 and SRC-2 could lead

to resistance to TAM in ER+ breast cancer patients,66 while

another investigation demonstrated that SRC-3 is overex-

pressed in breast cancer and acts as a selective activator of

ERα.66 In vivo experiments showed that SWI2/SNF2 protein

enhanced gene transcription by interacting with the AF-2

domain,67 and PBP contributed to mammary epithelial differ-

entiation in breast cancer.68 AIB1 interacts with ERs and

resulting enhancement of estrogen-related gene transcription,

which leads to development of breast and ovarian cancer.64

There are other co-activators whose functions are unclear.65 In

all, many co-activators have been discovered that work

together with ERα to co-regulate the expression of target

genes. More co-activators will undoubtedly be studied in the

future, which should be very helpful in understanding the

mechanisms by which ERα regulates its target genes.

ERα and Signaling Pathways
Studies have shown that the activation of ERα leads to the

activation of downstream signaling pathways.69,70 In endome-

trial carcinoma, estrogen contributes to carcinogenesis by acti-

vating ERα, which subsequently activates the downstream

signaling pathways of phosphatidylinositol 3-kinase (PI3K)/

AKT and mitogen-activated protein kinase/extracellular sig-

nal-regulated kinase (MAPK/ERK) (Figure 3). 69,71 In ER+

breast cancer, estrogen activates the PI3K/AKT/mTOR signal-

ing pathway by associating with extra-nuclear ERα, which
results in drug resistance and epithelial-to-mesenchymal tran-

sition (EMT) (Figure 3).70,72 Targeting ERα reportedly causes
changes in the expression of components of the PI3K/AKT-

protein kinase Cα signaling pathway, resulting in cell

apoptosis.73 Also, the activation of ERα results in increased

expression of the PI3K/AKT/NF-κB signaling pathway, lead-

ing to tumor invasion and metastasis in breast cancer.74

As discussed above, membrane ERα is linked to

G proteins, transmitting signals from the outside to the inside

of the cell.75 Downstream signaling pathways, including

adenosine monophosphate (cAMP) signaling,33 PI3K/AKT,

and endothelial nitric oxide synthase, are activated after

receiving signals.76,77 As a result, cAMP levels increase,

and the mobilization of Ca2+ is rapidly enhanced in the

presence of estrogen; this contributes to the activation of

estrogen signaling by activating the C-terminal of ERα
(Figure 3).78,79 Emerging evidence shows that the membrane

ERα activated by E2 interacts with signaling molecules,

including PI3K, MAPK, AKT, p21ras, and PKC, contribut-

ing to the cascade amplification reaction of signaling

molecules.2,80 Reportedly, the activation of ERα leads to

Nucleus

Target gene

Co-activator
ERE TF

TranscriptionERα

Figure 2 ERα’s contribution to the transcription of target genes with the help of

co-activators.
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the activation of human epidermal growth factor receptor 2

and epidermal growth factor receptor (EGFR), resulting in

the upregulation of the mTOR/PI3K/AKT/MAPK signaling

pathway.81 In breast cancer, ERα activation contributes to

cancer progression by binding to IGF-IR, which subse-

quently activates the IGF pathway (Figure 3).82,83

Overall, ERα is extremely important in cancer progres-

sion. Understanding the mechanisms involving ERα is key

to treating cancers.

ERα and Cancer
ERα is critical to the development of ER+ breast cancer,84

which accounts for approximately 70% of all breast

cancers.7,85 Overexpression of ERα frequently sensitizes

tumors to endocrine therapy.84 When exposed to E2, ERα

activation stimulates downstream signaling pathways,86

and leads to EMT and ECM remodeling (Figure 3).87,88

In ER+ breast cancer, estrogen contributes to cancer pro-

gression by activating the PI3K/AKT signaling

pathway.89,90 In the ER+ breast cancer cell line MCF-7,

calcium mediates the activation of estrogen signaling.78

Overall in all, ERα plays a significant part in the progres-

sion of ER+ breast cancer.

ERα is widely expressed in cells and has a critical role

in both hormone-dependent and hormone-in dependent

cancers. In hormone-related cancers, such as breast, endo-

metrial and ovarian cancers, ERα expression contributes to

disease progression mostly by regulating the PI3K/AKT

signaling pathway.69,73 Emerging evidence shows that

ERα is also crucial to the progression of prostate

cancer.91 Overexpression of ERα in prostate cancer is

strongly associated with adverse survival outcomes.91

ERα acts as an oncogene and contributes to the develop-

ment of prostate cancer by inducing EMT and the activa-

tion of matrix metalloproteinases.92,93 However, ERα also

has a key role in inhibiting tumor development, maintain-

ing the luminal phenotype, and restoring the sensitivity of

breast cancer to hormone therapy.94 In hormone-

independent cancers, such as colorectal cancer, ERα

expression was shown to inhibit tumors in women.95 In

non-small-cell lung cancer, ERα expression contributed to

sensitivity to pemetrexed and carboplatin.96 However, high

ERα expression is also significantly related to poor survi-

val outcomes in colorectal cancer patients.97 Therefore, we

can conclude that the regulation of ERα is complicated,

and its role is bi-faceted.
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Figure 3 The signaling pathways in which ERα is involved.
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Conclusions and Perspectives
Study have shown that changes in expression of ERα, ERβ,

and GPERs greatly affect cell proliferation and cancer

development.98 As discussed above, the functions of ERs

are bi-faceted. ERβ also exerts its functions through various

mechanisms. In triple-negative breast cancer cells, ERβ sup-

presses tumor progression by interacting with androgen

receptors.99 ERβ also contributes to beneficial gut

microbiota diversity, which suppresses colorectal cancer

development.100 However, in prostate cancer cell line PC-3,

ERβ exerts its oncogenic effect by activating β-catenin and

regulating the PI3K/AKT signaling pathway.101 Therefore,

the effects of ERβ in cancer cells are complicated.

The functions of GPERs are also multi-faceted. In hor-

mone-dependent cancers, such as breast cancer and endo-

metrial cancer, GPER expression leads to tumor

progression. Specifically, analysis of data from a subset of

breast cancer patients showed that GPER-1 expression was

positively correlated with overexpression of EGFR.102 In

TAM-resistant breast cancer cells, GPER-1/EGFR receptor

signaling contributes to the development of TAM

resistance,103 indicating that either GPER-1 exerts its func-

tion by regulating EGFR or there is a mutual regulation

between the two. In breast cancer MDA-MB-231 cells,

down-regulation of GPER induces inhibition of cell prolif-

eration and tumor metastasis.104 In endometrial cancer,

GPER-1 promotes cell growth by binding to autocrine

motility factor.105 GPER also contributes to insulin-driven

endometrial cancer cell proliferation by regulating the

PI3K/AKT signaling pathway.106 Overall, GPER expression

contributes to the development of hormone-dependent can-

cers. However, in hormone-independent cancers, such as

colorectal cancer, the relationship between GPER expres-

sion and tumor progression is more complicated. In ERβ-

negative colorectal cancer cells, GPER-induced hypoxic

condition leads to tumor development.107 However, another

study reported that GPER −1 inhibits the activation of NF-

κB by the canonical IKKα/IκBα pathway. In vivo experi-

ments confirmed that GPER-1 suppresses progression of

colorectal cancer.108 Overall, GPER has complicated func-

tions in cancers.

As important ERs, ERα, ERβ, and GPER do not func-

tion independently from each other. Cross-regulation

among ERs has an important role in physiological activ-

ities and biological behaviors. In zebrafish, ERα is a core

factor, interacting with ERβ and GPER to regulate

vitellogenesis.109 In vivo experiments showed that ERβ

and GPER-1 co-regulate the effects of E2 on arginine-

vasopressin immunoreactivity.110 In human renal tubular

epithelial cells, E2 leads to cell proliferation via ERα and

GPER-1.111 In vitro experiments showed that ERβ sup-

pressed the transcriptional and oncogenic effects of

ERα.112,113 The functions of ERα and ERβ are antagonis-

tic; therefore, their ratio is important in the development of

diseases. An ERβ/ERα ratio lower than 0.85 was asso-

ciated with and could potentially be used to predict endo-

scopic activity in Crohn’s disease.114 In conclusion, the

expression changes of different ERs are associated with

abnormal regulation and disorders.

ERα is localized in the nucleus and the plasma mem-

brane; however, the membrane-localized receptors mediate

faster signal transduction via the MAPK/ERK, PI3K/AKT,

and p38/MAPK signaling pathways.115,116 In this review,

we emphasize that ERα expression is closely linked to

cancer development.33 The activation of ERα by estrogen

leads to tumor progression and metastasis, which subse-

quently promotes the transduction of downstream signal-

ing pathways.82,83 Currently, ERα antagonists such as

TAM are widely used in clinical settings with great

success.117 Nevertheless, endocrine resistance remains par-

tially responsible for patient relapse.53–55 TAM is structu-

rally similar to estrogen and competitively combines with

ERs, subsequently blocking the entry of estrogen into

tumor cells and inhibiting the development of cancers.118

However, resistance to TAM has multiple mechanisms,

including ER mutation, loss of ER expression, overexpres-

sion of ER co-activators, activation of the EGFR or PI3K/

AKT signaling pathway, epigenomic and post-translational

modifications in ER, and enhanced mitochondrial metabo-

lism of TAM.56,119–124 Endocrine therapy resistance is

a challenge, and successfully solving this problem would

greatly benefit cancer patients. This review provides

a comprehensive understanding of ERα, which we hope

will help in the search for new ways to treat ERα-related
cancers.
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